Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Что это такое детонация двигателя


Причины детонации двигателя — DRIVE2

🔧 Причины детонации двигателя при выключении зажигания и запуске.
— Сохрани эту статью к себе на стену.

• Такое явление, как детонация двигателя, знакомо практически каждому автовладельцу. Чаще всего она возникает при движении в гору на высокой передаче с небольшой скоростью. К звуку работы двигателя внутреннего сгорания (ДВС) примешивается жесткий металлический стук, который многие принимают за стук поршневых пальцев.

— Что такое детонация?

• Детонация – это процесс взрывного воспламенения рабочей смеси в цилиндрах двигателя. В то время как нормальная скорость распространения фронта пламени составляет около 30 м/с, при детонации огонь распространяется в десятки раз быстрее – до 2000 м/с.

• В нормальных условиях смесь начинает воспламеняться, когда поршень немного не доходит до верхней мертвой точки, угол опережения зажигания составляет обычно 2-3 градуса. Завершается вспышка после того, как поршень минует ВМТ. В случае детонации смесь воспламеняется еще в середине такта сжатия. Поршень испытывает сильное противодействие, в итоге пропадает мощность двигателя и значительно повышается расход топлива.

• Данное явление никогда не идет на пользу мотору, однако детонацию можно разделить на допустимую и недопустимую. В первом случае ее даже не всегда удается заметить. Обычно она возникает на низких оборотах и продолжается недолго. Чаще всего подобное происходит в двигателях небольшого объема с относительно большой мощностью и крутящим моментом (например, 107 л.с. и 135 Нм при объеме 1,4 л). Недопустимая детонация, как правило, возникает в форсированных ДВС при повышенных нагрузках на высоких оборотах. Всего после нескольких секунд работы в таких условиях, мотор может получить критические повреждения.

• Существует еще одно явление, которое автовладельцы нередко путают с детонацией – дизелинг. Мотор после выключения зажигания продолжает работать рывками, то с повышением, то с понижением оборотов, звук работы двигателя при этом металлический, схожий со звуком детонации. Это явление иного рода и причины его появления иные: при глушении мотора, бензин в цилиндрах самовоспламеняется из-за высокой степени сжатия, как в дизельном ДВС, отсюда и название. Не следует путать дизелинг с калильным зажиганием – там при глушении рабочая смесь воспламеняется от нагретых электродов свечей и нагара.

— Чем опасна детонация?

• Весь кривошипно-шатунный механизм и головка блока цилиндров испытывают разрушающие нагрузки, способные при длительном воздействии привести к поломке ДВС. Кроме того, температура в цилиндрах также поднимается до недопустимых значений (до +3700 градусов), что грозит прогаром прокладки ГБЦ, а также коррозией днища поршня и зеркала цилиндров.

• рокладка головки блока – это первая деталь, которая придет в негодность из-за детонации. Она способна перенести лишь кратковременную работу в режиме запредельных термических и механических нагрузок. Худшее, чем грозит детонация – замена блока цилиндров, коленчатого вала, поршневой группы и головки блока.

— Причины возникновения детонации:

• Причины, в силу которых возникает данное явление, можно разделить на три группы:

• октановое число бензина;
• конструктивные особенности ДВС;
• условия эксплуатации автомобиля.

— Влияние октанового числа:

• В отличие от дизельного двигателя, в котором воспламенение рабочей смеси происходит благодаря высокой степени сжатия, в бензиновом для этой цели применяется система зажигания. Смесь бензина и воздуха поджигается искрой, возникающей между электродами свечей.

• Степень сжатия у бензиновых моторов намного меньше, это связано с тем, что бензин не столь устойчив к детонации, как дизельное топливо. Основной характеристикой бензина является октановое число, отражающее его детонационную стойкость. Чем оно выше, тем сильнее можно сжать топливно-воздушную смесь.

• Если автомобиль, силовой агрегат которого рассчитан на применение топлива с октановым числом не ниже 95, заправить бензином марки АИ-92, то с высокой долей вероятности можно утверждать, что при высоких нагрузках рабочая смесь в цилиндрах будет детонировать.

• Однако проблема может появиться и в случае, если марка топлива соответствует рекомендациям производителя. Все дело в качестве бензина. Недобросовестные продавцы нередко самостоятельно повышают октановое число, путем добавления в горючее сжиженного пропана или метана. Эти газы очень быстро испаряются, после чего в баке остается низкооктановый бензин.

• Вследствие детонации низкооктанового топлива, в камере сгорания усиленно образуется нагар, который, в свою очередь, может вызвать такое явление, как калильное зажигание. В этом случае двигатель продолжает работать даже после выключения зажигания. Причины его возникновения в том, что воспламеняется топливно-воздушная смесь не от искры, а от раскаленных электродов свечи или нагара.

— Влияние конструктивных особенностей:

• Причины возникновения детонации могут крыться в конструктивных особенностях двигателя.
К их числу можно отнести:

• степень сжатия;
• форму камеры сгорания;
• форму днища поршня;
• наличие наддува;
• расположение свечей зажигания.

• Так, чем выше степень сжатия, тем ДВС более склонен к детонации. То же можно сказать и о системах наддува («надутым» моторам требуется высокооктановый бензин).

— Влияние условий эксплуатации:

• Не последнюю роль играют и условия, в которых эксплуатируется машина. Детонация может возникать при движении на повышенной передаче с низкой скоростью. Так, если попытаться въехать в гору на четвертой передаче со скоростью 30 км/ч, из-под капота незамедлительно раздастся характерный металлический стук.

• Свое влияние оказывает правильность работы системы зажигания (рабочая смесь в цилиндрах детонирует при раннем зажигании), исправность системы охлаждения двигателя, наличие нагара на поршнях и в камерах сгорания. Подвергают себя опасности автовладельцы, стремящиеся любыми способами уменьшить аппетит машины. С этой целью электронный блок управления «перепрошивается» для приготовления более бедной смеси, чем нужно. В результате ухудшается динамика авто, а при повышенных нагрузках возникает детонация.

Стук двигателя - Википедия

детонации (также детонации , детонации , искрового детонации , пингования или розового ) в двигателях внутреннего сгорания с искровым зажиганием происходит, когда не происходит сгорание части смеси воздух / топливо в цилиндре от распространения фронта пламени, зажженного свечой зажигания, но один или несколько карманов воздушно-топливной смеси взрываются вне оболочки нормального фронта горения.Топливно-воздушный заряд должен зажигаться только свечой зажигания и в точной точке хода поршня. Стук возникает, когда пик процесса сгорания больше не наступает в оптимальный момент для четырехтактного цикла. Ударная волна создает характерный металлический «пингующий» звук, и давление в цилиндре резко возрастает. Эффекты детонации двигателя варьируются от несущественных до полностью разрушительных.

Стук не следует путать с предварительным зажиганием - это два отдельных события.Однако предварительное зажигание может сопровождаться стуком.

Феномен детонации был впервые обнаружен и описан Гарри Рикардо в ходе экспериментов, проведенных между 1916 и 1919 годами, чтобы выяснить причину неисправностей в авиационных двигателях. [1]

нормальное сгорание [править]

В идеальных условиях обычный двигатель внутреннего сгорания сжигает топливно-воздушную смесь в цилиндре упорядоченным и контролируемым образом. Сгорание начинается от свечи зажигания примерно на 10-40 градусов коленчатого вала до верхней мертвой точки (ВМТ), в зависимости от многих факторов, включая частоту вращения и нагрузку двигателя.Такое опережение зажигания дает время для процесса сгорания развивать пиковое давление в идеальное время для максимального восстановления работы из расширяющихся газов. [2]

Искра на электродах свечи зажигания образует небольшое ядро ​​пламени, примерно равное размеру зазора свечи зажигания. По мере того как он увеличивается в размерах, его тепловая мощность увеличивается, что позволяет ему расти с ускоряющейся скоростью, быстро расширяясь через камеру сгорания. Этот рост происходит из-за прохождения фронта пламени через саму горючую топливно-воздушную смесь и из-за турбулентности, которая быстро растягивает зону горения в комплекс пальцев горящего газа, которые имеют гораздо большую площадь поверхности, чем простой сферический шар пламя быПри нормальном сгорании этот фронт пламени движется по топливно-воздушной смеси со скоростью, характерной для конкретной смеси. Давление плавно возрастает до пика, так как почти все имеющееся топливо расходуется, затем давление падает, когда поршень опускается. Максимальное давление в цилиндре достигается через несколько градусов коленчатого вала после того, как поршень проходит ВМТ, так что сила, приложенная к поршню (от увеличивающегося давления, приложенного к верхней поверхности поршня), может дать самый сильный толчок именно тогда, когда скорость поршня и механическое преимущество на коленчатом валу дает лучшее восстановление силы от расширяющихся газов, тем самым максимизируя крутящий момент, передаваемый на коленчатый вал. [2] [3]

Аномальное сгорание [править]

Когда несгоревшая топливно-воздушная смесь за границей фронта пламени подвергается воздействию тепла и давления в течение определенной продолжительности (за пределами периода задержки используемого топлива), может произойти детонация. Детонация характеризуется почти мгновенным взрывным воспламенением по меньшей мере одного кармана топливовоздушной смеси вне фронта пламени. Вокруг каждого кармана создается локальная ударная волна, и давление в цилиндре резко возрастает - и, возможно, выходит за пределы проектных пределов - вызывая повреждение.

Если детонация может сохраняться в экстремальных условиях или в течение многих циклов работы двигателя, детали двигателя могут быть повреждены или разрушены. Самыми простыми вредными эффектами, как правило, являются износ частиц, вызванный умеренным ударом, который в дальнейшем может происходить через масляную систему двигателя и вызывать износ других частей перед тем, как попасть в масляный фильтр. Такой износ создает вид эрозии, истирания или «пескоструйной» обработки, подобный повреждению, вызванному гидравлической кавитацией. Сильный стук может привести к катастрофическому отказу в виде расплавленных физических отверстий и проталкивания через поршень или головку цилиндра (т.е.разрыв камеры сгорания), при котором происходит сброс давления в поврежденном цилиндре и попадание крупных металлических фрагментов, топлива и продуктов сгорания в масляную систему. Известно, что гиперэвтектические поршни легко ломаются от таких ударных волн. [3]

Детонацию можно предотвратить с помощью любого или всех следующих методов:

  • использование топлива с высоким октановым числом, которое повышает температуру сгорания топлива и снижает склонность к детонации
  • обогащает соотношение воздух-топливо, которое изменяет химические реакции при сгорании, снижает температуру сгорания и увеличивает запас по детонации
  • снижение пикового давления в цилиндре
  • снижение давления в коллекторе путем уменьшения открытия дросселя или давления наддува
  • снижение нагрузки на двигатель
  • замедление зажигания

Поскольку давление и температура тесно связаны, детонация также может быть ослаблена путем регулирования пиковых температур в камере сгорания за счет снижения степени сжатия, рециркуляции выхлопных газов, соответствующей калибровки графика синхронизации зажигания двигателя и тщательного проектирования двигателя. камеры сгорания и система охлаждения, а также контроль начальной температуры воздуха на впуске.

Добавление определенных материалов, таких как свинец и таллий, будет очень хорошо подавлять детонацию при использовании определенных видов топлива. [ цитирование необходимо ] Добавление тетраэтилсвинца (TEL), растворимого соединения свинца в органолине, добавляемого в бензин, было обычным явлением до тех пор, пока оно не было прекращено по причинам токсического загрязнения. Свинцовая пыль, добавленная во впускной заряд, также уменьшит детонацию с различными углеводородными топливами. Соединения марганца также используются для уменьшения детонации бензиновым топливом.

Стук реже встречается в холодном климате. В качестве вторичного решения можно использовать систему впрыска воды для снижения пиковых температур в камере сгорания и, таким образом, для подавления детонации. Пар (водяной пар) будет подавлять детонацию, даже если дополнительное охлаждение не подается.

Для того, чтобы произошел удар, сначала должны произойти определенные химические изменения, следовательно, топливо с определенными структурами имеет тенденцию выбивать легче, чем другие. Парафины с разветвленной цепью имеют тенденцию сопротивляться стуку, в то время как парафины с прямой цепью легко стучат.Теоретически [ цитирование необходимо ] , что свинец, пар и тому подобное мешают некоторым из различных окислительных изменений, которые происходят во время сгорания и, следовательно, уменьшить детонацию.

Турбулентность, как указывалось, оказывает очень важное влияние на детонацию. Двигатели с хорошей турбулентностью имеют тенденцию разбивать меньше, чем двигатели с плохой турбулентностью. Турбулентность возникает не только при вдыхании двигателя, но и при сжатии и сжигании смеси. Многие поршни спроектированы так, чтобы использовать «мягкую» турбулентность для насильственного смешивания воздуха и топлива при их воспламенении и сгорании, что значительно снижает детонацию за счет ускорения горения и охлаждения несгоревшей смеси.Одним из примеров этого являются все современные боковые клапаны или плоские двигатели. Значительная часть пространства головки расположена в непосредственной близости от головки поршня, создавая большую турбулентность вблизи ВМТ. В первые дни работы боковых головок клапанов этого не делали, и для любого конкретного топлива приходилось использовать гораздо более низкую степень сжатия. Также такие двигатели были чувствительны к возгоранию и имели меньшую мощность. [3]

Детонация более или менее неизбежна в дизельных двигателях, где топливо впрыскивается в сильно сжатый воздух в конце такта сжатия.Существует небольшая задержка между впрыскиваемым топливом и началом сгорания. К этому времени в камере сгорания уже есть количество топлива, которое сначала воспламеняется в областях с большей плотностью кислорода до сгорания полного заряда. Это внезапное повышение давления и температуры вызывает характерный «стук» или «стук» дизеля, некоторые из которых должны быть учтены в конструкции двигателя.

Тщательная конструкция инжекторного насоса, топливного инжектора, камеры сгорания, головки поршня и головки цилиндров может значительно снизить детонацию, а современные двигатели, использующие электронный впрыск Common Rail, имеют очень низкий уровень детонации.Двигатели с косвенным впрыском обычно имеют более низкий уровень детонации, чем двигатели с непосредственным впрыском, из-за большего рассеивания кислорода в камере сгорания и более низкого давления впрыска, обеспечивающего более полное смешивание топлива и воздуха. На самом деле дизели не испытывают такого же «удара», как бензиновые двигатели, поскольку известно, что причиной этого является только очень высокая скорость повышения давления, а не нестабильное сгорание. Дизельное топливо на самом деле очень склонно к детонации в бензиновых двигателях, но в дизельном двигателе стук не происходит, потому что топливо окисляется только во время цикла расширения.В бензиновом двигателе топливо медленно окисляется все время, пока оно сжимается до искры. Это позволяет изменениям в структуре / составе молекул до самого критического периода высокой температуры / давления. [3]

Обнаружение детонации [править]

Из-за большого различия в качестве топлива, большое количество двигателей теперь содержат механизмы для обнаружения детонации и, соответственно, регулировки времени или давления наддува, чтобы предложить улучшенные характеристики на высокооктановых топливах, снижая при этом риск повреждения двигателя в результате детонации во время работы. на низкооктановых топливах.

Одним из первых примеров этого являются двигатели Saab H с турбонаддувом, в которых система автоматического контроля производительности использовалась для снижения давления наддува, если оно вызывало детонацию двигателя. [4]

Различные устройства мониторинга обычно используются тюнерами в качестве метода наблюдения и прослушивания двигателя, чтобы определить, является ли настроенное транспортное средство безопасным под нагрузкой или используется для безопасной перенастройки транспортного средства. Обычно используемый тип датчика детонации состоит из пьезоэлектрического датчика, прикрепленного к блоку двигателя, настроенного для обнаружения звука детонации.

предсказание детонации [править]

Поскольку предотвращение детонационного сгорания очень важно для инженеров-разработчиков, было разработано множество технологий моделирования, которые могут идентифицировать конструкцию двигателя или условия эксплуатации, в которых можно ожидать возникновения детонации. Это позволяет инженерам разрабатывать способы уменьшения детонационного сгорания, сохраняя при этом высокую тепловую эффективность.

Поскольку начало детонации чувствительно к давлению в цилиндре, температуре и химическому составу самовоспламенения, связанным с составами местных смесей в камере сгорания, моделирование, которое учитывает все эти аспекты [5] , таким образом, оказалось наиболее эффективным в определение рабочих пределов детонации и предоставление инженерам возможности определить наиболее подходящую операционную стратегию.

Контроль детонации [править]

Целью стратегий управления детонацией является попытка оптимизировать компромисс между защитой двигателя от повреждающих событий детонации и максимизацией выходного крутящего момента двигателя. События Knock - это независимый случайный процесс. [6] Невозможно проектировать контроллеры детонации на детерминированной платформе. Однократное моделирование истории времени или эксперимент методов контроля детонации не способны обеспечить повторяемое измерение производительности контроллера из-за случайного характера наступающих событий детонации.Следовательно, желаемый компромисс должен быть достигнут в стохастической структуре, которая могла бы обеспечить подходящую среду для разработки и оценки различных стратегий контроля детонации со строгими статистическими свойствами.

Список литературы [править]

Дополнительное чтение [править]

  • Laganá, Armando A.M .; Лима, Леонардо Л .; Justo, João F .; Арруда, Бенедито А .; Сантос, Макс М.Д. (2018). «Идентификация сгорания и детонации в двигателях с искровым зажиганием по сигналу ионного тока». Топливо . 227 : 469–477. DOI: 10.1016 / j.fuel.2018.04.080.
  • Ди Гаэта, Алессандро; Джильо, Веньеро; Полиция, Джузеппе; Рисполи, Натале (2013). «Моделирование колебаний давления в цилиндре в условиях детонации: общий подход, основанный на уравнении затухающих волн». Топливо . 104 : 230–243. DOI: 10.1016 / j.fuel.2012.07.066.
  • Giglio, Veniero; Полиция, Джузеппе; Рисполи, Натале; Иорио, Бьяджо; Ди Гаэта, Алессандро (2011).«Экспериментальная оценка приведенных кинетических моделей для моделирования детонации в двигателях СИ». SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2011-24-0033.
  • Ди Гаэта, Алессандро; Джильо, Веньеро; Полиция, Джузеппе; Реал, Фабрицио; Рисполи, Натале (2010). "Моделирование колебаний давления в условиях детонации: подход к уравнению с частными дифференциальными волнами". SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2010-01-2185.
  • Моделирование с прогнозирующим сгоранием для «уменьшенных» двигателей с прямым зажиганием с искровым зажиганием: решения для предварительного зажигания («мега-детонация»), пропуски зажигания, тушения, распространения пламени и обычного «детонации» , инновации cmcl, доступны с июня 2010 года.
  • Основы двигателя: детонация и предварительное зажигание , Аллен В. Клайн, доступ к июню 2007 г.
  • Giglio, V .; Полиция, Г .; Рисполи, Н .; Ди Гаэта, А .; Сесере, М .; Ragione, L. Della (2009). «Экспериментальное исследование по использованию ионного тока на двигателях СИ для обнаружения детонации». SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2009-01-2745.
  • Тейлор, Чарльз Фейет (1985). Двигатель внутреннего сгорания в теории и на практике: сгорание, топливо, материалы, дизайн .ISBN 9780262700276 .

Внешние ссылки [редактировать]

,

Детонация - Википедия

Взрыв со сверхзвуковой скоростью

Детонация 500-тонного заряда ТНТ во время операции «Матросская шляпа». Начальная ударная волна видна на поверхности воды, а облако ударной конденсации видно над головой.

Детонация (от латыни detonare , что означает «грохот вниз / вперед» [1] ) - это тип горения, включающий сверхзвуковой экзотермический фронт, ускоряющийся через среду, который в конечном счете приводит к распространению фронта удара непосредственно перед Это.Детонации происходят как в обычных твердых и жидких взрывчатых веществах, [2] , так и в реакционных газах. Скорость детонации в твердых и жидких взрывчатых веществах намного выше, чем в газообразных, что позволяет более детально наблюдать волновую систему (более высокое разрешение).

Очень разнообразные виды топлива могут встречаться в виде газов, туманов капель или взвесей пыли. Окислители включают галогены, озон, перекись водорода и оксиды азота. Газообразные детонации часто связаны со смесью топлива и окислителя в составе, несколько ниже обычных коэффициентов воспламеняемости.Чаще всего они случаются в замкнутых системах, но иногда они встречаются в больших паровых облаках. Другие материалы, такие как ацетилен, озон и перекись водорода, являются детонирующими в отсутствие кислорода. [3] [4]

Детонация была обнаружена в 1881 году двумя парами французских ученых Марселлина Бертело и П. Вьеля [5] и Эрнеста-Франсуа Кряквы и Генри Луи Ле Шателье. [6] Математические предсказания распространения были впервые выполнены Дэвидом Чепменом в 1899 году, [7] и Эмилем Жуге в 1905 году, [8] , 1906, [9] и 1917. [10] Следующее продвижение в понимании детонации было сделано Зельдовичем, фон Нейманом и В. Дерингом в начале 1940-х годов.

теории [править]

Самая простая теория для предсказания поведения детонаций в газах известна как теория Чепмена-Жуге (CJ), разработанная на рубеже 20-го века. Эта теория, описанная относительно простым набором алгебраических уравнений, моделирует детонацию как распространяющуюся ударную волну, сопровождаемую экзотермическим тепловыделением.Такая теория ограничивает химические и диффузионные процессы переноса в бесконечно тонкой зоне.

Более сложная теория была выдвинута во время Второй мировой войны независимо Зельдовичем, фон Нейманом и В. Дерингом. [11] [12] [13] Эта теория, известная в настоящее время как теория ZND, допускает химические реакции с конечной скоростью и, таким образом, описывает детонацию как бесконечно малую ударную волну, за которой следует зона экзотермической химической реакции. При системе отсчета стационарного удара следующий поток является дозвуковым, поэтому зона акустической реакции следует непосредственно за фронтом свинца, условие Чепмена-Жуге. [14] [15] Есть также некоторые доказательства того, что реакционная зона в некоторых взрывчатых веществах является полуметаллической. [16]

Обе теории описывают одномерные и стационарные волновые фронты. Однако в 1960-х годах эксперименты показали, что детонации в газовой фазе чаще всего характеризуются нестационарными трехмерными структурами, которые могут быть предсказаны только в усредненном смысле с помощью одномерных стационарных теорий. Действительно, такие волны гасят, так как их структура разрушена. [17] [18] Теория детонации Вуда-Кирквуда может исправить некоторые из этих ограничений. [19]

Экспериментальные исследования выявили некоторые условия, необходимые для распространения таких фронтов. В ограниченном диапазоне диапазон составов смесей топлива и окислителей и саморазлагающихся веществ с инертными веществами несколько ниже пределов воспламеняемости, а для сферически расширяющихся фронтов значительно ниже их. [20] Влияние увеличения концентрации разбавителя на расширение отдельных детонационных клеток было элегантно продемонстрировано. [21] Точно так же их размер увеличивается с падением начального давления. [22] Поскольку ширина ячеек должна соответствовать минимальному размеру удержания, любая волна, перегруженная инициатором, будет погашена.

Математическое моделирование неуклонно продвигается к прогнозированию сложных полей потока за реакциями, вызывающими удары. [23] [24] До настоящего времени никто не описал адекватно, как структура формируется и поддерживается за неограниченными волнами.

Приложения [редактировать]

При использовании во взрывных устройствах основной причиной повреждения от детонации является сверхзвуковой фронт взрыва (мощная ударная волна) в окружающей зоне.Это является существенным отличием от дефлаграции, где экзотермическая волна является дозвуковой, а максимальные давления составляют не более одной восьмой [ цитирование необходимо ] . Следовательно, детонация является характерной особенностью разрушительной цели, тогда как дефлаграция благоприятствует ускорению снарядов из огнестрельного оружия. Однако детонационные волны могут также использоваться для менее разрушительных целей, включая нанесение покрытий на поверхность [25] или очистку оборудования (например, удаление шлака [26] ) и даже взрывную сварку вместе металлов, которые в противном случае не смогли бы предохранитель.Импульсные детонационные двигатели используют детонационную волну для аэрокосмического движения. [27] Первый полет воздушного судна с двигателем импульсной детонации состоялся в воздушно-космическом порту Мохаве 31 января 2008 года. [28]

В двигателях и огнестрельном оружии [править]

Непреднамеренная детонация, когда требуется дефлаграция, является проблемой в некоторых устройствах. В двигателях внутреннего сгорания это называется стуком двигателя, грохотом или треском, и в некоторых случаях это приводит к потере мощности, чрезмерному нагреву и возможному отказу двигателя. Жуге, Жак Шарль Эмиль (1905). «Распространение химических реакций в газах» (PDF). Journal of Mathématiques Pures et Appliquées . 6. 1 : 347–425. Архивировано из оригинального (PDF) на 2013-10-19. Получено 2013-10-19. Продолжение продолжено в Жуге, Жак Шарль Эмиль (1906). «Распространение химических реакций в газах» (PDF). Андре Симон. «Не тратьте время на прослушивание стука ...» Высокоэффективная академия .

Внешние ссылки [редактировать]

Посмотрите детонации в Викисловарь, бесплатный словарь.
.

Детонация | lycoming.com

Что такое детонация?

Детонация - это внезапное сгорание или взрыв заряда топлива внутри цилиндра. При нормальном сгорании свечи зажигания воспламеняют заряд топлива, и топливо имеет постоянный и равномерный горение, когда поршень движется через рабочий ход, и химическая энергия эффективно преобразуется в механическую. В упрощенном виде, когда происходит детонация, топливный заряд быстро воспламеняется при неконтролируемом взрыве, вызывая ударную силу или силу удара по поршню, а не устойчивый толчок.Легкая детонация может не показывать никаких признаков в салоне самолета. Детонация от умеренной до сильной может быть замечена как неровности двигателя, вибрация или потеря мощности и, в конечном итоге, повреждение двигателя. Пилот всегда должен искать неожиданно высокие температуры головки цилиндров (CHT) или температуры выхлопных газов (EGT), которые могут быть признаком того, что происходит детонация.

Что вызывает детонацию и как ее предотвратить?

Процесс сгорания внутри поршневого двигателя довольно динамичен, и есть много вещей, которые могут способствовать детонации.Эта статья будет касаться нескольких наиболее распространенных причин, а не краткого списка.

Во-первых, давайте предположим, что самолет и двигатель были заправлены правильно и что октановое число топлива соответствует или превышает октановое число двигателя. Сервисная инструкция Lycoming 1070 содержит исчерпывающий список того, какие виды топлива одобрены для наших двигателей, а также другую важную информацию.

С учетом того, что топливо является правильным выбором для двигателя, для пилота главной причиной детонации является чрезмерное наклонение при настройках большой мощности.Пилот должен всегда придерживаться указаний в утвержденном руководстве по эксплуатации пилота для правильной настройки наклона и мощности. Чтобы ознакомиться с рекомендациями Lycoming, см. Текущие редакции соответствующего руководства оператора Lycoming и служебной инструкции 1094. Если пилот считает, что двигатель может взорваться, он или она может предпринять следующие действия.

  • Увеличьте смесь двигателя.
  • Уменьшите мощность до более низкого значения.
  • Уменьшите или остановите подъем и увеличьте скорость движения вперед для большего охлаждения.

Для механика главной причиной детонации может быть любая проблема, которая может привести к неожиданному наклону цилиндра. Это чаще всего вызвано частично забитой форсункой для впрыска топлива или утечкой всасываемого воздуха. Каждый раз, когда топливные форсунки снимаются, их следует чистить и проверять поток. Во время проверок механик должен искать признаки утечки на впуске; обычно отмечается синим окрашиванием топлива на впускных трубах. Любые аномалии должны быть исправлены перед дальнейшим полетом.

Мы также видели случаи, когда трещины или иные повреждения свечей зажигания создают «горячую точку» в двигателе и происходит детонация. Вот почему никогда не рекомендуется использовать вилку, уроненную на твердый пол или иным образом поврежденную.

Двигатели

Lycoming соответствуют или превышают указания FAA по запасу детонации. Поэтому, если двигатель обслуживается и эксплуатируется в соответствии с нашими опубликованными инструкциями, двигатель никогда не должен испытывать детонацию.

Как мой механик или мастерская по ремонту двигателей узнает, что произошла детонация?

Детонация оказывает негативное влияние на весь двигатель.Легкая детонация может вызвать преждевременный износ подшипников и втулок. Сильная или продолжительная детонация может привести к повреждению головки цилиндров и поршней. В некоторых крайних случаях шатун может быть согнут или сломан, головка цилиндра может треснуть или выйти из строя, или поршневые кольца могут сломаться.

При извлечении цилиндра ваш механик должен воспользоваться возможностью осмотреть цилиндр и поршни на наличие признаков неисправности. Вот несколько вещей, которые можно проверить.

  • Несмотря на то, что это может выглядеть не очень хорошо, накопление свинца или отложения сгорания являются нормальными в двигателях Lycoming. Отсутствие этих депозитов также не обязательно хорошо. Головка цилиндра и поршень должны быть проверены на предмет «пескоструйной обработки». Отсутствие отложений или чистой головки и поверхности поршня может указывать на детонацию. При использовании неэтилированного топлива отложения должны составлять…
  • Детонационные повреждения обычно проявляются на краях поршней и на головке цилиндров между отверстиями для свечей зажигания и клапанами.

Для получения дополнительных вопросов по уходу и обслуживанию вашего двигателя Lycoming, пожалуйста, свяжитесь с нашей службой технической поддержки по адресу: [email protected] или по телефону + 1-800-258-3279.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.