Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Для чего нужна турбина в дизельном двигателе


Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась  на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

 

 

Как работают 4 типа турбинных двигателей

Жить с полетной палубы

Газовые турбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина производила достаточно мощности, чтобы поддерживать свою работу. Проект был выполнен норвежским изобретателем Эгидусом Эллингом, и он произвел 11 лошадиных сил, что было огромным подвигом в то время.

В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них производят , что на больше, чем 11 лошадиных сил.Здесь представлены 4 основных типа турбинных двигателей, а также плюсы и минусы каждого.

1) Турбореактивный двигатель

Heinkel He 178, первый в мире турбореактивный самолет

турбореактивные двигатели были первыми изобретенными типами газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневые двигатели в вашем автомобиле или самолете, они работают по одной и той же теории: впуск , компрессия, мощность, выпуск .

Как работает турбореактивный двигатель?

Турбореактивные двигатели работают, пропуская воздух через 5 основных секций двигателя:

Шаг 1: Воздухозаборник
Воздухозаборник представляет собой трубу перед двигателем.Забор воздуха может выглядеть просто, но это невероятно важно. Задача впуска - плавно направлять воздух в лопатки компрессора. На низких скоростях он должен минимизировать потерю воздушного потока в двигатель, а на сверхзвуковых скоростях он должен замедлять воздушный поток ниже Маха 1 (воздух, поступающий в турбореактивный двигатель, должен быть дозвуковым, независимо от того, насколько быстро летит самолет ).

Шаг 2: Компрессор
Компрессор приводится в действие турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха.Компрессор представляет собой серию «вентиляторов», каждый из которых имеет все меньшие и меньшие лопасти. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Шаг 3: Камера сгорания
Далее идет камера сгорания, где волшебство действительно начинает происходить. Воздух высокого давления объединяется с топливом, и смесь воспламеняется. Когда топливно-воздушная смесь горит, она движется через двигатель к турбине. Турбореактивные двигатели работают очень обедненно, приблизительно с 50 частями воздуха на каждую 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6 до 1 до 18 до 1).Одна из главных причин, по которой турбины работают в таком наклоне, заключается в том, что для охлаждения турбореактивного двигателя необходим дополнительный поток воздуха.
Шаг 4: Турбина
Турбина - это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию высокоскоростного воздуха, проходящего через нее. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Круг жизни» турбореактивного двигателя почти завершен.

Шаг 5: Выхлоп (он же «Я отсюда!»)
Высокоскоростная сгоревшая топливно-воздушная смесь выходит из двигателя через выпускную форсунку.Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или все, к чему он прикреплен) вперед.

Турбореактивный вынос:

  • Плюсы:
    • Относительно простой дизайн
    • Способный к очень высоким скоростям
    • Занимает мало места
  • Минусы:
    • Высокий расход топлива
    • Громко
    • Плохая производительность на низких скоростях

2) Турбовинтовой двигатель

Жить с полетной палубы

King Air с турбовинтовыми двигателями

Следующие три типа турбинных двигателей - это все формы турбореактивного двигателя, и мы начнем с турбовинтового двигателя.Турбовинтовой двигатель представляет собой турбореактивный двигатель, соединенный с пропеллером через систему зацепления.

Как работает турбовинтовой двигатель?

Шаг 1 : турбореактивный двигатель вращает вал, который соединен с коробкой передач

Шаг 2 : коробка передач замедляет вращение, а самая медленная передача соединяется с винтом

Шаг 3 : Пропеллер вращается по воздуху, создавая тягу точно так же, как ваша Cessna 172

Разборка турбовинтового двигателя:

  • Плюсы:
    • Очень экономичный расход топлива
    • Наиболее эффективен на средней скорости между 250-400 узлами
    • Наиболее эффективен на средних высотах от 18 000 до 30 000 футов
  • Минусы:
    • Ограниченная прямая скорость полета
    • Системы передачи тяжелы и могут сломаться

3) Турбовентиляторный двигатель

Жить с полетной палубы

Некоторые широкофюзеляжные турбовентиляторные двигатели могут производить более 100 000 фунтов тяги.

Турбовентиляторы

объединяют лучшее из обоих миров между турбореактивными двигателями и турбовинтовыми двигателями.И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс.

Как работает турбовентилятор?

Турбовентиляторы работают, прикрепляя канальный вентилятор к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, помогает охлаждать двигатель и снижает уровень шума двигателя.

Шаг 1 : Входящий воздух делится на два отдельных потока. Один поток обтекает двигатель (обводной воздух), а другой - через сердечник двигателя.

Шаг 2 : Обводной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.

Шаг 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.

Турбофан вынос:

  • Плюсы:
    • Экономия топлива
    • тише турбореактивных
    • Они выглядят потрясающе
  • Минусы:
    • Тяжелее турбореактивных
    • Большая лобовая площадь, чем у турбореактивных двигателей
    • Неэффективно на очень больших высотах

Турбовентилятор Pratt & Whitney F100 с форсажной камерой F-16

4) Турбовальный двигатель

Вертолет Bell 206 с турбовальным двигателем

Турбовальные двигатели

в основном используются на вертолетах.Самое большое различие между турбовальными и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги в задней части двигателя.

Как работает турбовальный вал?

Турбовальные валы - это, по сути, турбореактивный двигатель с большим валом, соединенным с задней его частью. А поскольку большинство этих двигателей используются на вертолетах, этот вал соединен с лопастью ротора.

Шаг 1 : Двигатель по большей части работает как турбореактивный двигатель.

Шаг 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.

Шаг 3 : коробка передач передает вращение от вала к лопасти ротора.

Шаг 4 : Вертолет с помощью неизвестных и магических средств способен летать по небу.

Вывод турбовального вала:

  • Плюсы:
    • Гораздо более высокое отношение мощности к весу, чем у поршневых двигателей
    • Обычно меньше поршневых двигателей
  • Минусы:
    • Громко
    • Зубчатые передачи, соединенные с валом, могут быть сложными и выходить из строя

4 типа двигателей, основанные на одной базовой концепции

Газотурбинные двигатели прошли долгий путь за последние 100 лет.И хотя турбореактивные двигатели, турбовинтовые турбовентиляторы, турбовентиляторы и турбовалы имеют свои различия, они по сути производят мощность одинаково: впуск, сжатие, мощность и выхлоп.


Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и тесты, которые сделают вас умнее, безопаснее пилота.


,Дизельный двигатель

- Простая английская Википедия, бесплатная энциклопедия

Топливо, используемое для дизельных двигателей, см. В разделе Дизельное топливо.

Название дизель дан двигателю, изобретенному немцем Рудольфом Дизелем в конце 19 века. Это один из наиболее используемых видов двигателя внутреннего сгорания.

Большинству других двигателей нужна система, называемая системой зажигания, в которой используется электрическая искра, чтобы сжигать смесь топлива и воздуха и получать мощность. Другие типы систем зажигания используют сжатый воздух от внешнего источника, такого как воздушный компрессор.Дизель не делает. Он сжигает дизельное топливо (аналогично мазуту) за счет очень сильного сжатия или сжатия смеси. Крошечный кусочек топлива впрыскивается или нагнетается в цилиндры двигателя в нужный момент. Поскольку газы нагреваются при их сжатии, сжатие смеси воздуха и топлива вызывает взрыв смеси в цилиндре.

Дизельные двигатели очень хорошо используют топливо, которое они сжигают. Они также производят много крутящего момента (произносится как «торк») или крутящего момента.Двигатель с большим крутящим моментом сможет вращать свой вал, даже если это очень трудно сделать. Это делает дизельный двигатель хорошим выбором для тяжелой техники, такой как грузовые автомобили, поезда и строительные машины. У очень больших грузовиков на дороге есть дизельные двигатели. Так делают поезда локомотивов, если они не электрические или старые паровые.

Иногда даже крутящего момента дизельного двигателя недостаточно для запуска таких больших машин. Чтобы увеличить мощность, к большим дизелям часто присоединяют устройство, называемое турбокомпрессором.Турбокомпрессор - это тип турбины, который используется для очень быстрого перемещения воздуха. Реактивные двигатели также содержат турбину. В дизеле давление от выхлопа вращает турбокомпрессор на очень высокой скорости. Затем свежий воздух возвращается в двигатель. Поскольку двигатель работает за счет накачки воздуха, чем больше воздуха вы можете пропустить через него, тем больше будет мощность. Вот где помогает турбокомпрессор. Дизельный двигатель с турбонаддувом называется турбодизелем . Свистящий звук, который иногда слышен возле одного из этих двигателей, вызван турбокомпрессором, или, если коротко, «турбонаддувом».

Дизельный двигатель также может работать на рапсовом масле, приготовленном из старого растительного масла. Этот вид топлива называется биодизелем. При работе дизельного двигателя на биодизельном топливе запах выхлопных газов напоминает еду. Растительное масло как топливо не новая идея. Двигатель, который Рудольф Дизель использовал для демонстрации своей новой идеи, работал на рапсовом масле.

,

Газотурбинный двигатель | Британика

Газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочей жидкости, используемой для вращения турбины. Термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего по меньшей мере из компрессора, камеры сгорания и турбины.

Общая характеристика

Полезная работа или тяговое усилие могут быть получены от газотурбинного двигателя. Он может приводить в действие генератор, насос или пропеллер или, в случае двигателя чисто реактивного самолета, развивать тягу, ускоряя поток выхлопных газов турбины через сопло.Такой двигатель может вырабатывать большие объемы энергии, который при той же мощности намного меньше и легче поршневого двигателя внутреннего сгорания. Поршневые двигатели зависят от движения поршня вверх-вниз, который затем должен быть преобразован во вращательное движение с помощью коленчатого вала, в то время как газовая турбина поставляет мощность вращающегося вала напрямую. Хотя концептуально газотурбинный двигатель является простым устройством, компоненты для эффективного блока должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих во время работы.Таким образом, газотурбинные двигательные установки обычно ограничиваются большими единицами, где они становятся экономически эффективными.

Газотурбинный двигатель, циклы

Большинство газовых турбин работают в открытом цикле, в котором воздух отбирается из атмосферы, сжимается в центробежном или осевом компрессоре, а затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который обходит вокруг секции горения и затем смешивается с очень горячими газами сгорания, необходим для поддержания достаточно низкой температуры на выходе из камеры сгорания (по сути, входа турбины), чтобы турбина могла работать непрерывно.Если установка предназначена для выработки мощности на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остаток доступен для подачи работы вала на генератор, насос или другое устройство. В реактивном двигателе турбина спроектирована так, чтобы обеспечить достаточную мощность для привода компрессора и вспомогательных устройств. Затем поток газа покидает турбину при промежуточном давлении (выше местного атмосферного давления) и подается через сопло для создания тяги.

Газотурбинный двигатель постоянного давления с открытым циклом. Encyclopædia Britannica, Inc.

Идеализированный газотурбинный двигатель, работающий без каких-либо потерь в этом простом цикле Брайтона, рассматривается в первую очередь. Если, например, воздух поступает в компрессор при 15 ° C и атмосферном давлении и сжимается до одного мегапаскаля, он затем поглощает тепло из топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C, а затем расширится через турбину до атмосферного. давление.Для этого идеализированного блока потребовалась бы мощность турбины 1,68 кВт на каждый киловатт полезной мощности, а 0,68 кВт потреблялось для привода компрессора. Тепловая эффективность установки (чистая произведенная работа, деленная на энергию, добавленную через топливо) составила бы 48 процентов.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Фактическая производительность в открытом цикле

Если для агрегата, работающего между теми же пределами давления и температуры, компрессор и турбина работают только на 80 процентов ( i.например, работа идеального компрессора равна 0,8 раза фактической работы, в то время как фактическая мощность турбины в 0,8 раза превышает идеальную производительность), ситуация резко меняется, даже если все другие компоненты остаются идеальными. Для каждого произведенного киловатта полезной мощности турбина должна теперь производить 2,71 киловатта, в то время как работа компрессора становится 1,71 киловатта. Тепловая эффективность падает до 25,9 процента. Это иллюстрирует важность высокоэффективных компрессоров и турбин. Исторически сложность создания эффективных компрессоров, даже больше, чем эффективных турбин, задерживала разработку газотурбинного двигателя.Современные агрегаты могут иметь КПД компрессора 86–88% и КПД турбины 88–90% в проектных условиях.

Эффективность и выходную мощность можно повысить, повысив температуру на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, и поскольку лопатки турбины движутся с высокой скоростью и подвергаются сильным центробежным напряжениям, температуры на входе в турбину выше 1100 ° C требуют специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину также существует оптимальный коэффициент давления.Современные авиационные газовые турбины с лопастным охлаждением работают при температуре на входе в турбину выше 1370 ° С и при давлениях около 30: 1.

Переохлаждение, подогрев и регенерация

В авиационных газотурбинных двигателях следует обратить внимание на массу и диаметр. Это не позволяет добавлять больше оборудования для улучшения производительности. Соответственно, двигатели для коммерческих самолетов работают по простому циклу Брайтона, идеализированному выше. Эти ограничения не распространяются на стационарные газовые турбины, в которые могут быть добавлены компоненты для повышения эффективности.Улучшения могут включать (1) уменьшение компрессионной работы при промежуточном охлаждении, (2) увеличение мощности турбины путем повторного нагрева после частичного расширения или (3) уменьшение расхода топлива при регенерации.

Первое улучшение будет включать сжатие воздуха при почти постоянной температуре. Хотя это не может быть достигнуто на практике, оно может быть аппроксимировано путем промежуточного охлаждения (, то есть , путем сжатия воздуха в два или более этапа и водяного охлаждения между этапами до его первоначальной температуры).Охлаждение уменьшает объем воздуха, который необходимо обрабатывать, а вместе с ним и работу сжатия.

Второе усовершенствование включает в себя подогрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения. Этот процесс похож на подогрев, используемый в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье усовершенствование.Здесь горячие отработавшие газы из турбины пропускаются через теплообменник или регенератор, чтобы повысить температуру воздуха, выходящего из компрессора до сгорания. Это уменьшает количество топлива, необходимое для достижения желаемой температуры на входе в турбину. Повышение эффективности, однако, связано с большим увеличением первоначальных затрат и будет экономичным только для агрегатов, которые работают почти непрерывно.


Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.