Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Из чего делают двигатели


Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

Двигатели

Что такое аэронавтика? | динамика полета | Самолеты | Двигатели | История полета | какой такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Ланс | Индекс сайта | Дом

Двигатели

Как работает реактивный двигатель?


NEW!
Видео "Как работает реактивный двигатель".

Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов поднимается с земли с такой легкостью. Как это случилось? Ответ прост. Это двигатели.

Пусть Тереза ​​Беньо из Исследовательского центра Гленна НАСА объяснит больше ...

Как показано на НАСА Направление завтра.


Реактивные двигатели с огромной силой двигают самолет вперед, создаваемый огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называются газовые турбины, работать по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор поднимает давление воздуха. Компрессор сделан со многими лезвиями, прикрепленными к валу. Лопасти вращаются с высокой скоростью и сжимают или сжимают воздух. Сжатый воздух тогда распыляется с топливом, и электрическая искра зажигает смесь. горючие газы расширяются и выдуваются через сопло в задней части двигателя.Когда струи газа стреляют назад, двигатель и самолет смещаются вперед. Когда горячий воздух идет к соплу, он проходит через другую группу лопастей. называется турбиной. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины приводит к вращению компрессора.

На рисунке ниже показано, как воздух проходит через двигатель. Воздух проходит через ядро двигателя, а также вокруг ядра.Это вызывает некоторое количество воздуха быть очень горячим, а некоторые - круче. Кулер воздух затем смешивается с горячим воздух на выходе из двигателя.

Это картина того, как воздух проходит через двигатель

Что такое тяга?

Тяга это передняя сила, которая толкает двигатель и, следовательно, самолет вперед. сэр Исаак Ньютон обнаружил, что для «каждого действия существует равное и противоположная реакция. "Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топливо, температура воздуха может достигать трех тысяч градусов. Мощность воздуха используется для вращения турбины. Наконец, когда воздух уходит, это выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.

Части реактивного двигателя

Поклонник - Вентилятор является первым компонентом в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий вентилятора сделаны из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть проходит через «ядро» или центр двигателя, где на него воздействуют другие компоненты двигателя.

Вторая часть «обходит» сердечник двигателя. Проходит через воздуховод который окружает ядро ​​в задней части двигателя, где он производит большую часть сила, которая продвигает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.

Компрессор - Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает воздух, который поступает в него Постепенно меньшие площади, что приводит к увеличению давления воздуха. это приводит к увеличению энергетического потенциала воздуха. Раздавленный воздух нагнетается в камеру сгорания.

Combustor - В камере сгорания воздух смешан с топливом, а затем загорелся. Есть 20 форсунок для распыления топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Горючее с кислородом в сжатом топливе воздух, производящий горячие расширяющиеся газы. Внутренняя часть камеры сгорания часто производится из керамических материалов для обеспечения термостойкой камеры. Жара может достигать 2700 °.

Турбина - Высокоэнергетический поток воздуха из камеры сгорания уходит в турбину, вызывая вращение лопастей турбины. Турбины связаны валом, чтобы вращать лопасти в компрессоре и раскрутить впускной вентилятор спереди.Это вращение отнимает энергию у поток высокой энергии, который используется для привода вентилятора и компрессора. Газы Произведенные в камере сгорания движутся через турбину и вращают ее лопасти. Турбины реактивного двигателя вращаются вокруг тысячи раз. Они закреплены на валах которые имеют несколько наборов шарикоподшипников между ними.

Насадка - Сопло является вытяжным каналом двигатель. Это часть двигателя, которая на самом деле производит тягу для самолет.Истощенный энергией воздушный поток, который прошел турбину, в дополнение к более холодный воздух, который обошел ядро ​​двигателя, создает силу при выходе из форсунка, которая движет вперед двигатель и, следовательно, самолет. Сочетание горячего воздуха и холодного воздуха выталкивается и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из активной зоны двигателя с воздух с более низкой температурой, который был обойден в поклоннике.Смеситель помогает сделать двигатель тише.

Первый реактивный двигатель - А Краткая история ранних двигателей

Сэр Исаак Ньютон в 18 веке был сначала предположить, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло в обратном направлении, самолет движется вперед.

Анри Жиффар построил дирижабль, который был приведен в действие первым двигателем самолета - паровой двигатель с тремя лошадьми. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 году Феликс де Храм года построил моноплан который пролетел короткий прыжок вниз по склону с помощью угольного парового двигателя.

Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался привести в действие свой трехместный биплан с двумя угольными паровыми двигателями.Это только пролетели на несколько секунд.

Ранние паровые двигатели работали на подогреве угля и, как правило, слишком тяжелый для полета.

американец Сэмюэль Лэнгли сделал модель самолета которые были приведены в действие паровыми двигателями. В 1896 году он успешно управлял Беспилотный самолет с паровым двигателем, названный Aerodrome . Он пролетел около 1 мили, прежде чем испарился. Затем он попытался построить полный размер самолета, Aerodrome A, с бензиновым двигателем.В 1903 году это разбился сразу же после спуска с домашнего катера.

В 1903 году братьев Райт полетел, Flyer , с 12-сильным газом двигатель.

С 1903 года, года первого полета братьев Райт, до конца 1930-х годов бензиновый поршневой двигатель внутреннего сгорания с пропеллером единственное средство, используемое для приведения в движение самолета.

Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттл впервые полетел успешно в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему сгорания. камера, одноступенчатая турбина и сопло.

В то же время, когда Уиттл работал в Англии, Ганс фон Охайн работал над похожим дизайном в Германии. Первый самолет успешно Использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель рейс.

General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Это был экспериментальный самолет XP-59A, который впервые полетел в октябре 1942 года.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается в 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания для поднять температуру жидкой смеси примерно до 1100 ° F до 1300 ° F. Полученный горячий воздух проходит через турбину, которая приводит в движение компрессор. Если турбина и компрессор работают, давление на выходе турбины будет почти вдвое больше атмосферного давления, и это избыточное давление отправляется к соплу, чтобы произвести высокоскоростной поток газа, который создает тягу.Значительное увеличение тяги может быть достигнуто с помощью форсаже. Это вторая камера сгорания, расположенная после турбины и перед сопло. Дожигатель повышает температуру газа перед соплом. Результатом этого повышения температуры является увеличение примерно на 40 процентов в тяге при взлете и гораздо больший процент на высоких скоростях, как только самолет в воздухе.

Турбореактивный двигатель - реактивный двигатель.В реакторе, расширяющемся газе давить сильно на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает это. Газы протекают через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопа, толкая самолет вперед.

Изображение турбореактивного двигателя

Турбовинты

А турбовинтовой двигатель реактивный двигатель, прикрепленный к винтуТурбина в задняя часть поворачивается горячими газами, и это поворачивает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты приводятся в действие турбовинтовыми двигателями.

Как турбореактивный, турбовинтовой двигатель состоит из компрессора, сгорания камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель обладает большей эффективностью при скорости полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены винтами, которые имеют меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособить более высокие скорости полета, лопасти имеют форму ятагана с опущенными передними кромками на концах лезвия. Двигатели с такими винтами называются пропфанов .

Изображение турбовинтового двигателя

Турбовентиляторы

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха проходит вокруг двигателя, что делает его тише и дает больше тяги на низких скоростях. Большинство современных авиалайнеров имеют питание турбовентиляторы. В турбореактивном двигателе весь воздух, поступающий на впуск, проходит через газогенератор, который состоит из компрессора, камеры сгорания и турбины. В турбовентиляторном двигателе только часть поступающего воздуха поступает в камера сгорания. Остальная часть проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно как «холодная» струя или смешивается с выхлопом газогенератора производить "горячую" струю.Целью этого типа обходной системы является увеличение тяга без увеличения расхода топлива. Это достигается путем увеличения общий воздушно-массовый поток и снижение скорости в пределах того же общего источника энергии.

Изображение турбовентиляторный двигатель

Турбовальные валы

Это еще одна форма газотурбинного двигателя, которая работает во многом как турбовинтовой двигатель система.Это не водить винт. Вместо этого он обеспечивает мощность для вертолета ротор. Турбовальный двигатель сконструирован таким образом, чтобы скорость вращения вертолета ротор не зависит от скорости вращения газогенератора. Это разрешает частота вращения ротора должна быть постоянной, даже если скорость генератора варьируется, чтобы модулировать количество производимой энергии.

Изображение турбовального двигателя

Ramjets

ПВРД является Самый простой реактивный двигатель и не имеет движущихся частей.Скорость струи "баранов" или нагнетает воздух в двигатель. По сути это турбореактивный двигатель, в котором вращается машины были опущены. Его применение ограничено тем, что его Степень сжатия полностью зависит от скорости движения. ПВРД не развивает статичность тяга и очень малая тяга вообще ниже скорости звука. Как следствие, Для ПВРД необходим некоторый вспомогательный взлет, такой как другой самолет. Он использовался в основном в ракетных системах.Космические аппараты используют это тип струи.

Изображение Ramjet Engine

Вернуться к началу

Что такое аэронавтика? | Динамика полета | самолеты | Двигатели | история полета | Что такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Планы Индекс сайта | Дом

,

Что такое поисковые системы и как они работают?

Что такое поисковая система?

Поисковая система - это онлайн-инструмент, который ищет результаты в своей базе данных на основе поискового запроса (ключевого слова), предоставленного интернет-пользователем. Результатами обычно являются веб-сайты, которые семантически соответствуют поисковому запросу.

Поисковые системы

находят результаты в своей базе данных, сортируют их и составляют упорядоченный список этих результатов на основе алгоритма поиска. Этот список обычно называют страницей результатов поисковой системы (SERP).

На рынке существует множество поисковых систем, в то время как наиболее широко используемым является Google. Многие браузеры веб-сайтов, такие как Chrome, Firefox, Safari или Edge, обычно поставляются с поисковой системой по умолчанию, установленной в качестве домашней или стартовой страницы.

collage of most popular search engines

Как работают поисковые системы

Там могут быть некоторые различия в том, как работают поисковые системы, но основные принципы остаются прежними. Каждый из них должен выполнить следующие задачи:

  1. ползать
  2. Индексирование
  3. Создание результатов

1.Ползать

Поисковые системы

имеют своих собственных роботов-роботов, которые сканируют веб-сайты во всемирной сети. Эти маленькие боты сканируют все разделы, папки, подстраницы, контент, все, что они могут найти на сайте.

Сканирование

основано на поиске гипертекстовых ссылок, которые ссылаются на другие сайты. Анализируя эти ссылки, боты могут рекурсивно находить новые источники для сканирования.

2. Индексирование

После того, как боты сканируют данные, наступает время для индексации.Индекс в основном это онлайн-библиотека сайтов.

Ваш сайт должен быть проиндексирован, чтобы отображаться на странице результатов поисковой системы. Имейте в виду, что индексирование - это постоянный процесс. Сканеры возвращаются на каждый сайт, чтобы обнаружить новые данные.

Быстрый совет:
Быстро проверьте все проиндексированные страницы вашего сайта с помощью этого оператора: “site: domain.com”

3. Создание результатов

Поисковые системы создают результаты, как только пользователь отправляет поисковый запрос.Это процесс проверки запроса по всем записям веб-сайта в индексе. На основе алгоритма поисковая система выбирает лучшие результаты и создает упорядоченный список.

seo academy for beginners part 2 search engines crawling indexing picking results

Что такое алгоритм поисковой системы?

Алгоритм поисковой системы - это уникальная формула, которая определяет порядок сортировки веб-сайтов на странице результатов поисковой системы. Это торговая марка каждой поисковой системы, поэтому она держится в секрете.

Алгоритм представляет собой смесь различных факторов ранжирования.Вы найдете много статей, касающихся «реальных» факторов рейтинга Google. Правда в том, что даже когда вы знаете, каковы факторы, вы не знаете их точный вес.

Самый важный фактор ранжирования всех поисковых систем должен быть релевантности . Основная цель поисковых систем - найти то, что ищет интернет-пользователь.

Когда речь заходит о Google, основными факторами рейтинга являются:

  • Веб-сайт / контент актуальность
  • Сила и актуальность обратных ссылок

Некоторые из других очень важных факторов ранжирования:

  • Мобильная оптимизация
  • Структура контента и оптимизация
  • Юзабилити
  • Доступность
  • Скорость страницы
  • Социальные сигналы
  • Общий авторитет домена

Самые популярные поисковые системы

По популярности во всем мире, Google был № 1 в течение многих лет.Это список топ-10 самых популярных поисковых систем:

1. Google

Google является гигантом в отрасли и, возможно, имеет самый сложный алгоритм. Он включает в себя машинное обучение, AI и RankBrain, еще один алгоритм, который может настраивать вес факторов ранжирования в соответствии с поведением пользователя и качеством предыдущих результатов. Более 70% интернет-пользователей во всем мире осуществляют поиск в Google с 1998 года.

2. Baidu

Baidu - первая поисковая система, запущенная в Китае в 2000 году.Это как китайский гугл. Baidu сотрудничает с такими компаниями, как Microsoft, Qualcomm, Intel или Daimler в различных проектах AI. Как и Google, они предлагают множество других решений, таких как облачные сервисы, карты, социальные сети, поиск изображений и видео и многие другие.

3. Bing

Microsoft запустила свою поисковую систему в 2009 году как новый проект после более ранних поисковых систем MSN Search и Windows Live Search. Основной целью было разработать конкурента для Google. С глобальной точки зрения, это на самом деле не там, а в США, Bing является вторым по популярности инструментом для поиска в Интернете.

4. Yahoo!

Первоначально это был один из наиболее широко используемых провайдеров электронной почты и поисковых систем. Компания значительно выросла в 1990-х годах, но после 2000 года им почему-то не хватало инноваций, и они потеряли свою ценность. В 2017 году Yahoo! был приобретен Verizon Communications.

5. Яндекс

Яндекс Поиск - крупнейшая российская поисковая система. Согласно Википедии, Яндекс генерирует более 50% всех поисков в России. Хотя алгоритм не так сложен, как Google, он постоянно совершенствуется за счет интеграции ИИ и машинного обучения, которые анализируют результаты поиска и учатся на них.

6. Спросите

Ask (ранее Ask Jeeves) был запущен в 1996 году. Он был разработан для ответов на вопросы, представленные в форме поиска. Благодаря панели инструментов Ask эта поисковая система смогла конкурировать с такими крупными игроками, как Bing, Yahoo! и гугл. К сожалению, панель инструментов была много раз установлена ​​как нежелательная функция браузера.

7. DuckDuckGo

DuckDuckGo - немного другая поисковая система. Они защищают конфиденциальность пользователей, не отслеживая какую-либо информацию.DuckDuckGo не показывает персонализированные результаты, основанные на ваших предыдущих поисках. Кроме того, рекламодатели не могут следить за поведением пользователей. С другой стороны, вы можете запускать рекламу через Bing, поскольку DuckDuckGo является их поисковым партнером вместе с Yahoo.

8. Навер

Naver - это Google Южной Кореи. Эта поисковая система охватывает около 75% поисковых запросов в стране. Он был запущен в 1999 году, а в 2000 году ему удалось получить различные типы результатов, которые соответствуют введенным ключевым словам.Результаты включали веб-сайты, изображения, блоги, рестораны, магазины и т. Д. Google запустил эту функцию 5 лет спустя.

9. AOL

В 1990-х годах AOL была одной из крупнейших поисковых систем на основе гусеничных машин. Как компания, AOL предлагает множество других услуг: почтовый сервис, мессенджер, видеоконтент, желтые страницы, путеводители по городу. Поиск AOL в настоящее время используется не более чем 0,5% интернет-пользователей.

10. Dogpile

Dogpile - это механизм метапоиска, поэтому он создает страницу результатов поиска, выполняя одновременные поисковые запросы по тому же запросу в других поисковых системах, а именно: Google, Yahoo !, Yandex и другие.Dogpile был запущен в 1995 году.

desktop and mobile search engine market share 2017 - 2018 ,

Как работают игровые движки?

Компании постоянно хвастаются своим новейшим игровым движком. Напрашивается вопрос: что именно является игровым движком?

Игровой движок закладывает программную основу для создания и создания видеоигр. Они предоставляют функции от анимации до искусственного интеллекта. Игровые движки отвечают за визуализацию графики, обнаружение столкновений, управление памятью и многие другие параметры.

Игровые движки предоставляют разработчикам инструменты для создания многочисленных игровых приложений.Дизайнеры часто используют эти движки для создания других игр, что делает их ценными инвестициями.

Игровой движок состоит из пяти компонентов: основная игровая программа, которая содержит игровую логику; механизм рендеринга, который можно использовать для создания трехмерной анимированной графики; звуковой движок, который состоит из алгоритмов, связанных со звуками; физический движок для реализации «физических» законов в системе; и Искусственный интеллект, модуль, предназначенный для использования программистами со специальным назначением.

Современные инструменты и программы сделали создание игр проще, чем когда-либо.

С многочисленными игровыми движками может быть сложно выбрать правильный для вашего проекта.

Ниже представлен список игровых движков, доступных в настоящее время для всех, кто интересуется разработкой игр.

Unity

Пользователи считают Unity одним из самых простых игровых движков благодаря простому интерфейсу. Одной из основных функций, которые он содержит, является то, что он позволяет разрабатывать игры для нескольких платформ.Используя движок Unity, можно создавать игры для Android, iOS и других операционных систем телефона, включая ОС ПК.

Помимо кроссплатформенных возможностей, платформа имеет активное сообщество разработчиков плагинов, которые предлагают множество бесплатного и недорогого контента для использования в игровом движке. Некоторые примеры игр, созданных на движке, включают Temple Run, Rust и Deus Ex: The Fall. Примечательно, что их личный пакет совершенно бесплатный и включает в себя множество инструментов для начинающих и любителей.Вы можете взглянуть на различные планы Unity здесь.

Unreal Game Engine

Unreal Engine - один из лучших игровых движков для рендеринга детальной графики. Некоторые известные игры, созданные с помощью Unreal Engine, включают Borderlands 2, Dishonored, Mass Effect 3 и Street Fighter V. Сторонники Unreal Game Engine говорят, что он может создавать одни из лучших пейзажей в играх.

Модель ценообразования этого движка включает в себя бесплатную версию с полным доступом. Тем не менее, Unreal Engine берет 5% роялти за любые игры, сделанные из него.

Вы можете подписаться на Unreal Engine здесь.

GameMaker: Studio

Хотя некоторые утверждают, что GameMaker не является реальным игровым движком, он все еще широко используется и используется многими разработчиками игр. Вместо обычного программирования пользователи могут буквально «перетаскивать» элементы, чтобы создавать игры намного быстрее и с большей легкостью.

СМОТРИ ТАКЖЕ: ВЫ НЕ МОЖЕТЕ ДАЛЕЕ РАССКАЗАТЬ РАЗНИЦУ РЕАЛЬНОЙ ЖИЗНИ И ВИДЕОИГРЫ

Одна примечательная игра, созданная с помощью GameMaker, - Hotline Miami.Однако из-за природы «перетаскивания» разработчики имеют ограничения в создании расширений и дополнений с помощью альтернативного кода.

Как и другие движки, Studio включает в себя бесплатную версию с ограниченным доступом. Вы можете зарегистрироваться в студии GameMaker здесь.

Автор Maverick Бейкер

.

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.