Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Что значит асинхронный двигатель


Синхронный и асинхронный двигатель: отличия, принцип работы, применение

Классификация двигателей основывается на разных параметрах. По одному из них, различают синхронный и асинхронный двигатель. Отличия приборов, общая характеристика и принцип работы описаны в статье.

Синхронный двигатель

Этот тип двигателя способен работать одновременно и в качестве генератора, и как, собственно, двигатель. Его устройство сродни синхронному генератору. Характерной особенностью двигателя является неизменяемая частота роторного вращения от нагрузки.

Эти виды двигателей широко применяются во многих сферах, например, для электрических проводов, которым необходима постоянная скорость.

Принцип работы синхронного двигателя

В основу его функционирования положено взаимодействие вращающегося магнитного поля якоря и магнитных полей индукторных полюсов. Обычно якорь находится в статоре, а индуктор распологается в роторе. Для мощных моторов используются электрические магниты для полюсов, а для слабых — постоянные.

Принцип работы синхронного двигателя включает в себя (кратковременно) и асинхронный режим, который обычно применяют для разгона до необходимой (то есть номинальной) скорости вращения. В это время индукторные обмотки замыкаются накоротко или посредством реостата. После достижения необходимой скорости индуктор начинают питать постоянным током.

Преимущества и недостатки

Основными минусами этого вида двигателя являются:

  • необходимость питания обмотки постоянным током;
  • сложность запуска;
  • скользящий контакт.

Большинство генераторов, где бы они ни использовались, являются синхронными. Преимуществами таких двигателей в целом являются:

Асинхронный двигатель

Данный вид устройста представляет механизм, направленный на трансформацию электрической энергии переменного тока в механическую. Из самого названия «асинхронный» можно сделать вывод, что речь идет о неодновременном процессе. И действительно, частота вращения магнитного поля статора здесь выше роторной всегда.
Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от вида которого асинхронные двигатели короткозамкнутые могут быть и с фазным ротором.

Принцип действия

Работа двигателя осуществляется на основе взаимодействия магнитного статорного поля и наводящихся этим же полем токов в роторе. Вращающий момент появляется тогда, когда имеется разность частоты вращения полей.

Резюмируем теперь, чем отличается синхронный двигатель от асинхронного. Чем объясняется широкое применение одного типа и ограниченное — другого?

Синхронный и асинхронный двигатель: отличия

Отличие работы двигателей - в роторе. У синхронного типа он заключается в постоянном или электрическом магните. Благодаря притягиванию разноименных полюсов вращающееся поле статора влечет и магнитный ротор. Их скорость получается одинаковой. Отсюда и название — синхронный.

В нем можно добиться, в отличие от асинхронного, даже опережения напряжения по фазам. Тогда устройство, подобно батареям конденсатора, может применяться для увеличения мощности.

Асинхронные двигатели, в свою очередь, просты и надежны, но их недостатком является трудность регулировки частоты вращения. Для реверсирования трехфазного асинхронного двигателя (то есть изменения направления его вращения в противоположную сторону) меняют расположение двух фаз или двух линейных проводов, приближающихся к обмотке статора.

Если рассматривать частоту вращения, то имеют и здесь синхронный и асинхронный двигатель отличия. В синхронном типе этот показатель является постоянным, в отличие от асинхронного. Поэтому первый используют там, где необходима постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.

Выявить на том или ином устройстве наличие рассматриваемых типов приборов очень просто. На асинхронном двигателе будет не круглое число оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном — круглое (например, тысяча оборотов в минуту).

И те, и другие моторы управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой меняющейся нагрузке на вал мотора частота вращения будет одной и той же. При этом нагрузка, конечно, должна меняться с учетом того, чтобы двигатель способен ее выдержать, иначе это приведет к поломке механизма.

Так устроен синхронный и асинхронный двигатель. Отличия обоих видов обуславливают сферу их использования, когда один вид справляется с задачей оптимальным образом, для другого это будет проблематичным. В то же время можно встретить и комбинированные механизмы.

Petropedia - Что такое асинхронный двигатель?

Переключить навигацию Меню
  • темы масло вниз по течению вверх по течению Окружающая среда Разведка и добыча середина реки Натуральный газ
.

Что такое асинхронный двигатель с затененным полюсом? - Определение, конструкция, работа и применение.

Определение: Асинхронный двигатель с заштрихованными полюсами - это просто однофазный асинхронный двигатель с самозапуском, один из полюсов которого заштрихован медным кольцом. Медное кольцо также называют заштрихованным кольцом. Это медное кольцо действует как вторичная обмотка для двигателя. Двигатель с заштрихованными полюсами вращается только в одном конкретном направлении, и обратное движение двигателя невозможно.

Почему асинхронный двигатель с заштрихованными полюсами предназначен для низкой мощности?

Потери мощности в асинхронном двигателе с заштрихованными полюсами очень велики. И коэффициент мощности двигателя низкий. Пусковой момент индукции в асинхронном двигателе также очень низкий. По следующим причинам двигатель имеет низкий КПД. Таким образом, их конструкции сохраняются небольшими, а мотор имеет низкую номинальную мощность.

Конструкция асинхронного двигателя с затененным полюсом

Двигатель с заштрихованными полюсами может иметь два или четыре полюса.Здесь, в этой статье, мы используем двухполюсный двигатель для простоты. Скорость двигателя обратно пропорциональна числу полюсов, используемых в двигателе.

Статор - Статор двигателя с заштрихованными полюсами имеет выступающий полюс. Выдающийся полюс означает, что полюса магнита проецируются на якорь двигателя. Каждый полюс двигателя возбуждается своей захватывающей катушкой. Медные кольца затеняют петли. Петли известны как катушка затенения.

Полюса двигателя ламинированы.Ламинирование означает, что для изготовления полюсов используются несколько слоев материала. Таким образом, сила полюса увеличивается.

Щель построена на некотором расстоянии от края полюсов. Короткозамкнутая медная катушка находится в этом гнезде. Часть, которая покрыта медным кольцом, называется затененной частью, а те, которые не покрыты кольцами, называются незатененной частью.

Ротор - В двигателе с заштрихованными полюсами используется короткозамкнутый ротор. Стержни ротора перекошены под углом 60º.Наклон может быть сделан для получения лучшего пускового момента.

Конструкция двигателя очень проста, потому что он не содержит каких-либо коммутаторов, щеток, коллекторных колец и т. Д. Или любой другой детали. Асинхронный двигатель с заштрихованными полюсами не имеет центробежного переключателя. Таким образом, шансы отказа мотора меньше.

Центробежный выключатель - это тип электрического выключателя, который начинает работать с использованием центробежной силы, создаваемой вращающимся валом. Он также используется для контроля скорости вала.

Асинхронный двигатель с заштрихованными полюсами, рабочий

Когда источник питания подключен к обмоткам ротора, переменный поток индуцирует в сердечнике ротора. Небольшая часть магнитного потока связана с заштрихованной катушкой двигателя, так как она закорочена. Изменение потока индуцирует напряжение внутри кольца, из-за чего циркулирующий ток индуцирует в нем.

Циркуляционный ток создает поток в кольце, который противодействует основному потоку двигателя.Поток индуцируется в заштрихованной части двигателя, то есть, а не заштрихованная часть двигателя, то есть b, имеет разность фаз. Основной поток двигателя и поток затененных колец также имеют пространственное смещение на угол 90 °.

Схема подключения двигателя с заштрихованными полюсами показана ниже.

Поскольку существует временное и пространственное смещение между двумя потоками, вращающееся магнитное поле индуцирует в катушке. Вращающееся магнитное поле развивает пусковой момент в двигателе.Поле вращается от незатененной части к затененной части двигателя.

Применение асинхронного двигателя с заштрихованными полюсами

Различные применения электродвигателя с затененными полюсами следующие: -

  • Они подходят для небольших устройств, таких как реле и вентиляторы, из-за своей низкой стоимости и легкого запуска.
  • Используется в вытяжных вентиляторах, фенах, а также в настольных вентиляторах.
  • Используется в кондиционерах, холодильном оборудовании и вентиляторах.
  • проигрыватели, магнитофоны, проекторы, фотокопировальные машины.
  • Используется для запуска электронных часов и однофазных синхронных двигателей.

Этот тип двигателя используется для привода устройств, которые требуют низкого пускового момента.

,

Изменение частоты питания асинхронного двигателя от 50 до 60 Гц> ENGINEERING.com

Асинхронные двигатели, как однофазные, так и многофазные, предназначены для использования с определенной частотой переменного тока. Иногда мы сталкиваемся с «неправильной» частотой двигателя. В этой статье я помогу вам понять последствия.

Существует большое количество взаимодействующих отношений в конструкции двигателя. Существуют аспекты первого порядка, второго порядка и, возможно, даже третьего порядка, которые сбалансированы для создания надежного двигателя с желаемыми характеристиками.

Я буду обсуждать только аспекты Первого Порядка.

1) Скорость вращения является прямой функцией частоты мощности. Очень просто, если вы снизите частоту , двигатель замедлится . И наоборот, если вы увеличите частоту , двигатель ускорится. Изменение скорости, которое в результате будет пропорционально изменению частоты.

2) Охлаждение является прямой функцией скорости вращения. Вентилятор двигателя прикреплен к вращающемуся ротору двигателя, поэтому он будет испытывать то же ускорение или замедление, что и двигатель. Если двигатель замедляется, его охлаждение падает (и с большей скоростью, чем замедление). Если двигатель ускоряется, его охлаждение будет быстро увеличиваться.

3) Магнитная емкость магнитной (железной) цепи двигателя рассчитана на соотношение: напряжение / частота (V / f). Если частота падает, В / Гц повышается. Это означает, что двигателю требуется большая магнитная цепь.Без этого магнитная цепь может быть перегружена. Это называется насыщением и приводит к быстрому увеличению потребления тока и соответствующему значительному увеличению температуры, главного врага двигателя.

Если частота увеличивается, переменный ток / гц падает без проблем, так как магнитная цепь останется достаточно большой. [Подкрадываясь ко второму порядку, у двигателя может быть худший коэффициент мощности.]

Имея в виду вышеупомянутые аспекты, давайте рассмотрим, что все это значит, когда применяется к тому несчастному двигателю, который есть в вашей машине.

Если двигатель с частотой 50 Гц и вы собираетесь использовать его на 60 Гц, он будет вращаться на 20% быстрее.
Мощность в лошадиных силах (л.с.) пропорциональна числу оборотов в минуту. Так как крутящий момент двигателя не будет заметно изменяться с увеличением частоты, он теперь обеспечит увеличение мощности на 20%. Ваш 8-сильный мотор только что получил звание 10-сильного двигателя. Что-то почти даром!

Но подожди! Более быстрое вращение нагрузки на 20%, скорее всего, увеличит ее энергопотребление как минимум на 20%! Если нагрузка циклически ускоряется или замедляется во время работы, она будет подвергаться большим механическим воздействиям.Перебор? Если двигатель приводит в движение центробежные нагрузки, их спрос может даже возрасти на квадрат увеличения скорости. Центробежные насосы были бы примером этого. Поклонники, в зависимости от их стиля, также могут испытывать увеличение спроса в квадрате.

Ярким пятном этого является то, что охлаждающий вентилятор двигателя представляет собой центробежный вентилятор, который будет перемещать намного больше воздуха.

В / Гц двигателя понижается при повышении частоты двигателя, сообщая нам, что магнитная цепь не будет иметь проблем с переносом увеличенной нагрузки.Нам там хорошо.

Если двигатель с частотой 60 Гц, и вы собираетесь использовать его на частоте 50 Гц, он будет вращаться с частотой 20% с-1 - о-с-с-с-с.
Это также переводит на 20% меньше лошадиных сил. С другой стороны, если повернуть нагрузку медленнее, это обычно потребует меньше энергии. Это хорошо, потому что мотор был просто понижен в 20% от его мощности тоже. Все это и охлаждающий вентилятор обеспечивает меньше тоже. Но горилла за 800 фунтов здесь - отношение V / Hz.Это просто выросло на 20%! Не хорошо. Это означает, что во время частей каждого цикла линии электропередачи магнитная структура двигателя, вероятно, будет перегружена.

Когда это происходит, способность двигателя ограничивать ток через реактивное сопротивление теряется. Это приведет к чрезмерному току, протекающему при нагревании двигателя через I квадрат R потерь. Единственным выходом здесь является исправление V / Hz с помощью переменной, которую достаточно легко настроить - V напряжение. Понизьте напряжение с помощью трансформатора, чтобы скорректировать соотношение В / Гц.Я буду обсуждать это в данный момент.

Вернуться к загрузке. Будет ли он работать на более низкой скорости? Насос может больше не иметь напора, необходимого для выполнения своей задачи. Пропускная способность машины, вероятно, упадет на 20%. Будете ли вы обрабатывать достаточно продукта в данный момент времени?

Пример - у вас есть 60 Гц для 50 Гц машины.
Допустим, вы только что получили много на машине. Когда он был подключен, вы поняли, что на его шильдике 50 Гц, а у вас 60 Гц.СТОП.

Машина будет работать на 20% быстрее! Это будет проблемой? Если это так, можно ли вернуть скорость к расчетной скорости, изменив размер шкива, чтобы скорость снизилась на 20% до того уровня, на котором она была?

После того, как эта оценка была сделана, и шкивы изменены или другие изменения сделаны, чтобы помочь смягчить проблемы скорости / мощности, переходите к следующему шагу. Прочитайте паспортную табличку, чтобы получить полную амплитуду нагрузки, обычно известную как номинал FLA для двигателя при напряжении, с которым он будет работать.

Используя зажимной амперметр, запустите машину и убедитесь, что сила тока ниже FLA. Если это так, вы можете продолжить работу машины по желанию. Не забудьте проверить, что он все еще находится под FLA при полной загрузке. Если это более FLA, вы должны сделать какое-то уменьшение нагрузки.

Пример - у вас есть 50 Гц для машины 60 Гц.
Вы получаете машину, и поскольку вы находитесь на земле 50 Гц, ярлык 60 Гц беспокоит вас.Как и положено!

Опять же, понимая, что машина будет работать на 20% медленнее, она выполнит свою работу? В этом случае вы не можете изменить размеры шкива, чтобы скорректировать скорость, потому что двигатель только что потерял 20% своей номинальной мощности в лошадиных силах. Если вы поменяете шкивы, он, вероятно, будет перегружен - серьезно.

Если машина может работать на 20% медленнее, возможно, есть надежда. Несмотря на то, что он будет терять охлаждение, если его внутренний вентилятор будет работать медленнее, работа с нагрузкой будет медленнее, а двигатель с меньшей мощностью на 20%, скорее всего, выровняется.Увеличение V / Hz может все еще получить вас.

На данный момент, если ваша оценка показывает, что вы, вероятно, будете в порядке с более медленной скоростью, снова проверьте табличку с фамилией для FLA. Запустите машину и , , быстро, , проверьте рабочий ток с помощью амперметра . Если она ниже FLA, продолжайте загружать машину, внимательно следя за вещами. Если вы останетесь ниже FLA, вероятно, все будет в порядке.

Но! Работа на FLA теперь, когда охлаждающий вентилятор имеет пониженную производительность, все еще может стать проблемой.Вы должны следить за температурой двигателя и убедиться, что после продолжительного времени работы под нагрузкой он остается ниже повышения температуры на паспортной табличке.

Если даже без нагрузки вы видите FLA или более, вам нужно уменьшить напряжение, потому что двигатель, вероятно, насыщается. Прежде чем приступить к добавлению понижающих трансформаторов, серьезно подумайте о замене двигателя для правильной версии 50 Гц. Помните, что вам может потребоваться увеличить номинальную мощность, если вы собираетесь изменить передаточные числа, чтобы вернуть машину к ее первоначальной скорости.

Но подождите! А как насчет однофазных двигателей?
Последняя проблема, с которой необходимо столкнуться, - это однофазные двигатели. Все описанное выше относится к ним, но есть несколько добавок "ложка дегтя". Однофазные двигатели имеют пусковую обмотку. Поскольку однофазная мощность не имеет внутренней составляющей вращения, как у трехфазной, пусковая обмотка обеспечивает необходимый большой крутящий момент для вращения двигателя. Пусковая обмотка представляет собой очень большую нагрузку и, как правило, может работать только в течение нескольких секунд.Больше чем несколько секунд и дым начнет выходить вперед.

Центробежный выключатель обычно включается на роторе для управления питанием пусковой обмотки. Он остается закрытым, поэтому при подаче питания на двигатель обе обмотки, ход и пуск под напряжением. Когда двигатель быстро достигает скорости, центробежный аспект выключателя открывает пусковую обмотку, отключая его от дальнейшей работы.

Когда однофазный двигатель 50 Гц доводится до 60 Гц, функцию запуска можно отключить, поскольку двигатель достигает скорости центробежного переключателя на 20% раньше, чем обычно.Когда это происходит, пусковой момент двигателя внезапно уменьшается. Он может не ускориться дальше и никогда не достигнет нормальной скорости движения. Если это произойдет, дым на пути!

И наоборот, когда частота однофазного двигателя 60 Гц понижается, переключатель может не достигнуть скорости размыкания. Учитывая, что заданное значение скорости размыкания переключателя обычно составляет около 80% от скорости движения, вы можете увидеть потенциальную проблему. Помните, что двигатель будет вращаться на 20% медленнее.Если он не достигает скорости переключения, дым определенно находится на пути! Вы увидите это на мгновение.

Однофазные двигатели часто могут иметь два вида конденсаторов, связанных с ними. Первый - это рабочий конденсатор. Рабочий конденсатор увеличивает обычный вращающий момент двигателя. Второй - это пусковой конденсатор, используемый для увеличения пускового момента. Когда частота питания повышается, эти конденсаторы усиливают свои эффекты, что приводит к увеличению крутящего момента. Обычно это не проблема.Но если вы понижаете частоту, они теряют свои эффекты, и пусковые и / или вращающие моменты уменьшаются. Это может быть проблемой. Однако, если нагрузка вращается медленнее, она может выровняться.

Поскольку однофазные двигатели обычно меньше по размеру, часто эффективнее просто заменить их.

т. Теперь вы знаете, почему вы приобрели такую ​​«отличную цену» на покупку вашей машины.

Об авторе
Кит Кресс - консультант «широкого спектра», который занимается всем, от разработки встроенных контроллеров до систем питания пассажирских вагонов.С Китом можно связаться по телефону [email protected]

Кит является членом Гильдии технических писателей по адресу www.eng-tips.com . Он также MVP. Следуйте за Китом (itmoked) на http://www.eng-tips.com/userinfo.cfm?member=itsmoked

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.