Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Асинхронный двигатель однофазный как подключить


Однофазный асинхронный двигатель: 6 схем работы

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

Содержание статьи

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

однофазный асинхронный станок - MATLAB & Simulink

В этом примере показана работа однофазного асинхронного двигателя в режимах конденсаторный запуск и конденсаторный запуск.

H. Ouquelle и Louis-A.Dessaint (Ecole de technologie superieure, Montreal)

Описание

В этой модели используются два однофазных асинхронных двигателя соответственно в режимах конденсаторный запуск и конденсаторный запуск, чтобы сравнить их рабочие характеристики, такие как крутящий момент, пульсация крутящего момента, КПД и коэффициент мощности.Два двигателя рассчитаны на 1/4 л.с., 110 В, 60 Гц, 1800 об / мин., И они питаются от однофазного источника питания 110 В. Они имеют идентичные обмотки статора (основной и вспомогательной) и короткозамкнутые роторы.

Двигатель 1 Двигатель работает в режиме запуска конденсатора. Его вспомогательная обмотка, включенная последовательно с пусковым конденсатором 255 мкФ, отключается, когда его скорость достигает 75% от номинальной скорости. Пусковой конденсатор используется для обеспечения высокого пускового момента.

Двигатель 2 работает в режиме запуска конденсатора.В этом режиме работы используются два конденсатора: конденсаторы запуска и пуска. В течение начального периода вспомогательная обмотка также соединена последовательно с конденсатором 255 мкФ, но после достижения скорости отключения вспомогательная обмотка остается подключенной последовательно с рабочим конденсатором 21,1 мкФ. Это значение конденсатора оптимизировано для уменьшения пульсаций крутящего момента. Мотор работает эффективно с высоким коэффициентом мощности.

Два двигателя сначала запускаются без нагрузки, при t = 0. Затем в момент времени t = 2 с, когда двигатели достигли стационарного режима, a 1 Н.м крутящий момент (номинальный крутящий момент) внезапно применяется на валу.

Simulation

Запустите симуляцию. Блок Scope отображает следующие сигналы для двигателя запуска конденсатора (желтые кривые) и двигателя конденсатора (пурпурные кривые): общий ток (основная + вспомогательная обмотка), ток главной обмотки, ток вспомогательной обмотки, напряжение конденсатора, частота вращения ротора и электромагнитный момент. Механическая мощность, коэффициент мощности и КПД двигателя 1 и двигателя 2 рассчитываются внутри подсистемы обработки сигналов и отображаются в 3 блоках дисплея.

В течение начального периода, пока разъединитель остается замкнутым (от t = 0 до t = 0,48 с), все формы сигналов идентичны. После размыкания переключателя наблюдаются различия, как описано ниже.

1. Запуск конденсатора:

Соблюдайте пульсации момента 120 Гц, которые вызывают механические колебания ротора 120 Гц и снижают КПД двигателя. Пиковая пульсация крутящего момента составляет около 3 Н или 300% от номинальной нагрузки, когда двигатель работает без нагрузки.Обратите внимание, что пусковой конденсатор остается заряженным при пиковом напряжении, когда вспомогательная обмотка выключена.

2. Запуск конденсатора:

Обратите внимание, что пульсации крутящего момента существенно уменьшены. Значение рабочего конденсатора оптимизировано для минимизации пульсаций крутящего момента при полной нагрузке. Величина пульсаций крутящего момента составляет 2 Нм от пика до пика (200% от номинального крутящего момента) без нагрузки, тогда как при полной нагрузке она составляет всего 0,04 Нм от пика до пика (4% от номинального крутящего момента). Коэффициент мощности и КПД при полной нагрузке (соответственно, 90% и 75%) выше, чем у двигателя с конденсатором (соответственно, 61% и 74%).

Модель динамики однофазного асинхронного станка с короткозамкнутым ротором ротор

Simscape / Электрооборудование / Специализированные системы питания / Фундаментальные блоки / Станки

Описание

Эта машина имеет две обмотки: основную и вспомогательную. С помощью модели вы можете моделировать разделенная фаза, запуск конденсатора, запуск конденсатора, запуск конденсатора, а также основной и вспомогательный режимы работы обмоток.

Для режима с разделенной фазой главная и вспомогательная обмотки внутренне соединены как следующим образом:

Для режима запуска конденсатора главная и вспомогательная обмотки внутренне подключены как следующим образом:

Для режима запуска конденсатора и запуска конденсатора главная и вспомогательная обмотки внутренне подключен следующим образом:

Электрическая часть машины представлена ​​моделью пространства состояний четвертого порядка и механическая часть по системе второго порядка.Все электрические переменные и параметры относится к статору, обозначенному следующими простыми знаками в уравнениях машины. Все величины статора и ротора указаны в системе отсчета статора (рамка dq). Индексы определено в следующей таблице.

S л м

подпись

Определение

d

d количество осей

q

q количество осей

r

Относится к количеству ротора главной обмотки

R

Относится к количеству ротора вспомогательной обмотки

с

Количество статора главной обмотки

Дополнительное количество обмотки статора

индуктивность рассеяния

индуктивность

Электрическая система

В qs = R s i qs + d φ qs / dt φ qs = L ss i qs + L ms i ' qr
V ds = R S i ds + d φ ds / dt φ ds = L SS i ds + L mS i ' dr
V' qr = R ' r i' qr + d φ ' qr / dt - ( N с / N S ) ω r φ ' dr φ qr = L ' r i' qr + L ms i qs
V ' dr = R ' R i' dr + d φ ' dr / dt + ( N S / N s ) ω r φ ' qr где φ' dr = L ' RR i' dr + L mS i ds
T e = p [( N S / N s ) φ ' qr i' dr - ( N с / N S ) φ ' dr i' qr ] L сс = L ls + L MS
L SS = L lS + L mS
L ' р. = L ' lr + L MS
L ' RR = L ' LR + L mS

Механическая система

ddtωm = Te − Fωm − Tm2Hddtθm = ωm.

Система отсчета

Система отсчета, установленная в статоре, преобразует напряжения и токи в постоянную Рамка.

Следующие отношения описывают преобразования кадра ab-to-dq, применяемые к однофазная асинхронная машина.

[fqsfds] = [100−1] [fasfbs] [fqrfdr] = [cos (θr) −sin (θr)) - sin (θr) −cos (θr)] [farfbr].

Переменная f может представлять либо напряжение, токи или связь потока.

Параметры однофазного асинхронного машинного блока определяются следующим образом (все величины отнесены к статору).

сопротивление ротора 9373 индуктивность утечки

9373 9373 9373 9373 9372 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 9373 rr

9000 как V i as

V bs i bs

V qs , i qs

ω м

Параметр

Определение

R s , L ls

Сопротивление статора главной обмотки и индуктивность рассеяния

0

0

0 S , L lS

Сопротивление статора вспомогательной обмотки и индуктивность рассеяния

R ′ r , L lr

Сопротивление ротора главной обмотки

R ′ R , L ′ lR

Сопротивление ротора вспомогательной обмотки и индуктивность рассеяния.Два значения равны значениям сопротивления ротора главной обмотки и индуктивности рассеяния, соответственно.

L мс

Индуктивность намагничивания главной обмотки

L мс

Индуктивность намагничивания

Общая индуктивность обмотки статора и ротора

L SS , L ′ RR

Общая индуктивность вспомогательных обмоток статора и ротора

Напряжение и ток статора главной обмотки

Статор вспомогательной обмотки напряжение и ток

q ось статора напряжение и ток

V ′ qr , i ′ qr

q напряжение и ток ротора оси

V ds , i ds

напряжение и ток статора оси d

V ′ dr , i ′ dr

напряжение и ток ротора оси d

ϕ 93737 , ϕ ds

Потоки статора q и d

ϕ ′ qr , ϕ ′ dr

Ротор q и потоки оси d

угловая скорость ротора

Θ м

угловое положение ротора

p

Количество пар полюсов

ω r

Электрическая угловая скорость (ω м xp)

Θ 2

94438

угловое положение ротора (01 м х p)

T e

Электромагнитный крутящий момент

T м

Механический крутящий момент вала

Комбинированный

Коэффициент инерции ротора и нагрузки в (кг.м (2 ). Установите на бесконечность, чтобы имитировать заблокирован ротор.

Комбинированный ротор и коэффициент вязкого трения нагрузки.

H

Комбинированная постоянная инерции ротора и нагрузки в дюймах. Установить на бесконечность для симуляции заблокированный ротор.

N с

N S

R st

C s

R пробежка

C пробежек

на трассе

8

9443 9443 ,

Количество вспомогательных эффективные витки обмотки.

Конденсатор-Старт сопротивление

Capacitor-Run

Capacitor-Run сопротивление

Конденсаторный прогон

N

Отношение числа эффективных витков вспомогательной обмотки и числа основных эффективные витки обмотки.

Параметры

Вы можете выбрать между двумя типами единиц, чтобы указать электрические и механические параметры модели, диалоговое окно на единицу и диалоговое окно SI.Оба блока моделирование той же машины. В зависимости от того, какое диалоговое окно вы используете, Simscape ™ Electrical ™ Specialized Power Systems автоматически преобразует параметры, которые вы указали в расчете на единицу параметров. Модель Simulink ® блока однофазной асинхронной машины использует на единицу параметры.

Вкладка конфигурации

Механический ввод

Выберите крутящий момент, приложенный к валу, как вход Simulink блока или для представления вала машины с помощью вращающегося механического порта Simscape.

Выберите Torque Tm (по умолчанию), чтобы указать входной крутящий момент, в Нм или в pu, и измените маркировку входного блока на Tm. Скорость машины определяется Инерция машины J (или постоянная инерции H для машины Pu) и по разности между приложенным механическим моментом Tm и внутренним электромагнитным моментом Te. Условное обозначение для механического крутящего момента, когда скорость положительная, положительный крутящий момент сигнал указывает на режим двигателя, а отрицательный сигнал указывает на режим генератора.

Выберите Механический поворотный порт для добавления в блок a Механический поворотный порт Simscape, позволяющий соединить вал машины с другие блоки Simscape с механическими поворотными портами. Вход Simulink, представляющий механический крутящий момент Tm машины, затем удаляется из блока.

На следующем рисунке показано, как подключить блок источника идеального крутящего момента из Библиотека Simscape для вала машины для представления машины в режиме двигателя или в режим генератора, когда скорость ротора положительна.

Единицы

Укажите диалоговое окно на единицу или диалоговое окно SI. По умолчанию SI .

Тип машины

Укажите один из четырех типов однофазных асинхронных машин: с разделением Фаза (по умолчанию), Capacitor-Start , Конденсатор-Пуск-Запуск или Главный и вспомогательный обмотки .

Используйте имена сигналов для идентификации шинных меток

Если этот флажок установлен, выходные данные измерений используют имена сигналов для определить метки шины.Выберите эту опцию для приложений, которым требуются метки шинных сигналов иметь только буквенно-цифровые символы.

Когда этот флажок снят (по умолчанию), выходные данные измерения используют сигнал определение для идентификации шин. Метки содержат не буквенно-цифровые символы, которые несовместимы с некоторыми приложениями Simulink.

Вкладка «Параметры»

Номинальная мощность, напряжение и частота

Номинальная кажущаяся мощность Pn (ВА), среднеквадратичное значение Vn (В) и частота fn (Гц).По умолчанию [.25 * 746 110 60] .

Статор главной обмотки

Сопротивление статора R с (Ом или ПУ) и индуктивность рассеяния L ls (H или pu). По умолчанию [2,02 7,4e-3] (SI) и [0,031135 0,042999] (пу).

Ротор главной обмотки

Сопротивление ротора R r '(Ом или пу) и индуктивность рассеяния L lr '(H или pu), оба относятся к статору.По умолчанию [4,12 5,6e-3] (SI) и [0,063502 0,03254] (О.е.).

Взаимная индуктивность главной обмотки

Индуктивность намагничивания L мс (H или pu). По умолчанию 0,1772 (SI) и 1,0296 (pu).

Вспомогательная обмотка статора

Сопротивление статора R S (Ом или ПУ) и индуктивность рассеяния L lS (H или pu).Обратите внимание, что параметры ротора вспомогательной обмотки предполагается равным значениям сопротивления ротора главной обмотки и индуктивности рассеяния. Поэтому указывать их в диалоговом окне не обязательно. По умолчанию [7,14 8,5e-3] (SI) и [0,11005 0,049391] (pu).

Инерция, коэффициент трения, пары полюсов, отношение поворотов (вспомогательное / основное)

Для диалогового окна единиц СИ : комбинированный станок и коэффициент инерции нагрузки J (кг.м 2 ), комбинированное вязкое трение коэффициент F (N.m.s), количество пар полюсов p и отношение количества вспомогательных обмоток число эффективных витков и число эффективных витков главной обмотки. пу ед. , диалоговое окно: постоянная инерции H (s), комбинированное вязкое трение коэффициент F (pu) и количество пар полюсов p. По умолчанию [0,0146 0 2 1,18] (SI) и [1,3907 0 2 1,18] (pu).

Capacitor-Start

Начальная емкость C с (Фарад или Пу) и серия конденсаторов сопротивление R st (Ом или Пу).По умолчанию [2 254.7e-6] (SI) и [0,030826, 6,2297] (пу).

Capacitor-Run

Пропускная способность Crun (Фарад или Пу) и последовательное сопротивление Rrun (Фарад или Пу). По умолчанию: [18 21,1e-6] (SI) и [0,27744 0,51608] (О.е.).

Скорость отключения

Указывает скорость (%), когда вспомогательная обмотка может быть отключена. По умолчанию 75 .

Начальная скорость

Указывает начальную скорость (%). По умолчанию 0 .

Вкладка «Дополнительно»

Время выборки (-1 для унаследованного)

Указывает время выборки, используемое блоком. Для наследования времени выборки, указанного в блок Powergui, установите этот параметр на -1 (по умолчанию).

.

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой структуре, низкой стоимости, простоте обслуживания и простоте в эксплуатации. В 3-фазном двигателе переменного тока используется 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных применениях у нас есть только однофазные источники питания (1 р. 110 В, 220 В, 230 В, 240 В и т. Д.). .), особенно в бытовой технике. В случае запуска трехфазных машин на однофазных источниках питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить GoHz VFD
  3. Купить преобразователь частоты / фазы

I: перемотка двигателя
Необходимо выполнить некоторые работы для преобразования работы трехфазного двигателя на 1-фазный источник питания.Здесь вы узнаете, как преобразовать трехфазный электродвигатель на 380 В в однофазный источник питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла сбалансированного тока 120 ° через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, преобразованного для работы на однофазном источнике питания, мы должны объяснить проблему создания однофазного асинхронного двигателя с вращающимся магнитным полем, поскольку однофазный двигатель можно запустить только после создания вращающегося магнитного поля. ,Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, это фиксировано с точки зрения статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора, который не может генерировать крутящий момент, поскольку нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет различный угол наклона. Если он пытается произвести другой фазный ток, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвигать одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через различный ток, чтобы создать вращающееся магнитное поле для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель на 1-фазном источнике питания, мы можем подключить любые 2-фазные обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковые обмотки подключены к одному источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз.Для увеличения пускового момента на соединении можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.

Общие малые двигатели имеют Y-соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме запуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите увеличивать напряжение, блок питания 220 В также может использовать это.Поскольку для питания 220 В используется оригинальная трехфазная обмотка напряжения 380 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 Момент подключения слишком низкий. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На Рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой или рабочей обмотки. ,

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых - обратная нить), состоит из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем у 120 ° магнитного момента (показан на рисунке 6), поэтому пусковой крутящий момент на рисунке 5 больше, чем на рисунке 6.

Значение резистора доступа R (рис. 7) на обмотке стартера должно быть замкнуто относительно сопротивления фазы обмотки статора и должно выдерживать пусковой ток, который равен 0.1-0,12 раза от пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микро-закон), т. Е. Cosφ - исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используется конденсатор с микропроцессором от 4 до 6. Начальный конденсатор может быть выбран в соответствии с начальной нагрузкой, обычно от 1 до 4 раз от рабочего конденсатора.Когда двигатель достигает 75% ~ 80% от номинальной скорости, пусковой конденсатор должен быть отключен, в противном случае двигатель сгорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двухфазных обмоток были равны и равны номинальному току Ie, что означает 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Есть много преимуществ в использовании трехфазного двигателя на однофазном источнике питания, перемотка легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод может применяться только к двигателю мощностью 1 кВт или меньше.

II: Купите преобразователь частоты GoHz VFD
, сокращенное от частотно-регулируемого привода, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный 3-фазный ЧРП является наилучшим вариантом для 3-фазного двигателя, работающего от однофазного источника питания (1 час 220 В, 230 В, 240 В), он устраняет пусковой ток при запуске двигателя, заставляет двигатель работать с нулевой скорости до полной скорость плавная, плюс, цена абсолютно доступная.Частотные преобразователи GoHz доступны от 1/2 л.с. до 7,5 л.с., более мощные ЧРП могут быть настроены в соответствии с фактическими двигателями.

ГГц Подключение к однофазному трехфазному VFD-видео

Преимущества использования частотного преобразователя GoHz для трехфазного двигателя:

  1. Мягкий запуск может быть достигнут путем настройки параметров ЧРП, время запуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости, позволяющая двигателю работать в наилучшем состоянии.
  3. Переведите двигатель с индуктивной нагрузкой в ​​емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Может быть легко запрограммирован через клавиатуру для достижения автоматического управления.

III: Купить преобразователь частоты / фазы
А ГГц-преобразователь частоты или фазовый преобразователь также можно использовать для таких ситуаций, он может преобразовывать однофазные (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазные (0- Регулируемый 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем для ШИМ-сигнала VFD, они предназначены для лабораторных испытаний, самолетов, военных и других применений, которые требуют высококачественных источников питания, это чрезвычайно дорого.

Статья по теме: Воздействие двигателя 60 Гц (50 Гц), используемого на источнике питания 50 Гц (60 Гц)

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.