Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Из чего состоит электрический двигатель


Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Содержание статьи

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

 

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

 

Понравилась статья? Поделиться с друзьями:

Электродвигатель | Британика

Самый простой тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы утюга статора. Эти обмотки могут быть подключены либо в конфигурации «вай», обычно без внешнего подключения к нейтральной точке, либо в конфигурации «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах вокруг поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора проводящим торцевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя. Encyclopædia Britannica, Inc.

Основу работы асинхронного двигателя можно разработать, предположив сначала, что обмотки статора подключены к трехфазному источнику электропитания и что набор из трех синусоидальных токов формы, показанной на рисунке, течет в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений в цикле.Для простоты показана только центральная петля проводника для каждой фазовой обмотки. В момент времени t 1 на рисунке ток в фазе a является максимально положительным, в то время как в фазах b и c половина этого значения отрицательна. В результате создается магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным наружным значением вверху и максимальным внутренним значением внизу. В момент времени т 2 на рисунке (т.е.то есть, одна шестая часть цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и в фазе a является половинным положительным значением. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Изучение распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, заключается в создании вращающегося магнитного поля с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом, пропорциональном величине и скорости поля относительно проводников.Поскольку проводники ротора закорачиваются вместе на каждом конце, эффект будет вызывать токи в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. Структура токов ротора для момента т 1 на рисунке показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки (т.е.крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент действует для ускорения ротора и вращения механической нагрузки. Когда скорость вращения ротора увеличивается, его скорость относительно скорости вращения поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому на этой скорости нагрузкой, при этом избыточный крутящий момент не доступен для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, возникающие в короткозамкнутых проводниках ротора. Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться электрической входной мощностью. Исходные токи статора, показанные на рисунке, достаточны для создания вращающегося магнитного поля. Для поддержания этого вращающегося поля в присутствии токов ротора на фигуре необходимо, чтобы обмотки статора передавали дополнительный компонент синусоидального тока такой величины и фазы, чтобы исключить влияние магнитного поля, которое могло бы возникнуть в противном случае. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей для создания магнитного поля и другой синусоиды, ведущую первую на четверть цикла или на 90 °, чтобы обеспечить требуемую электрическую мощность. Второй или силовой компонент тока находится в фазе с напряжением, приложенным к статору, в то время как первый или намагничивающий компонент отстает от приложенного напряжения на четверть цикла, или на 90 °. При номинальной нагрузке этот намагничивающий компонент обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными напрямую к трехфазному источнику постоянного напряжения и частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между линиями для двигателей относительно малой мощности (например, от 0,5 до 50 кВт) до около 15 кВ от линии к линии для мощных двигателей до примерно 10 мегаватт.

За исключением небольшого падения напряжения в сопротивлении обмотки статора, напряжение питания соответствует скорости изменения магнитного потока в статоре машины.Таким образом, в источнике постоянного напряжения с постоянной частотой величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент приблизительно пропорционален составляющей мощности тока питания.

При использовании асинхронного двигателя, показанного на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника питания 60 Гц полевая скорость составляет 60 оборотов в секунду, или 3600 в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость, как правило, на 0,5–5 процентов ниже скорости поля (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости можно получить с помощью источника постоянной частоты, построив машину с большим числом пар магнитных полюсов, в отличие от двухполюсной конструкции на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f - частота в герцах (циклов в секунду), а p - количество полюсов (которое должно быть четное число).Данная железная рама может быть намотана для любого из нескольких возможных чисел пар полюсов с помощью катушек, которые охватывают угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимому току катушки. Таким образом, номинальная мощность для рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна числу пар полюсов. Наиболее распространенные синхронные скорости для 60-герцовых двигателей составляют 1800 и 1200 оборотов в минуту.

,

Как работает электродвигатель?

Все признают, что если вы можете сделать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. - Джеймс Дайсон

Введение

«За последние несколько лет электродвигатель стал немного более известным и ценным благодаря своей улучшенной интеграции с нашими автомобилями. Поскольку большинство людей понимают и ценят влияние, которое их загрязнение оказывает на климат, возрос спрос на автомобили. производители создают автомобили, которые могут помочь улучшить окружающую среду или, по крайней мере, нанести меньше вреда."

«Именно благодаря этому спросу на рост и развитие некоторые из величайших изобретателей в мире усовершенствовали электродвигатель, чтобы теперь работать лучше и быть более эффективными, чем когда-либо прежде».

Части электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей - статора и ротора. Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый из них играет в электродвигателе.



статор ротор

Статор

Статор состоит из трех частей - сердечника статора, проводника и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены вместе. Эти кольца имеют прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод для формирования катушек статора.

Проще говоря, в трехфазном асинхронном двигателе есть три различных типа проводов.Эти типы проводов можно назвать «Фаза 1», «Фаза 2» и «Фаза 3». Каждый тип провода оборачивается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

Как только проводник находится на месте в сердечнике статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей - сердечника ротора, токопроводящих стержней и двух концевых колец. Ламинации из высококачественной легированной стали образуют цилиндрическую сердцевину ротора, имеющую нечто, похожее на стержень, проходящий через центр.С внешней стороны сердечника ротора имеются прорези, которые либо проходят параллельно стержнеобразной планке в центре сердечника ротора, либо слегка скручены для образования диагональных прорезей. Если сердечник статора имеет диагональные пазы снаружи сердечника, его называют короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует короткозамкнутые роторы. Вдоль диагональных линий в сердечнике размещены токопроводящие стержни для намотки ротора. Концевые кольца затем помещают с обеих сторон сердечника для короткого замыкания всех токопроводящих стержней, которые были размещены в диагональных линиях сердечника ротора.

После того, как ротор и статор собраны, ротор скользит в статор, и два концевых колокола расположены с каждой стороны. Эти концевые колокола изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(по словам непрофессионала)

Если вы инженер-электрик, вы знаете, как работает электродвигатель. Если это не так, это может быть крайне запутанным, поэтому вот упрощенное объяснение (или вариант «как работает электродвигатель для манекенов») того, как четырехполюсный трехфазный асинхронный двигатель переменного тока работает в автомобиле.

Это начинается с аккумулятора в автомобиле, который подключен к двигателю. Электрическая энергия подается на статор через автомобильный аккумулятор. Катушки внутри статора (изготовленные из проводящего провода) расположены на противоположных сторонах сердечника статора и действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут проводящие стержни на внешней стороне ротора вдоль него. Вращающийся ротор - это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Теперь, в типичной машине, которая не электрическая, есть и двигатель, и генератор. Батарея питает двигатель, который питает шестерни и колеса. Вращение колес - это то, что приводит в действие генератор в автомобиле, и генератор заряжает аккумулятор. Вот почему после прыжка вам советуют водить машину в течение некоторого времени - для правильной работы необходимо перезарядить аккумулятор.

В электромобиле нет генератора.Итак, как заряжается батарея? В то время как нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и генератор переменного тока. Это одна из причин, почему электромобили настолько уникальны. Как указано выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на ускорителе - ротор притягивается вращающимся магнитным полем, что требует большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от ускорителя, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от притяжения магнитного поля).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие подзаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс - представьте, что вы ездите на велосипеде вверх по склону. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее, и, возможно, даже придется встать и тратить больше энергии на вращение шин и достижение вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее ротор за ним, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, пока колеса движутся еще быстрее, чтобы спуститься с холма. В автомобиле это происходит, когда вы отпускаете газ, а ротор движется быстрее и подает электрическую энергию обратно в линию электропитания, чтобы зарядить аккумулятор.


Что такое переменный ток (AC)
и постоянный ток (DC)?

Концептуальные различия между этими двумя типами токов кажутся довольно очевидными.В то время как один ток является постоянным, другой является более прерывистым. Однако все немного сложнее, чем простое объяснение, поэтому давайте разберем эти два термина более подробно.

постоянного тока (постоянного тока)

Термин постоянный ток относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока поддерживает постоянную полярность, то есть неизменную.

Подумайте о том, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянные токи для подачи одинакового напряжения на постоянной основе. В дополнение к батареям топливные элементы и солнечные элементы также производят постоянные токи, в то время как простые действия, такие как трение определенных материалов вместе, могут также создавать постоянный ток.

В соответствии с нашей концепцией батареи, при рассмотрении положительной и отрицательной сторон батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной сторонами. Это гарантирует, что обе стороны батареи всегда положительны и отрицательны.



переменный ток (переменный ток)

Термин «переменный ток» определяет тип электричества, характеризуемый напряжением (думаю, давление воды в шланге) и током (скорость мысли потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют схеме синусоидальной волны (на рисунке выше синусоида показана на правом графике напряжения). Из-за того, что форма волны является синусоидальной, напряжение и ток чередуются между положительной и отрицательной полярностью при просмотре во времени.Синусоидальная форма сигналов переменного тока обусловлена ​​тем, как генерируется электричество.

Другой термин, который вы можете услышать при обсуждении переменного тока, это частота. Частота сигнала - это количество завершенных волновых циклов, выполненных за одну секунду. Частота измеряется в герцах (Гц), а в США стандартная частота линии электропередачи составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных циклов обратного хода каждую секунду.

Так почему это важно?

Электроэнергия переменного тока - лучший способ передачи полезной энергии от источника генерации (т.е.плотина или ветряная мельница) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повысить или понизить напряжение до различных значений. Вот почему розетки вашего дома говорят, что 120 В переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, который подает питание в район (те серые цилиндрические прямоугольники, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66 000 В переменного тока).

Мощность

переменного тока позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным энергетическим током для приложений питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Большинство крупных промышленных двигателей - это асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала, это означает, что двигатель запускается, потому что электричество индуцируется в ротор магнитными токами, а не напрямую подключается к электричеству, как другие двигатели, такие как коммутаторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор с несколькими уникальными обмотками на полюс двигателя, вы имеете дело с многофазной. Чаще всего предполагается, что многофазный двигатель будет состоять из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы преднамеренно выйти за пределы линии.

Что означает три фазы?

Основываясь на основных принципах Никола Теслы, определенных в его многофазном асинхронном двигателе, который был предложен в 1883 году, термин «трехфазный» относится к токам электрической энергии, которые подаются на статор через аккумулятор автомобиля.Эта энергия заставляет катушки проводящего провода начать вести себя как электромагниты.

Простой способ понять три фазы - это рассмотреть три цилиндра в форме Y, используя энергию, направленную к центральной точке, для выработки энергии. Когда энергия создается, ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюс внутри катушек, позволяя им действовать как противоположные стороны магнита.


лучших электромобилей

По мере того, как эта технология продолжает развиваться, рабочие характеристики электромобилей начинают быстро догонять и даже превосходить свои газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенную дистанцию, скачки, которые такие компании, как Tesla и Toyota, сделали к этому моменту, вселяют надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем, какой успех испытывает Тесла в полевых условиях, выпуская седан Tesla Model S, способный проехать до 288 миль, достигая 155 миль в час и имея крутящий момент 687 фунт-фут. Тем не менее, существуют десятки других компаний, которые видят огромный прогресс в этой области, таких как Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем реальный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США - Элон Маск

Электрические двигатели прямо и косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вы хотите.С индивидуальной точки зрения, для электромобилей не требуется бензин, что приводит к появлению автомобилей без выбросов, населяющих наши дороги и города. Хотя это создает новую проблему, связанную с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густонаселенных в городах и пригородах, которые выводят токсины в воздух.


Примечание. Значения MPG (миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива для города / шоссе для бензинового транспортного средства, который будет иметь глобальное потепление, эквивалентное вождению EV.Региональные рейтинги выбросов глобального потепления основаны на данных электростанций 2012 года в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электричества. Среднее значение 58 миль на галлон в США - это средневзвешенное значение продаж, основанное на том, где EV было продано в 2014 году.

В широком масштабе, есть несколько преимуществ для роста электромобилей. Начнем с того, что шумовое загрязнение снижается, поскольку шум, издаваемый электрическим двигателем, гораздо слабее, чем у газового двигателя.Кроме того, из-за того, что электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовый двигатель, химические вещества и масла, используемые в автомагазинах, будут сокращены из-за меньшего количества автомобилей, нуждающихся в проверках.


Заключение

Электрический двигатель меняет ход истории так же, как паровой двигатель и печатный станок переопределяют прогресс. Хотя электрический двигатель не прокладывает новые пути в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, который ориентирован не только на стиль и производительность, но и на внешние воздействия.Таким образом, хотя электрический двигатель не может реформировать мир из-за введения какого-то совершенно нового изобретения или создания нового рынка, он пересматривает то, как мы, общество, определяем прогресс.

Если от достижений с использованием электрического двигателя ничего не выйдет, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед, осознавая наше воздействие на окружающую среду. Это новое определение прогресса, определяемое электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает работа асинхронного двигателя? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Рабочий принцип трехфазного асинхронного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- электрический привод-тест-поездка-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.HTML
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165

.

Практические советы о том, как не перегореть электродвигатель

Подогрев двигателя

Существует много причин, по которым электродвигатель может начать нагреваться. Например, когда используется другой режим запуска, отличный от указанного на заводской табличке двигателя, это может привести к перегреву двигателя и последующему повреждению двигателя.

Практические советы о том, как не перегореть электродвигатель

Из-за высоких пусковых токов в асинхронных электродвигателях время, необходимое для ускорения высокоинерционных нагрузок, приведет к внезапному повышению температуры двигателя.Если интервал между последовательными запусками очень короткий, обмотки двигателя могут перегреться, что приведет к некоторому повреждению или сокращению срока их службы.

На температуру обмотки двигателя влияет тепло, поступающее от различных источников. Эти источники могут быть внутренними по отношению к двигателю в результате его работы, или они могут быть внешними по отношению к двигателю в результате его окружающей среды. На температуру также влияет способность двигателя рассеивать это тепло.

Давайте обсудим наиболее важные темы, связанные с нагревом асинхронного двигателя:

    1. Нагрев обмотки
      1. Потери
      2. Тепловыделение
      3. Температура наружной поверхности двигателя
    2. Срок службы мотора
    3. Классы изоляции
    4. Измерение повышения температуры обмотки
    5. Применение электродвигателя, приводящее к перегреву
      1. General
      2. Вариации нагрузки двигателя
      3. Повторяющиеся запуска и остановки
      4. Инерция нагрузки
      5. Колебания напряжения и частоты
      6. Работа с преобразователями частоты
      7. Недостаточная высота
      8. Плохая вентиляция

1.Нагрев обмотки

1,1 потери

Эффективная или полезная выходная мощность, подаваемая двигателем на конце вала, ниже, чем мощность, потребляемая двигателем от источника питания, т.е. эффективность двигателя всегда ниже 100%.

Разница между входом и выходом представляет потерь, которые преобразуются в тепло . Это тепло нагревает обмотки и поэтому должно быть снято с двигателя, чтобы избежать чрезмерного повышения температуры.

Этот отвод тепла должен быть обеспечен для всех типов двигателей.

В автомобильном двигателе, например, в случае двигателей с воздушным охлаждением тепло, выделяемое внутренними потерями, должно быть удалено из блока двигателя потоком воды через радиатор или вентилятор.

Вернуться к содержанию ↑


1,2 Тепловыделение

Тепло, создаваемое внутренними потерями, рассеивается в окружающем воздухе через внешнюю поверхность рамы. В полностью закрытых двигателях этому рассеиванию обычно способствует вентилятор, установленный на валу.

Хорошее тепловыделение зависит от:

  1. КПД вентиляционной системы
  2. Общая площадь рассеяния тепла рамы
  3. Разница температур между внешней поверхностью рамы и окружающим воздухом (т экст. - т а )

Рекомендации

Действие № 1 - Хорошо спроектированная система вентиляции, а также эффективный вентилятор, способный пропускать большой объем воздуха, должны направлять этот воздух по всей окружности рамы для достижения необходимого теплообмена.

Большой объем воздуха абсолютно бесполезен, если ему позволено распространяться, не отводя тепло от двигателя .

Действие № 2 - Площадь рассеяния должна быть максимально большой. Однако двигатель с очень большой рамой требует очень большой площади охлаждения и, следовательно, станет слишком дорогим, слишком тяжелым и требует слишком много места для установки.

Чтобы получить максимально возможную площадь, при этом сохраняя размеры и вес минимальными (экономическое требование), охлаждающих вентиляторов установлены вокруг рамы .

Действие № 3 - Эффективная система охлаждения - это система, которая способна рассеивать максимально возможное количество тепла через наименьшую площадь рассеяния.

Следовательно, необходимо, чтобы внутреннее падение температуры, показанное на рисунке 7.1, было минимизировано. Это означает, что хороший теплообмен должен происходить изнутри на внешнюю поверхность двигателя.

Как объяснено, цель состоит в том, чтобы уменьшить внутреннее падение температуры (т.е.улучшить теплопередачу), чтобы получить максимально возможное падение температуры наружного воздуха, необходимое для хорошего отвода тепла.

Внутреннее падение температуры зависит от различных факторов, которые указаны на рисунке 1, где температуры определенных важных областей показаны и объяснены следующим образом:

Рисунок 1. Внутреннее падение температуры зависит от различных факторов

Где:

A - Самая горячая точка намотки находится в центре пазов, где выделяется тепло в результате потерь в проводниках.

AB - Падение температуры происходит из-за теплопередачи от самой горячей точки к внешним проводам . Поскольку воздух является очень плохим проводником тепла, очень важно предотвращать пустоты внутри пазов, то есть обмотки должны быть компактными и идеально пропитанными лаком.

B - Падение температуры через изоляцию прорези, контакт изоляционного материала с проводниками и контакт с сердечниками.

Благодаря использованию современных материалов теплоизоляция значительно улучшает теплопередачу.Идеальная пропитка улучшает контакт с внутренней стороной, устраняя пустоты. Идеальное выравнивание слоистых материалов улучшает контакт с внешней стороной, устраняя слои воздуха, которые негативно влияют на теплообмен.

г. до н.э. - Падение температуры при прохождении через статор материала расслоения.

C - Понижение температуры при контакте между сердечником статора и рамой. Теплопередача зависит от идеального контакта между деталями, хорошего выравнивания расслоений и точности обработки рамы.

Неровные поверхности оставляют пустые места, что приводит к плохому контакту и, следовательно, к плохой теплопередаче .

CD - Понижение температуры при передаче по толщине рамы.

Благодаря современному дизайну, использованию первоклассного материала, улучшенным производственным процессам и постоянному контролю качества, электродвигатели ДОЛЖНЫ обеспечивать отличные теплообменные свойства от двигателя внутрь к наружу, таким образом устраняя «горячие точки» в обмотках .

Вернуться к содержанию ↑


1,3 Температура наружной поверхности двигателя

На рисунке ниже показаны рекомендуемые места, где температуру внешней поверхности электродвигателя следует проверять с помощью калиброванных приборов для измерения температуры:

Рисунок 2 - Рекомендуемые места, где следует проверять температуру внешней поверхности электродвигателя

Важно! Измерьте также температуру окружающей среды (при макс.расстояние 1 м ( от мотора).

Вернуться к содержанию ↑


2. Срок службы мотора

Как вы уже знаете, полезный срок службы двигателя зависит почти исключительно от срока службы изоляции обмотки .

Срок службы двигателя зависит от многих факторов, таких как влажность, вибрация, агрессивные среды и другие. Среди всех этих факторов наиболее важным является рабочая температура используемых изоляционных материалов.

Вы должны знать, что при увеличении на 8-10 градусов выше номинального температурного класса системы изоляции может сократить срок службы двигателя вдвое.

Говоря об уменьшении полезного срока службы двигателя, мы не говорим о высоких температурах, когда система изоляции горит, а обмотка внезапно разрушается. Для срока службы изоляции это означает постепенное старение изоляционного материала, который становится сухим, теряя свои изоляционные свойства до тех пор, пока не сможет выдержать приложенное напряжение.

Это приводит к выходу из строя системы изоляции и последующему короткому замыканию обмоток.

Опыт показывает, что изоляционная система имеет практически неограниченный срок службы, если температура поддерживается ниже определенного предела, если этот предел температуры превышен, срок службы изоляции будет сокращаться при повышении температуры.

Этот температурный предел значительно ниже температуры «горения» системы изоляции и зависит от типа используемого изоляционного материала.

Этот предел температуры относится к самой горячей точке в системе изоляции, но не обязательно ко всей обмотке. Одного слабого места во внутренней части обмоток будет достаточно для разрушения системы изоляции.

Рекомендуется использовать датчики температуры в качестве дополнительных защитных устройств для электродвигателя. Эти защитные устройства обеспечат более длительный срок службы и большую надежность процесса.

Настройка сигнализации и / или отключения должна выполняться в соответствии с температурным классом двигателя.

Вернуться к содержанию ↑


3. Классы изоляции

Определение класса изоляции

Как уже упоминалось ранее, предел температуры зависит от типа используемого материала. Чтобы соответствовать стандартам, изоляционный материал и системы изоляции (каждая из которых образована комбинацией нескольких материалов) сгруппированы в ИЗОЛЯЦИОННЫЕ КЛАССЫ .

Каждый из них определяется конкретным пределом температуры , т.е.е. самой высокой температурой, которую изоляционный материал или система могут выдерживать непрерывно, не влияя на срок его службы.

Классы изоляции, используемые для электрических машин, и соответствующие им пределы температуры соответствуют МЭК 60034-1 :

  • Класс A (105 ºC)
  • Класс E (120 ºC)
  • Класс B (130 ºC)
  • Класс F (155 ºC)
  • Класс H (180 ºC)

Вернуться к содержанию ↑


4.Измерение повышения температуры обмотки

Было бы довольно трудно измерить температуру обмотки с помощью термометров или термопар, так как температура отличается от одного места к другому, и невозможно определить, находится ли точка измерения рядом с самым горячим местом.

Наиболее точный и надежный метод определения температуры обмотки - это путем измерения и изменения сопротивления обмотки как функции температуры .

Измерение повышения температуры методом сопротивления для медных проводников рассчитывается по следующей формуле:

где:

  • Δt - повышение температуры;
  • т 1 - температура обмотки перед испытанием, которая должна быть практически равна охлаждающей среде, измеренная термометром;
  • т 2 - температура обмотки по окончании испытания;
  • т, , а , - температура охлаждающей среды при завершении испытаний;
  • R 1 - сопротивление обмотки до испытания;
  • R 2 - сопротивление обмотки в конце испытания.

Вернуться к содержанию ↑


5. Применение электродвигателя

5.1 Общая информация

Температура самой горячей точки в обмотке должна поддерживаться ниже максимально допустимой температуры для класса изоляции. Общая температура представляет собой сумму температуры окружающей среды, плюс повышение температуры (∆t) плюс разница, существующая между средней температурой обмотки и самой горячей точкой.

Стандарты двигателей

определяют максимальное повышение температуры ∆t , поэтому температура самой горячей точки остается в допустимых пределах, исходя из следующих соображений:

  1. Температура окружающей среды не должна превышать 40 ºC , в соответствии со стандартом.Выше этого значения условия труда рассматриваются как особые условия эксплуатации.
  2. Разница между средней температурой обмотки и самой горячей точкой не сильно отличается от двигателя к двигателю, и ее значение, указанное в стандарте, составляет 5 ºC для классов A и E, 10 ºC для классов B и F и 15 ºC для класса H .

Поэтому в стандартах на двигатели указана максимально допустимая температура окружающей среды , равная , а также максимально допустимое повышение температуры для каждого класса изоляции.Таким образом, температура самой горячей точки косвенно ограничена.

Цифры и допустимый температурный состав для самой горячей точки показаны в таблице 1 ниже:

Таблица 1 - Температурный состав как функция класса изоляции

Класс изоляции A E B F H
Температура окружающей среды ° C 40 40 40 40 40
∆t = повышение температуры
(метод сопротивления)
° C 60 75 80 105 125
Разница между самой горячей точкой и средней температурой. ° C 5 5 10 10 15
Итого: температура самой горячей точки ° C 105 120 130 155 180

Вернуться к оглавлению ↑


5,2 вариации нагрузки двигателя

Двигатель, работающий с номинальной нагрузкой или выше, будет генерировать больше тепла и будет иметь более высокий рост температуры, чем двигатель, работающий на меньшей мощности, чем указанная в паспортной мощности.

См. Таблицу 2 с типичными рабочими данными для приложения, требующего непрерывной работы 1150 л.с., при установке двигателя с рабочим коэффициентом 1,15 и мощностью 10005 л.с. первоначально может стоить на 11% меньше, чем при установке машины с коэффициентом обслуживания 1,050 при 1250 л.с.

Таблица 2 - Повышение температуры и КПД 1250 л.с. против вариаций двигателя 1000 л.с.

Номинальная
HP
% от
Номинальная
Нагрузка
Фактический
HP
Темп.
Повышение **
(° C)
Мотор
КПД
Относительно
Изоляция
Жизнь
Относительно
Стоимость
1000 115 1150 90,0 94,2 1,0 1,00
1000 100 1000 71.0 94,6 3,8
1000 75 750 47,8 94,9 19,5
1000 50 500 32,7 94,4 > 20
1250 100 1250 80,0 94,8 2,0 ​​ 1,11
1250 92 1150 70.3 95,0 3,9
1250 80 1000 56,6 95,2 10,7
1250 60 750 42,0 94,8 > 20
1250 50 625 36,6 94,7 > 20

** Повышение температуры на сопротивление

Тем не менее, больший двигатель будет иметь 3.В 9 раз больше ожидаемого срока службы изоляции и на 0,8% (95,0 - 94,2) большей эффективности , что, вероятно, приведет к снижению стоимости жизненного цикла.

Обратите внимание, что для непрерывной работы при 1000 л.с. двигатель большего размера будет иметь примерно в 2,8 раза больше ожидаемого срока службы (10,7, деленного на 3,8) и КПД на 0,6% (на 95,2 меньше, чем на 94,6).

Для большинства конструкций асинхронных двигателей характерно, что КПД нагрузки выше, чем КПД при полной нагрузке. И наоборот, эффективность на 1.15 Сервисный коэффициент обычно ниже, чем при номинальной нагрузке.

Вернуться к содержанию ↑


5.3 Повторяющиеся пуски и остановки

Когда двигатель запускается под нагрузкой , он обычно потребляет ток, в шесть-семь раз превышающий нормальный, при ускорении нагрузки . Это приводит к высоким краткосрочным потерям меди и накоплению тепла.

Если затем двигатель останавливается и затем перезапускается до того, как он успел остыть, ситуация усугубляется.

Повторяющиеся пуски и остановки в течение короткого промежутка времени всегда будут оказывать вредное влияние на срок службы обмотки двигателя. - особенности будут зависеть от частоты пусков и остановок, характера нагрузки.

Вернуться к содержанию ↑


5,4 Инерция нагрузки

NEMA определяет стандартные значения инерции для каждого номинального двигателя. Запуск нагрузок с большей инерцией вызовет дополнительное накопление тепла во время ускорения, что может повлиять на срок службы изоляции.

Такие применения должны быть проверены у производителя двигателя , чтобы убедиться в правильности конструкции для конкретного применения .

Вернуться к содержанию ↑


5.5 Колебания напряжения и частоты

Колебания напряжения или частоты системы могут вызвать дополнительное нагревание и привести к преждевременному выходу из строя обмотки.

NEMA указывает, что двигатели подходят для следующих вариантов:

  1. ± 10% напряжения при номинальной частоте
  2. Частота
  3. ± 5% при номинальном напряжении
  4. максимум 10% (абсолютные значения) в сочетании с 5% пределом по частоте.

Изменения за этими пределами могут привести к повреждению обмоток двигателя в зависимости от конструкции двигателя .Двигатель с высокой плотностью потока будет более подвержен влиянию условий перенапряжения, поскольку потери в сердечнике возрастут.

Двигатели с более низкой плотностью потока будут в большей степени зависеть от увеличения тока в условиях напряжения.

Чрезмерная частота может привести к перегрузкам двигателей, приводящих в движение центробежные машины; тогда как недостаточная частота может привести к повреждению из-за неэффективного охлаждения двигателей, приводящих в действие постоянные крутящие нагрузки.

Аналогичным образом, дисбаланс более 1% в фазовых напряжениях вызовет токов обратной последовательности, что может привести к перегреву ротора наряду с увеличением температуры обмотки двигателя, уровнями шума и вибрации .

Вернуться к содержанию ↑


5.6 Работа с преобразователями частоты

Работа с приводом с регулируемой скоростью часто приводит к появлению гармоник в двигателе, что может привести к перегреву и локализованным горячим точкам. Гармоники из «грязной» системы питания, даже если сам двигатель не используется с приводом, могут иметь тот же эффект.

По этой причине двигатели , используемые на приводах с регулируемой скоростью, обычно не имеют коэффициента обслуживания больше 1.0

Обычно указываются такие двигатели: «Повышение на 90 ° с помощью RTD при номинальной нагрузке (1,0 SF) на синусоидальной частоте 60 Гц, пригодное для повышения класса F при использовании на преобразователе».

При отсутствии сервисного коэффициента требуется дополнительный коэффициент безопасности 25 °, чтобы компенсировать нагрев от гармоник и снижение вентиляции на более низких скоростях. Следовательно, двигатель, используемый на приводе с номинальной нагрузкой, обычно будет работать горячее, чем его неиспользуемый аналог, , и будет иметь меньший ожидаемый срок службы изоляции .

Моторы

, специально разработанные для использования с приводами, могут быть компенсированы за счет использования воздуходувок, рам большого размера и / или специальных материалов.

Вернуться к содержанию ↑


5,7 Недостаточная высота над уровнем моря

Двигатели, работающие на высоте более 3300 футов, будут подвержены повышенным температурам на градусов выше, чем двигателям на уровне моря , поскольку окружающий воздух менее плотный и, следовательно, будет рассеивать меньше тепла.

Рекомендуется использовать следующие коэффициенты снижения номинальной мощности, указанные на паспортной табличке, при работе двигателя на больших высотах:

  1. 3% между 3300 и 5000 футами
  2. 6% между 5000 и 6600 футами
  3. 10% между 6600 и 8300 футами
  4. 14% между 8300 и 9900 футами

Вернуться к содержанию ↑


5.8 Плохая Вентиляция

Двигатели, которые работают в нечистых или очень ограниченных условиях , которые препятствуют надлежащей вентиляции двигателя , будут подвергаться перегреву и сокращению срока службы.

Вернуться к содержанию ↑

Список литературы //

  1. Спецификация электродвигателей по WEG
  2. Срок службы двигателя: влияние нагрузки, коэффициента обслуживания и повышения температуры на срок службы изоляции. Брюс Кэмпбелл и Хосе Галлено

Смотрите также


avtovalik.ru © 2013-2020