Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Из чего состоит рабочий цикл четырехтактного бензинового двигателя


Рабочие циклы четырехтактных двигателей | Двигатель автомобиля

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

  • на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
  • работа на более дешевом топливе, которое менее пожароопасно

Недостатки дизеля:

  • более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
  • пуск его затруднен, особенно в зимнее время

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Четырехтактный двигатель - Energy Education

Рисунок 1. Четырехтактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [1]

Четырехтактный двигатель является наиболее распространенным типом двигателей внутреннего сгорания и используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы (многие мотоциклы используют двухтактный двигатель). Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня (или четыре хода поршня).Справа (рис. 1) изображен четырехтактный двигатель, а дальнейшее объяснение этого процесса приведено ниже.

  1. Ход впуска: Поршень движется вниз ко дну, это увеличивает объем, позволяя топливно-воздушной смеси проникать в камеру.
  2. Ход сжатия: Впускной клапан закрыт, и поршень движется вверх по камере вверх. Это сжимает топливовоздушную смесь. В конце этого хода свеча зажигания обеспечивает сжатое топливо энергией активации, необходимой для начала сгорания.
  3. Рабочий ход: Когда топливо достигает конца своего сгорания, тепло, выделяемое при сжигании углеводородов, увеличивает давление, которое заставляет газ давить на поршень и создавать выходную мощность.
  4. Ход выпуска: Когда поршень достигает дна, выпускной клапан открывается. Оставшийся выхлопной газ выталкивается поршнем, когда он движется назад вверх.


Тепловая эффективность этих бензиновых двигателей будет варьироваться в зависимости от модели и конструкции автомобиля.Однако в целом бензиновые двигатели преобразуют 20% топлива (химическая энергия) в механическую энергию, при которой только 15% будет использоваться для перемещения колес (остальное теряется на трение и другие механические элементы). [2] Одним из способов повышения термодинамической эффективности двигателей является более высокая степень сжатия. Это соотношение представляет собой разницу между минимальным и максимальным объемом в камере двигателя (обозначено как ВМТ и BDC на рисунке 2). Более высокое отношение позволит более крупной топливно-воздушной смеси поступать, вызывая более высокое давление, приводя к более горячей камере, которая увеличивает тепловой КПД. [2]

Цикл Отто

Рисунок 2. Реальный процесс отто цикла, который происходит в четырехтактном двигателе. [3] Рисунок 3. Идеальный цикл Отто. [4]

Диаграмма объема давления (PV-диаграмма), которая моделирует изменения в топливно-воздушной смеси, испытывающие давление и объем в четырехтактном двигателе, называется циклом Отто. Изменения в них будут создавать тепло и использовать это тепло для перемещения автомобиля или машины (отсюда и причина того, что это тип теплового двигателя).Цикл Отто можно увидеть на рисунке 2 (реальный цикл Отто) и на рисунке 3 (идеальный цикл Отто). Компонент любого двигателя, использующего этот цикл, будет иметь поршень для изменения объема и давления топливовоздушной смеси (как показано на рисунке 1). Поршень получает движение от сгорания топлива (где это происходит, поясняется ниже) и от электрического наддува при запуске двигателя.

Далее описывается, что происходит во время каждого шага на PV-диаграмме, в которой сгорание рабочей жидкости - бензина и воздуха (кислорода), а иногда и электричества, изменяет движение поршня:

Реальный цикл с 0 по 1 (идеальный цикл - зеленая линия): Упоминается как фаза впуска , поршень опускается вниз, чтобы увеличить объем в камере, чтобы он мог «впускать» топливно-воздушная смесь.С точки зрения термодинамики это называется изобарным процессом.


Процесс 1 до 2: На этом этапе поршень будет вытянут, чтобы он мог сжимать топливно-воздушную смесь, поступившую в камеру. Сжатие приводит к небольшому увеличению давления и температуры смеси, однако теплообмен не происходит. С точки зрения термодинамики это называется адиабатическим процессом. Когда цикл достигает точки 2, зажигание зажигания происходит при попадании топлива в свечу зажигания.


Процесс 2–3: Это место, где происходит сгорание из-за воспламенения топлива от свечи зажигания. Сгорание газа завершается в точке 3, в результате чего камера с высоким давлением имеет большое количество тепла (тепловой энергии). С точки зрения термодинамики это называется изохорным процессом.

Процесс с 3 по 4: Тепловая энергия в камере в результате сгорания используется для работы с поршнем, который толкает поршень вниз, увеличивая объем камеры.Это также известно как силовой сток , потому что это когда тепловая энергия превращается в движение для питания машины или транспортного средства.


Фиолетовая линия (процессы 4 к 1 и , выпуск , фаза): В процессе 4 к 1 открывается выпускной клапан, и все отработанное тепло выводится из камеры двигателя. Когда тепло покидает газ, молекулы теряют кинетическую энергию, вызывая снижение давления. [5] Затем фаза выпуска (этапы с 0 по 1) происходит, когда оставшаяся смесь в камере сжимается поршнем для его «истощения» без изменения давления.

для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  2. 2.0 2.1 Р. Вольфсон, Энергетика, окружающая среда и климат. Нью-Йорк: W.W. Нортон и Компания, 2012, с. 106.
  3. ↑ Фактический и идеальный цикл Отто - Ядерная энергетика ", Nuclear Power, 2018. [Online]. Доступно: https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-cycles/otto-cycle-otto -движок / фактические и-идеальный цикл Отто /.[Доступ: 22 июня 2018 года].
  4. ↑ Wikimedia Commons [Online], доступно: https://en.wikipedia.org/wiki/Otto_cycle#/media/File:P-V_Otto_cycle.svg
  5. ↑ I. Dinçer и C. Zamfirescu, Усовершенствованные системы производства электроэнергии. Лондон, Великобритания: Academic Press является отпечатком Elsevier, 2014, с. 266.
,

Принципы и работа четырехтактного бензинового двигателя

Четырехтактный двигатель (также известный как четырехтактный ) представляет собой двигатель внутреннего сгорания, в котором поршень совершает четыре отдельных такта, которые составляют один термодинамический цикл. Ход означает полное перемещение поршня вдоль цилиндра в любом направлении. Четыре отдельных штриха называются:

  1. ЗАПУСК : этот ход поршня начинается в верхней мертвой точке.Поршень опускается от верхней части цилиндра к нижней части цилиндра, увеличивая объем цилиндра. Смесь топлива и воздуха нагнетается атмосферным (или большим) давлением в цилиндр через впускной канал.
  2. КОМПРЕССИЯ : при закрытых впускных и выпускных клапанах поршень возвращается к верхней части цилиндра, сжимая воздух или топливовоздушную смесь в головку цилиндра.
  3. POWER : это начало второго оборота цикла.В то время как поршень находится близко к верхней мертвой точке (ВМТ), смесь сжатого воздуха с топливом в бензиновом двигателе зажигается свечой зажигания в бензиновых двигателях или воспламеняется из-за тепла, выделяемого при сжатии в дизельном двигателе. Результирующее давление от сгорания сжатой топливно-воздушной смеси заставляет поршень вернуться вниз к нижней мертвой точке (BDC).
  4. ВЫХОД : во время хода на выпуске поршень снова возвращается в верхнюю мертвую точку, когда выпускной клапан открыт.Это действие удаляет отработанную топливно-воздушную смесь через выпускной клапан (ы).

Принципы проектирования и

Ограничения выходной мощности

Четырехтактный цикл
A: впуск
B: сжатие
C: мощность
D: выпуск

1 = TDC
2 = BDC

Максимальная мощность, вырабатываемая двигателем, определяется максимальным количеством поступающего воздуха.Количество энергии, генерируемой поршневым двигателем, зависит от его размера (объема цилиндра), будь то двухтактный или четырехтактный дизайн, объемного КПД, потерь, отношения воздух-топливо, теплотворной способности топлива. Содержание кислорода в воздухе и скорость (об / мин). Скорость в конечном счете ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускорения. При высокой частоте вращения двигателя могут произойти физическая поломка и трепетание поршневого кольца, что приведет к потере мощности или даже разрушению двигателя.Трепет поршневых колец возникает, когда кольца колеблются вертикально в канавках поршней, в которых они находятся. Трепетание колец нарушает уплотнение между кольцом и стенкой цилиндра, что вызывает потерю давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапана не могут действовать достаточно быстро, чтобы закрыть клапаны. Обычно это называется «поплавком клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. На высоких скоростях смазка поверхности стенок поршневого цилиндра имеет тенденцию разрушаться.Это ограничивает скорость поршня для промышленных двигателей до 10 м / с.

Расход впускного / выпускного отверстия

Выходная мощность двигателя зависит от способности впускного (топливовоздушная смесь) и выхлопного материала быстро перемещаться через отверстия клапана, обычно расположенные в головке цилиндров. Чтобы увеличить выходную мощность двигателя, неровности на впускном и выпускном каналах, такие как дефекты отливки, можно устранить, и с помощью скамейки потока воздуха радиусы поворотов отверстий клапана и конфигурацию седла клапана можно изменить, чтобы уменьшить сопротивление.Этот процесс называется портированием, и его можно выполнить вручную или с помощью станка с ЧПУ.

Наддув

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было получать больше энергии за каждый рабочий ход. Это может быть сделано с использованием какого-либо типа устройства для сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема.Чаще всего нагнетатель всегда работает, но были конструкции, позволяющие отключать его или работать с различными скоростями (относительно частоты вращения двигателя). Недостатком механического привода является то, что некоторая часть выходной мощности используется для привода нагнетателя, в то время как мощность теряется в выхлопе высокого давления, поскольку воздух сжимается дважды, а затем получает больший потенциальный объем в процессе сгорания, но он только расширяется. в один этап.

Турбонаддув

Турбокомпрессор - это нагнетатель, который приводится в движение выхлопными газами двигателя посредством турбины.Он состоит из двух частей высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона питается отработавшим газом.

При работе на холостом ходу и на низких и средних скоростях турбина вырабатывает мало энергии из-за небольшого объема выхлопных газов, турбонагнетатель оказывает незначительное влияние, и двигатель работает почти безнаддувным образом. Когда требуется намного большая выходная мощность, частота вращения двигателя и открытие дросселя увеличиваются до тех пор, пока выхлопные газы не станут достаточными для «раскрутки» турбины турбокомпрессора, чтобы начать сжимать намного больше воздуха, чем обычно, во впускной коллектор.

Турбокомпрессор

обеспечивает более эффективную работу двигателя, поскольку он приводится в действие давлением выхлопных газов, которое в противном случае (главным образом) было бы потрачено впустую, но существует ограничение конструкции, известное как турбо-запаздывание. Увеличенная мощность двигателя не доступна сразу из-за необходимости резко увеличить обороты двигателя, для создания давления и ускорения турбины, прежде чем турбина начнет делать какое-либо полезное сжатие воздуха. Увеличенный объем впуска вызывает увеличение выхлопа и ускоряет вращение турбины, и так далее, пока не будет достигнута стабильная работа на высокой мощности.Другая трудность состоит в том, что более высокое давление выхлопных газов заставляет выхлопной газ передавать больше своего тепла механическим частям двигателя.

Соотношение штока и поршня к ходу

Отношение шатуна к ходу - это отношение длины шатуна к длине хода поршня. Удлиненный шток уменьшает боковое давление поршня на стенку цилиндра и силы напряжения, увеличивая срок службы двигателя. Это также увеличивает стоимость и высоту двигателя и вес.

«Квадратный двигатель» - это двигатель с диаметром отверстия, равным его длине хода.Двигатель с диаметром отверстия, превышающим длину его хода, представляет собой двигатель с квадратным сечением, и наоборот, двигатель с диаметром отверстия, меньшим, чем его длина рабочего хода, является двигателем с квадратным сужением.

Клапанный поезд

Клапаны обычно приводятся в действие распределительным валом, вращающимся с половиной скорости вращения коленчатого вала. Он имеет ряд кулачков вдоль своей длины, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска. Толкатель между клапаном и кулачком является контактной поверхностью, по которой кулачок скользит, открывая клапан.Многие двигатели используют один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как на иллюстрации, в которой каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В других конструкциях двигателя распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с рычагом коромысла, который открывает клапан. Конструкция подвесного кулачка обычно обеспечивает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Зазор клапанов

Зазор клапана - это небольшой зазор между толкателем клапана и штоком клапана, который обеспечивает полное закрытие клапана.На двигателях с механической регулировкой клапана чрезмерный зазор вызывает шум от системы клапанов. Слишком маленький зазор может привести к тому, что клапаны не будут закрываться должным образом, это приведет к потере производительности и, возможно, перегреву выпускных клапанов. Как правило, зазор должен быть перенастроен каждые 20 000 миль (32 000 км) с помощью щупа.

Большинство современных серийных двигателей используют гидравлические подъемники для автоматической компенсации износа компонентов клапанной системы. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели

Otto работают примерно на 30%. иными словами, 30% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, в то время как остальная часть представляет собой потери из-за избыточного тепла, трения и принадлежностей двигателя. Есть несколько способов восстановить часть энергии, потерянной для потери тепла. Использование турбонагнетателя в дизельных двигателях очень эффективно за счет повышения давления поступающего воздуха и обеспечивает такое же увеличение производительности, что и увеличение рабочего объема.Компания Mack Truck десятилетия назад разработала систему турбины, которая преобразовывала отработанное тепло в кинетическую энергию, которую она возвращала в трансмиссию двигателя. В 2005 году BMW объявила о разработке двухступенчатой ​​системы рекуперации тепла с турбонагнетателем, аналогичной системе Mack, которая восстанавливает 80% энергии в выхлопных газах и повышает эффективность двигателя Отто на 15%. В отличие от этого, шеститактный двигатель может снизить расход топлива на 40%.

Современные двигатели часто специально собираются, чтобы быть немного менее эффективными, чем они могли бы быть в противном случае.Это необходимо для контроля выбросов, таких как рециркуляция отработавших газов и каталитические нейтрализаторы, которые уменьшают смог и другие атмосферные загрязнители. Снижение эффективности может быть нейтрализовано с помощью блока управления двигателем с использованием методов бережливого горения.

В Соединенных Штатах средняя экономия топлива для предприятий требует, чтобы автомобили в среднем достигали 35,5 миль на галлон (миль на галлон) по сравнению с текущим стандартом в 25 миль на галлон. Поскольку автопроизводители надеются соответствовать этим стандартам к 2016 году, могут потребоваться новые способы конструирования традиционного двигателя внутреннего сгорания (ДВС).Некоторые потенциальные решения для повышения эффективности использования топлива для удовлетворения новых требований включают запуск после того, как поршень находится дальше всего от коленчатого вала, известный как верхняя мертвая точка (ВМТ), и применение цикла Миллера. Вместе этот редизайн может значительно снизить расход топлива и выбросы NOx.

Исходное положение, ход впуска и ход сжатия.

Зажигание топлива, рабочий ход и такт выпуска.

Ссылки: Википедия

,

бензиновый двигатель | Британика

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию при сжигании летучего жидкого топлива (бензин или смесь бензина, такого как этанол) с зажиганием, инициируемым электрической искрой. Бензиновые двигатели могут быть изготовлены в соответствии с требованиями практически любого возможного применения силовой установки, наиболее важными из которых являются пассажирские автомобили, малые грузовые автомобили и автобусы, самолеты общего назначения, подвесные и малые бортовые морские агрегаты, стационарные насосные установки среднего размера, осветительные установки, станки и электроинструменты.Четырехтактные бензиновые двигатели используются для подавляющего большинства автомобилей, легких грузовиков, мотоциклов среднего и большого размера и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих портативных инструментах для ландшафтного дизайна, таких как цепные пилы, ножницы для живой изгороди и воздуходувки.

Поперечное сечение V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели могут быть сгруппированы в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, число тактов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневые и цилиндровые двигатели и роторные двигатели. В поршнево-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая перемещает длину цилиндра при возвратно-поступательном или возвратно-поступательном движении. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных поршневыми поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

бензиновых двигателей Типы бензиновых двигателей включают (A) двигатели с противоположным поршнем, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей поршневого и цилиндрового типа. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа следуют либо четырехтактному циклу, либо двухтактному циклу.

Типичное поршнево-цилиндровое расположение бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления энергии от процесса сгорания наиболее важным на сегодняшний день был четырехтактный цикл, концепция, впервые разработанная в конце 19-го века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такт впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр созданным таким образом парциальным вакуумом.Смесь сжимается при подъеме поршня на такте сжатия с закрытыми обоими клапанами. По мере приближения к концу хода заряд зажигается электрической искрой. Затем следует рабочий ход с обоими клапанами, все еще закрытыми, и давление газа из-за расширения сгоревшего газа, нажимающего на головку поршня или на головку. Во время такта выпуска восходящий поршень нагнетает отработанные продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех ходов поршня - впуск, сжатие, мощность и выпуск - и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания : четырехтактный цикл Двигатель внутреннего сгорания проходит четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень движется во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Недостаток четырехтактного цикла состоит в том, что совершается только вдвое меньше рабочих тактов, чем в двухтактном цикле ( см. Ниже ), и от двигателя данного размера можно ожидать только половину такой мощности при заданная рабочая скорость.Четырехтактный цикл, однако, обеспечивает более положительную очистку от выхлопных газов (очистку) и перегрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.


Смотрите также


avtovalik.ru © 2013-2020