Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Что такое конденсаторный двигатель


Конденсаторный электродвигатель - устройство и принцип работы

Конденсаторный двигатель представляет собой одну из разновидностей двигателей асинхронного типа. В обмотках такого типа имеются присоединенные конденсаторы, которые выполняют такие функции, как создание сдвигов фазы проводящего тока.


Имеется возможность подключения конденсаторного электродвигателя к однофазной сети, делается это посредством использования специальных схем. Чаще встречаются двухфазные и трехфазные асинхронные конденсаторные электродвигатели.


Конструкция и устройство конденсаторного электродвигателя


По конструктивному оформлению и по таким параметрам, как мощность электродвигателя и его габариты они могут быть разными. Это непосредственно зависит от назначения и использования электродвигателя конденсаторного типа.

 

 

Вообще, чаще конденсаторные двигателей используются в бытовой технике небольших мощностей, такой стиральные машины старого образца, электромагнитофонах, и другой технике, не обладающей большими мощностями. Как правило, такие разновидности электродвигателей не используются при мощности, которая превышает 1кВт, поскольку сам по себе конденсатор имеет достаточно высокую стоимость.


Работа конденсаторного электродвигателя происходит посредством того, что в конструкции он имеет две обмотки, одна из которых непосредственно подключается к электрической сети, вторая же соединяется с самим конденсатором для создания магнитного поля вращающегося действия. Конденсаторы выполняют так называемое сдвижение фазы тока практически на девяносто градусов.

 

 

 

Во время запуска асинхронного электрического двигателя конденсаторного типа действия оба непосредственных рабочих элемента (конденсаторы) включены, однако после того, как произойдет необходимый для стабильной работы двигателя разгон, один из работающих конденсаторов отключают. Делается это в целях экономии рабочего ресурса электродвигателя, к тому же нет смысла «гонять» оба конденсатора, ведь такая необходимость присутствует лишь при начальной стадии набора оборотов, потом, когда скорость работы двигателя достигает номинального уровня, с последующими задачами вполне под силу справится одному работающему конденсатору.


Наиболее близок по пусковому устройству, а так же  по характеристикам работы и такой тип конденсаторного электрического двигателя к асинхронному электрическому двигателю трехфазного типа.


Основные характеристики конденсаторного электродвигателя


Как правило, во избежание получения эллиптического вращающегося магнитного поля, в одно и то же время с емкостью подключается переменное сопротивление проволочного типа, таким образом, данное подключение позволяет получить магнитное поле не эллипсовидной формы, а поле кругового типа.

 

На сегодняшний день, в промышленности для использования в электрических двигателях конденсаторного типа на промышленном оборудовании применяются электродвигатели двухфазного типа. Их схема подключения является наиболее распространенной и проверенной, к тому же такой тип не имеет высокой стоимости и является наиболее удобным.


В сравнении с простой однофазной схемой подключения схема работы электрических конденсаторных двигателей имеет более высокий коэффициент полезного действия. Разница эта может достигать порядка шестидесяти процентов.


В зависимости от использования конденсаторного электрического двигателя и от его габаритов и рабочих характеристик, номинальная мощность достигает, как правило, полтора кВт. При такой мощности может быть различной и синхронная частота вращения за одну минуту времени, так в зависимости опять же от модели двигателя конденсаторного типа этот параметр может варьироваться в диапазоне от 750 до 3000 оборотов.

Что такое двигатель запуска конденсатора? - его векторная диаграмма и характеристики

Двигатель пускового конденсатора запускает конденсаторный двигатель с ротором в клетке, а его статор имеет две обмотки, известные как основная и вспомогательная обмотки. Две обмотки смещены на 90 градусов в пространстве. В этом методе есть два конденсатора, один из которых используется во время запуска и известен как пусковой конденсатор. Другой используется для непрерывной работы двигателя и известен как конденсатор RUN.

Таким образом, этот двигатель называется двигателем запуска конденсатора. Этот двигатель также известен как двухконтурный конденсаторный двигатель. Схема подключения конденсаторного двигателя с двумя клапанами показана ниже

В этом двигателе есть два конденсатора, представленных C S и C R . При запуске два конденсатора соединены параллельно. Конденсатор Cs является пусковым конденсатором, рассчитанным на короткое время. Это почти электролитически. Для получения пускового момента необходим большой ток.Следовательно, значение емкостного сопротивления X должно быть низким в пусковой обмотке. Поскольку X A = 1 / 2πfC A , значение пускового конденсатора должно быть большим.

Номинальный ток в линии меньше пускового тока при нормальных условиях работы двигателя. Следовательно, значение емкостного сопротивления должно быть большим. Поскольку X R = 1 / 2πfC R, значение рабочего конденсатора должно быть небольшим

Когда двигатель достигает синхронной скорости, пусковой конденсатор Cs отключается от цепи центробежным переключателем Sc.Конденсатор C R постоянно включен в цепь и, таким образом, он известен как конденсатор RUN. Рабочий конденсатор рассчитан на длительное время и изготовлен из заполненной маслом бумаги.

На рисунке ниже показана -фазорная диаграмма двигателя запуска конденсатора.

Рис. (А) показывает векторную диаграмму, когда при запуске оба конденсатора находятся в цепи и ϕ> 90⁰. На рис. (Б) показан вектор, когда пусковой конденсатор отключен, и ϕ становится равным 90⁰.

Характеристика скорости вращения двухконтурного конденсаторного двигателя показана ниже.

Этот тип двигателя работает тихо и плавно. Они имеют более высокую эффективность, чем двигатели, которые работают только на главных обмотках. Они используются для нагрузок с более высокой инерцией, требующих частых запусков, где максимальный крутящий момент и КПД выше. Двигатели с двумя конденсаторами используются в насосном оборудовании, холодильной технике, воздушных компрессорах и т. Д.

,

Что такое конденсатор (C)

Что такое конденсатор и расчеты конденсаторов.

Что такое конденсатор

Конденсатор - это электронный компонент, который хранит электрический заряд. Конденсатор состоит из 2-х тесных проводников (обычно пластин), которые разделены диэлектрическим материалом. Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.

Емкость - это количество электрического заряда, который накапливается в конденсаторе при напряжении 1 Вольт.

Емкость измеряется в единицах Фарад (F).

Конденсатор отключает ток в цепях постоянного тока (DC) и короткое замыкание в цепях переменного тока (AC).

Конденсаторные картинки

Конденсаторные символы

Емкость

Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (V):

C - емкость в Фарадах (F)

Q - электрический заряд в кулонах (С), который накапливается на конденсаторе

В - напряжение между обкладками конденсатора в вольтах (В)

Емкость пластин емкостных

Емкость (C) конденсатора пластин равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):

C - емкость конденсатора, в Фарадах (F).

ε - диэлектрическая проницаемость конденсаторного материала в Фарадах на метр (Ф / м).

A - площадь пластины конденсатора в квадратных метрах (м 2 ).

d - расстояние между пластинами конденсатора в метрах (м).

Конденсаторы в серии

Общая емкость конденсаторов последовательно, C1, C2, C3, ..:

Конденсаторы параллельно

Общая емкость конденсаторов параллельно, C1, C2, C3 ,., :

C Итого = C 1 + C 2 + C 3 + ...

Ток конденсатора

Моментальный ток конденсатора i c (т) равен емкости конденсатора,

раз производная напряжения мгновенного конденсатора v c (т):

Напряжение на конденсаторе

Временное напряжение конденсатора v c (t) равно начальному напряжению конденсатора,

плюс 1 / C, умноженное на интеграл тока мгновенного конденсатора i c (t) за время t:

Энергия конденсатора

накопленная энергия конденсатора E C в джоулях (J) равен емкости C, в Фарадах (F)

В

раз больше квадратного напряжения конденсатора В С в вольтах (В) делится на 2:

E C = C × V C 2 /2

цепи переменного тока

Угловая частота

ω = 2 π f

ω - угловая скорость, измеренная в радианах в секунду (рад / с)

f - частота измеряется в герцах (Гц).

Реактивное сопротивление конденсатора

Конденсаторное сопротивление

Декартова форма:

Полярная форма:

Z C = X C ∟-90º

Типы конденсаторов

Переменный конденсатор Переменный конденсатор имеет переменную емкость
Электролитический конденсатор Электролитические конденсаторы используются, когда требуется высокая емкость.Большинство электролитических конденсаторов поляризованы
Сферический конденсатор Сферический конденсатор имеет форму шара
Силовой конденсатор Силовые конденсаторы используются в высоковольтных энергосистемах.
Керамический конденсатор Керамический конденсатор имеет керамический диэлектрический материал. Имеет функцию высокого напряжения.
Танталовый конденсатор Танталоксидный диэлектрический материал.Имеет высокую емкость
Слюдяной конденсатор Высокоточные конденсаторы
Бумажный конденсатор Бумажный диэлектрический материал


Смотри также:

,

Какова роль конденсатора в цепи переменного и постоянного тока? Электротехника

Какова роль конденсатора в цепи переменного и постоянного тока?

Очень короткими словами (подробное описание и публикация ниже)

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды по мере изменения тока и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, однажды заряженный от приложенного напряжения, действует как размыкающий переключатель.

Какова роль конденсатора в цепи переменного и постоянного тока?

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой двухполюсное электрическое устройство, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единицей измерения его емкости является Фарад «F», где Фарад - это большая единица емкости, поэтому в настоящее время они используют микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба хранят электрическую энергию. Конденсатор - намного более простое устройство, которое не может производить новые электроны, но сохраняет их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (таким как вощеная бумага, слюда и керамика), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для накопления заряда и быстрого разряда в нагрузке.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Ниже приведен электрический эквивалентный символ различных типов конденсаторов :

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но, , знаете ли вы, что такое емкость? емкость - это способность конденсатора сохранять заряд в нем. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Разрыв между пластинами
  • Диэлектрическая проницаемость изоляционного материала

Похожие сообщения:

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, кондиционирование, коррекция коэффициента мощности, Осцилляторы и фильтрация.

В этом уроке мы объясним вам, как вы можете использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронную схему:

  • Конденсатор серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Похожие сообщения: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и сборка конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), ток начинает течь и продолжает распространяться до тех пор, пока напряжение не станет отрицательным и положительным (Анод и Катодные) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор через небольшую нагрузку, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор не разрядится полностью.

Конденсатор имеет различные формы, и его значение измеряется в Фарадах (F). Конденсаторы используются в системах переменного и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость - это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда один источник напряжения вольт подключен к его клемме.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = Емкость в Фарадах (F)
  • Q = Электрические заряды в Coul V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения - объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим последние типы конденсаторов в другом посте, поскольку он не связан с вопросом).

Похожие сообщения:

Конденсаторы в серии

Как подключить конденсаторы в серии?

Последовательно, ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, необходимо соединить их последовательно, как показано на рисунке ниже,

При последовательном подключении конденсаторов общая емкость уменьшается.Следовательно, соединение последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T 901 = + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной цепи, мы применим закон напряжения Кирхгофа (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th №.конденсатора, соединенного последовательно,

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость вышеупомянутая схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14.7

C T = 3.19 мкФ

Параллельные конденсаторы

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключен к источнику, как вы можете видеть на рисунке ниже,

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, благодаря этому площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как

I = C (dV / dt)

Итак,

Решая вышеприведенное уравнение

C T = C 1 + C 2 + C 3

А, для n th нет.конденсатора, подключенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете найти емкость цепи по: используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Похожие сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется как в системах переменного, так и постоянного тока)

Конденсаторы неполярного типа могут использоваться как в системах переменного, так и постоянного тока.Они могут быть подключены к источнику питания в любом направлении, и их емкость не влияет на изменение полярности.

Polar Capacitor: (Используется только в цепях и системах постоянного тока)

Этот тип конденсаторов чувствителен к их полярности и может использоваться только в системах и сетях постоянного тока. Полярные конденсаторы не работают в системе переменного тока из-за изменения полярности после каждого полупериода питания переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока ниже.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких цепях конденсатор соединен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют энергию. Они просто принимают мощность в одном цикле и передают ее в другом цикле нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями энергии.

Асинхронные двигатели с разделенной фазой:

Конденсаторы также используются в асинхронном двигателе для разделения однофазного питания на двухфазное питание для создания вращающегося магнитного поля в роторе для захвата этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, для работы которых требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Существует множество преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он выдает реактивную мощность, которая ранее поступала от энергосистемы, следовательно, он уменьшает потери и повышает эффективность системы.

Конденсаторы в цепях переменного тока

Как подключить конденсаторы в цепях переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не станет равным напряжению питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после того, как он полностью зарядится.

И, когда вы подключаете конденсатор к источнику переменного тока, он заряжается и разряжается непрерывно, из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите фазовую диаграмму идеальной конденсаторной цепи переменного тока, вы можете заметить, что ток опережает напряжение на 90⁰.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как,

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное сопротивление в цепи переменного тока .

Поскольку мы знаем, что I = dQ / dt и Q = CV

А, входное переменное напряжение в вышеуказанной цепи будет выражаться как,

В = V м Sin вес

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференциации)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где, w = 2πf и V м / I м = X c )

Емкостная реактивность (X c ) =

Теперь для расчета емкостное сопротивление вышеупомянутой цепи,

Xc = 1 / 2π (50) (10)

Xc = 3183.09 Ω

Похожие сообщения: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование - преобразование переменного тока в постоянный источник питания при выпрямлении (например, мостовой выпрямитель). Когда мощность переменного тока преобразуется в флуктуирующую (с пульсациями, т.е. не в устойчивом состоянии с помощью выпрямительных цепей), мощность постоянного тока (пульсирующий постоянный ток), чтобы сгладить и отфильтровать эти пульсации и флуктуации, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения системы и требуемого тока нагрузки.

Разъединительный конденсатор:

Разъединительный конденсатор используется, где мы должны разъединить две электронные схемы. Другими словами, шум, создаваемый одной цепью, основан на развязывающем конденсаторе, и это не влияет на работу другой цепи.

Соединительный конденсатор:

Поскольку мы знаем, что конденсатор блокирует постоянный ток и пропускает через него переменный ток (мы обсудим это на следующем занятии, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в цепях фильтра для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим пройти через него. Соединительный конденсатор также используется в фильтрах (схемах удаления пульсаций, таких как RC-фильтры) для разделения сигнала переменного и постоянного тока и удаляет пульсации из пульсирующего напряжения питания постоянного тока для преобразования его в чистое напряжение переменного тока после выпрямления.


Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.