Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как из батарейки сделать двигатель


Как сделать электродвигатель из батарейки, проволоки и магнита

Мы продолжаем открывать полезные самоделки для всех наших читателей, сегодня поговорим, как сделать электродвигатель из батарейки, медной проволоки и небольшого магнита. Такой двигатель можно будет использовать в качестве украшения на домашнем столе. В этой статье мы рассмотрим подобную инструкцию, фото и посмотрим видео примеры.

Самодельный электродвигатель из батарейки: необходимые материалы

Перед тем как приступать к процессу сборки мы должны собрать все материалы. Сборка мотора из батарейки занимает около 20 минут, при условии, если человек никогда ничего подобного не делал. Все комплектующие, чтобы сделать самодельный электродвигатель из батарейки вы сможете найти в любом магазине. Еще одна интересная статья, в которой мы разобрали способ подсветки стакана.

Рабочий держатель для батареек. Совет, его можно вытянуть из старых часов или других приборов, которые уже вышли из строя или просто вам не нужно.

Небольшой магнит. Его можно найти в гараже, если нет, тогда любой радио рынок придет вам на помощь.

Батарейка на 1.5 Вольта.

Медная проволока с диаметром 1 мм. Длина должна составлять примерно один метр.

40 см неизолированного провода.

Как только подготовили все необходимые материалы, переходим к сборке самодельного электродвигателя из батарейки. Сложностей никаких нет, но работа кропотливая.

Как сделать электродвигатель из батарейки: пошаговая инструкция

Теперь переходим к главному этапу, сборке двигателя. Посмотрите вот такое видео, здесь весь процесс рассказывается, после видео мы более подробно поговорим о каждом этапе.

  1. Из медного провода делаем катушку двигателя, для этого наматываем провод на батарейку, оставляя с каждой стороны по 5 сантиметров длины. Витков нужно сделать примерно 15-20.
  2. Снимаем намотку из батарейки, вот так она должна выглядеть.
  3. Зачищаем окончание намотки от эмали, это этого используем обычный нож.
  4. Делаем два крепления для двигателя. Берем небольшой провод 10 см и накручиваем несколько витков.
  5. Вставляем батарейку в держатель, к нему сразу прикрепляем крепление для двигателя. Вот так должно получиться в итоге.
  6. Чтобы запустить его кладем на батарейку магнит и немного подталкиваем.

Вот у нас получилось сделать мини двигатель из батарейки, сложного нет ничего. Такой двигатель всегда будет удивлять всех ваших гостей. Посмотрите еще видео, как делают такие двигатели, есть немного и другие способы, здесь вы все найдете. Читайте о том, как сделать зарядное устройство для авто.

Совет! Если двигатель не заработал – значит, слишком большое расстояние между катушкой и магнитом, нужно просто его уменьшить. Если ничего не изменилось, скорее всего, села батарейка.

Статья по теме: Автоматическая подсветка шкафа.

MIT Школа Разработки | »Как работает аккумулятор?

Как работает аккумулятор?

Ваши часы, ноутбук и лазерная указка работают на одном и том же: химия ...

Мэри Бейтс

Существует множество аккумуляторов разных типов, но все они основаны на одной концепции. «Батарея - это устройство, которое способно накапливать электрическую энергию в форме химической энергии и преобразовывать эту энергию в электричество», - говорит Антуан Алланор, сотрудник докторской диссертации в Департаменте материаловедения и инженерии MIT.«Вы не можете улавливать и накапливать электричество, но вы можете хранить электрическую энергию в химикатах внутри батареи».

Существует три основных компонента батареи: две клеммы, изготовленные из разных химических веществ (обычно металлов), анод и катод; и электролит, который разделяет эти клеммы. Электролит представляет собой химическую среду, которая обеспечивает поток электрического заряда между катодом и анодом. Когда устройство подключено к батарее - лампочке или электрической цепи - на электродах происходят химические реакции, которые создают поток электрической энергии к устройству.

Более конкретно: во время разряда электричества химическое вещество на аноде высвобождает электроны к отрицательному полюсу и ионы в электролите посредством так называемой реакции окисления. Между тем, на положительном полюсе катод принимает электроны, завершая цепь для потока электронов. Электролит предназначен для того, чтобы привести различные химические вещества анода и катода в контакт друг с другом таким образом, чтобы химический потенциал мог уравновеситься от одного терминала к другому, превращая накопленную химическую энергию в полезную электрическую энергию.«Эти две реакции происходят одновременно», - говорит Алланор. «Ионы переносят ток через электролит, в то время как электроны текут во внешней цепи, и именно это генерирует электрический ток».

Если батарея одноразовая, она будет производить электричество до тех пор, пока в ней не закончатся реагенты (одинаковый химический потенциал на обоих электродах). Эти батареи работают только в одном направлении, преобразуя химическую энергию в электрическую. Но в других типах батарей реакция может быть обратной.Аккумуляторы (например, батареи вашего мобильного телефона или автомобиля) спроектированы таким образом, что электрическая энергия от внешнего источника (зарядное устройство, которое вы подключаете к стене, или динамо-машина в вашем автомобиле) может подаваться на химическую систему и наоборот. его работа, восстановление заряда батареи.

Лаборатория Group Sadoway в MIT работает над созданием более эффективных батарей для многократного использования. Для крупномасштабного накопления энергии команда работает над жидкометаллической батареей, в которой электролит, анод и катод являются жидкими.Для портативных приложений они разрабатывают тонкопленочную полимерную батарею с гибким электролитом из негорючего геля. Еще одной целью лаборатории является создание аккумуляторов с использованием ранее не рассмотренных материалов, уделяя особое внимание обильным, дешевым и безопасным веществам, которые имеют такой же коммерческий потенциал, что и популярные литиевые аккумуляторы.

Благодарю 18-летнего Стивена Минкуса из Гленвью, штат Иллинойс, за этот вопрос.

Опубликовано: 1 мая 2012 г.

,

Как сделать аккумуляторы более надежными и долговечными - Battery University

Знание состояния батареи важно, но не существует быстрого метода, чтобы проверить их с уверенностью. Состояние здоровья (SoH) не может быть измерено само по себе, оно может быть оценено только с различной степенью точности на основе имеющихся симптомов. Батарея ведет себя подобно живому организму, на который влияют такие условия, как состояние заряда (SoC), события зарядки и разрядки, периоды отдыха, условия окружающей среды и старение.Батарея с низким зарядом ведет себя так же, как и батарея, в которой наблюдается потеря емкости, и эти два признака становятся размытыми. Методы тестирования батареи должны выходить за пределы колебаний настроения и фиксировать характеристики, относящиеся только к SoH.


Ведущий индикатор состояния батареи - емкость; единица, которая представляет способность хранить энергию. Новая батарея обеспечивает (должна обеспечивать) 100 процентов от номинальной емкости Ач. Свинцовая кислота начинается примерно с 85 процентов, и емкость увеличивается с использованием до того, как начнется длительное и постепенное снижение.Литий-ионный ввод в эксплуатацию с максимальной производительностью и начинает снижаться с использованием и старением, хотя и очень медленно. Аккумуляторы на никелевой основе нуждаются в грунтовке, чтобы достичь полной емкости, а также постепенно снижаться при использовании.


Чтобы уменьшить напряжение, заряжайте Li-ion с помощью умеренной зарядки в течение двух-трех часов, а не сверхбыстрой зарядки продолжительностью менее одного часа. Предотвратите резкие и неустойчивые разрядники. Лучше не разряжать батарею полностью, а заряжать чаще. Как пишет автор www.BatteryUniversity.com Я цитирую эти рекомендации; они являются наиболее часто задаваемыми вопросами этого популярного образовательного веб-сайта о батареях.


Производители устройств основывают спецификации производительности на новом аккумуляторе, но это только снимок в начале карьеры. Как и у спортивного спортсмена, производительность будет со временем падать, и потеря станет видимой только после того, как блеск нового устройства исчезнет, ​​а ежедневные занятия будут восприняты как должное. Когда время работы сокращается, сбои, связанные с аккумулятором, начинают происходить чаще, и аккумулятор становится неудобством.Аналогия - стареющий мужчина, чья выносливость начинает проявляться после окончания самых продуктивных лет. Рисунок 1 демонстрирует такой процесс старения.

Рисунок 1. Старение батареи по сравнению со старением человека.
Мало кто знает, когда заменить батарею; некоторые заменяются слишком рано, но большинство хранятся слишком долго.


Спрашивая пользователей батареи: «На какую емкость вы заменяете батарею?» большинство в замешательстве отвечают: «Прошу прощения?» Емкость как мера емкости хранилища и времени выполнения плохо изучена.Емкость также не используется в качестве порога для снятия батареи, если она не обслуживается анализатором батареи.


Срок службы батареи зависит от области применения. В организациях здравоохранения, обороны и общественной безопасности с анализаторами батарей пороговое значение замены обычно составляет 80 процентов. Есть приложения, где батарея может храниться дольше и существует баланс между стоимостью и риском, также известный как экономичность и «что если». Некоторые сканирующие устройства на складах могут стоить всего 60 процентов и при этом обеспечивать работу в течение всего дня.Батарея стартера в автомобиле все еще хорошо проворачивается на 40 процентов. Для запуска двигателя требуется только короткий разряд разряда, который пополняется во время движения, но если пропускная способность станет намного ниже 40-процентного порога, водитель может оказаться без предупреждения.

Надежным показателем, обеспечивающим достаточное время работы, является проверка свободных мощностей по возвращении миссии или смены дня. Анализаторы батарей Cadex делают это, применяя разрядку перед зарядкой. Батарея всегда должна иметь 10–20 процентов запасной емкости в конце смены для покрытия неизвестных и аварийных ситуаций.Если самая слабая батарея во флоте возвращается с оставшейся емкостью 30 процентов, то цель может быть снижена, скажем, с 80 до 70 процентов. Такая точная настройка продлевает срок службы батареи без дополнительного риска, что приводит к экономии средств. Рисунок 2 иллюстрирует анализатор батареи, который предоставляет эту услугу.

Рисунок 2. Анализатор батарей Cadex C7400ER
Обслуживает четыре батареи от 1,2 до 36 В и до 6 А на станцию. Аккумуляторы подключаются с помощью специальных адаптеров и программируемых кабелей.Устройство работает в автономном режиме или с ПК.

Важность регулярной проверки батареи составляет

.

заряд в секундах, в последние месяцы

Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более продвинутыми, они все еще ограничены по мощности. Аккумулятор не продвинулся в течение десятилетий. Но мы находимся на грани силовой революции.

Крупные технологические и автомобильные компании слишком осведомлены об ограничениях литий-ионных аккумуляторов.В то время как чипы и операционные системы становятся все более эффективными для экономии энергии, мы все же смотрим только на один или два дня использования на смартфоне, прежде чем перезаряжаться.

Несмотря на то, что может пройти некоторое время, прежде чем мы сможем получить недельную жизнь от наших телефонов, развитие идет хорошо. Мы собрали все лучшие открытия аккумуляторов, которые могут быть у нас в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной зарядки. Надеюсь, вы скоро увидите эту технологию в своих гаджетах.

SVOLT представляет аккумуляторы без кобольта для электромобилей

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, по-прежнему существуют противоречия в отношении аккумуляторов, особенно использования редкоземельных металлов, таких как коболт.SVOLT, базирующаяся в Чанчжоу, Китай, объявила, что она производит безоболтовые батареи, предназначенные для рынка электромобилей. Помимо сокращения содержания редкоземельных металлов, компания утверждает, что они имеют более высокую плотность энергии, что может привести к дальности до 800 км (500 миль) для электромобилей, а также к увеличению срока службы аккумулятора и повышению безопасности. Где мы увидим эти батареи, мы не знаем, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к литий-ионным батареям с кремниевым анодом

Чтобы решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод получения гибридного анода с использованием мезопористых кремниевых микрочастиц и углеродных нанотрубок. В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает рабочие характеристики батареи, в то время как кремниевый материал устойчиво производится из золы шелухи ячменя.

Университет Монаш

Литий-серные батареи могут превзойти Li-Ion и снизить воздействие на окружающую среду.

Исследователи Монашского университета разработали литий-серные аккумуляторы, которые могут питать смартфон в течение 5 дней, превосходя литий-ионные. Исследователи изготовили эту батарею, имеют патенты и интерес производителей. Группа имеет финансирование для дальнейших исследований в 2020 году, заявив, что продолжатся исследования в области автомобилей и энергосистемы.

Говорят, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, а также обеспечивает возможность питания транспортного средства на 1000 км (620 миль) или смартфона в течение 5 дней.

Батарея IBM получена из морской воды и превосходит литий-ионный

IBM Research сообщает, что обнаружила новый химический состав аккумуляторов, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные. IBM Research утверждает, что этот химический состав никогда ранее не использовался в сочетании в батарее и что материалы могут быть извлечены из морской воды.

Производительность батареи многообещающая, поскольку IBM Research заявляет, что она может превзойти литий-ионную батарею в ряде различных областей - она ​​дешевле в изготовлении, она может заряжаться быстрее, чем литий-ионная, и может работать как при более высокой мощности и плотности энергии.Все это доступно в батарее с низкой воспламеняемостью электролитов.

IBM Research отмечает, что эти преимущества сделают его новую технологию аккумуляторов пригодной для электромобилей, и она вместе с Mercedes-Benz развивает эту технологию в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

Несмотря на то, что литий-ионные батареи используются повсеместно и их использование растет, управление этими батареями, в том числе определение того, когда эти батареи достигли конца срока службы, является сложным.Panasonic, работающий с профессором Масахиро Фукуи из Университета Рицумейкан, разработал новую технологию управления батареями, которая значительно упростит мониторинг батарей и определение остаточной ценности литий-ионных аккумуляторов в них.

Panasonic говорит, что ее новая технология может быть легко применена с заменой системы управления батареями, которая упростит мониторинг и оценку батарей с несколькими сложенными в ряд элементами, что вы можете встретить в электромобиле. Panasonic сказал, что эта система поможет продвинуться к устойчивому развитию, способствуя более эффективному управлению повторным использованием и утилизацией литий-ионных батарей.

Асимметричная температурная модуляция

Исследования показали, что метод зарядки приближает нас к экстремально быстрой зарядке - XFC - с целью обеспечить пробег электромобиля на 200 миль примерно за 10 минут при зарядке 400 кВт. Одной из проблем при зарядке является литирование в батареях, поэтому асимметричный метод температурной модуляции заряжает при более высокой температуре, чтобы уменьшить покрытие, но ограничивает это 10-минутными циклами, избегая роста между твердыми электролитами и интерфазами, что может сократить срок службы батареи.Сообщается, что этот метод снижает степень деградации батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея обеспечивает в три раза больший срок службы батареи

Этот альтернативный тип литий-ионной батареи использует кремний для достижения в три раза лучшей производительности, чем современные графитовые литий-ионные батареи. Аккумулятор по-прежнему литий-ионный, как и в вашем смартфоне, но он использует кремний вместо графита в анодах.

Ученые из Калифорнийского университета в Риверсайде некоторое время занимались нанокремнием, но он слишком быстро разлагается и его сложно производить в больших количествах.Используя песок, он может быть очищен, измельчен в порошок, затем измельчен с солью и магнием перед нагреванием для удаления кислорода, что приводит к чистому кремнию. Это пористый и трехмерный материал, который помогает в производительности и, возможно, сроке службы батарей. Изначально мы взялись за это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano - это стартап, специализирующийся на аккумуляторных технологиях, который выводит эту технику на рынок, и на которую были вложены крупные инвестиции таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть использовано в существующих производствах литий-ионных аккумуляторов, поэтому оно предназначено для масштабируемого развертывания, обещая повышение производительности аккумуляторов на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Несмотря на то, что беспроводная индуктивная зарядка является обычной практикой, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Команда исследователей, однако, разработала ректенну (антенну для сбора радиоволн), которая, по мнению всего лишь нескольких атомов, делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать эту ректенну на основе дисульфида молибдена, чтобы можно было получать энергию переменного тока от Wi-Fi в воздухе и преобразовывать ее в постоянный ток, чтобы либо перезарядить батарею, либо напрямую питать устройство.Это может привести к появлению медицинских таблеток без необходимости использования внутренней батареи (безопаснее для пациента) или мобильных устройств, которые не требуют подключения к источнику питания для зарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для своего следующего устройства, если исследование TENG принесет свои плоды. ТЭНГ - или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, образующийся при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эту технологию можно использовать для питания таких устройств, как носимые устройства. Хотя мы пока еще не увидели его в действии, исследования должны предоставить дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые батареи для нанопроволоки

В Калифорнийском университете в Ирвине великие умы взломали батареи из нанопроволоки, которые могут выдержать много перезарядок.Результатом могут стать будущие батареи, которые не умирают.

Нанопроволоки, в тысячу раз тоньше человеческого волоса, открывают большие возможности для будущих батарей. Но они всегда ломались при перезарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никакого ухудшения качества.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, говорится об испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходную батарею.

В результате получается батарея, которая может работать на уровнях суперконденсаторов для полной зарядки или разрядки всего за семь минут, что делает ее идеальной для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем современные батареи. Твердотельное устройство также должно работать при температуре до минус 30 градусов по Цельсию и до ста.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в автомобилях в ближайшее время, но это шаг в правильном направлении в направлении более безопасных и более быстрых аккумуляторов.

графеновые батареи Grabat

графеновые батареи потенциально могут быть одними из самых превосходных из доступных. Grabat разработал графеновые аккумуляторы, которые могут предложить электромобилям пробег до 500 миль на зарядке.

Graphenano, компания, занимающаяся разработкой, говорит, что батареи могут быть полностью заряжены всего за несколько минут и могут заряжаться и разряжаться в 33 раза быстрее, чем ион лития.Разряд также имеет решающее значение для таких вещей, как автомобили, которым требуется огромное количество энергии, чтобы быстро оторваться.

Не известно, используются ли в настоящее время батареи Grabat для каких-либо продуктов, но у компании есть аккумуляторы для автомобилей, беспилотников, велосипедов и даже дома.

Лазерные микро-суперконденсаторы

Rice Univeristy

Ученые из Университета Райса сделали прорыв в области супер-суперконденсаторов. В настоящее время они дорогостоящие, но с использованием лазеров, которые могут скоро измениться.

При использовании лазеров для прожигания рисунков электродов в листах пластика затраты на производство и объем работ значительно снижаются. В результате батарея может заряжаться в 50 раз быстрее, чем современные батареи, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже жесткие, способны работать после того, как согнулись более 10000 раз в тестировании.

Пенные батареи

Прието считает, что будущее за батареями - это 3D. Компании удалось взломать это с ее батареей, которая использует подложку из медной пены.

Это означает, что эти батареи будут не только более безопасными, благодаря отсутствию легковоспламеняющихся электролитов, но они также будут предлагать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, дешевле в изготовлении и будут меньше, чем в настоящее время.

Prieto стремится сначала размещать свои батареи в небольших предметах, например, в носимых. Но в нем говорится, что батареи можно увеличить, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складная батарея, как бумага, но прочная

The Jenax J.Аккумулятор Flex был разработан для создания гибких гаджетов. Бумажная батарея может складываться и быть водонепроницаемой, что означает, что она может быть встроена в одежду и предметы одежды.

Батарея уже была создана и даже прошла испытания на безопасность, в том числе сложена более 200 000 раз без потери производительности.

Ник Билтон / New York Times

uBeam по воздуху заряжается

uBeam использует ультразвук для передачи электроэнергии. Сила превращается в звуковые волны, не слышимые для людей и животных, которые передаются и затем преобразуются в энергию при достижении устройства.

Концепция uBeam была найдена 25-летним выпускником астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики могут быть прикреплены к стенам или изготовлены в декоративном стиле для передачи энергии на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы получить заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, родившийся в отделе нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из естественных органических соединений, известных как пептиды - короткие цепочки аминокислот - которые являются строительными блоками белков.

Результатом является зарядное устройство, которое может заряжать смартфоны за 60 секунд. Батарея содержит «невоспламеняющиеся органические соединения, заключенные в многослойную защитную конструкцию, предотвращающую перенапряжение и нагрев», поэтому при ее взрыве не должно быть проблем.

Компания также сообщила о планах по производству аккумулятора для электромобилей, который заряжается за пять минут и предлагает пробег в 300 миль.

Нет сведений о том, когда батареи StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.

Несмотря на то, что в течение некоторого времени он вряд ли будет коммерчески доступен, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с отсутствием достаточного заряда аккумулятора.Телефон будет работать как под прямыми солнечными лучами, так и со стандартными лампами, точно так же, как обычные солнечные панели.

Phienergy

Алюминиево-воздушный аккумулятор обеспечивает 1100 миль за зарядку.

Автомобилю удалось проехать 1100 миль за один заряд аккумулятора. Секрет этого супердиапазона - это технология аккумуляторов, называемая алюминий-воздух, которая использует кислород из воздуха для заполнения катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, чтобы дать автомобилю гораздо больший радиус действия.

Бристольская робототехническая лаборатория

Аккумуляторы для мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской роботизированной лаборатории, которая обнаружила аккумуляторы, которые могут питаться от мочи. Он достаточно эффективен для зарядки смартфона, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы забирают мочу, расщепляют ее и вырабатывают электричество.

Звуковое питание

Исследователи из Великобритании создали телефон, который способен заряжаться, используя окружающий звук в атмосфере вокруг него.

Смартфон был построен с использованием принципа, называемого пьезоэлектрическим эффектом. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это значит, что болтливые мобильные пользователи могут на самом деле питать свой телефон во время разговора.

Зарядка в два раза быстрее, двухуглеродная батарея Ryden

Power Japan Plus уже анонсировала эту новую аккумуляторную технологию под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литий, но и может быть изготовлен на тех же заводах, где производятся литиевые батареи.

В батареях используются углеродные материалы, что означает, что они более экологичны и экологичны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем ион лития. Они также будут более долговечными, способными выдерживать до 3000 циклов зарядки, плюс они безопаснее с меньшей вероятностью пожара или взрыва.

Натрий-ионные аккумуляторы

Ученые в Японии работают над новыми типами аккумуляторов, которым не требуется литий, как аккумулятор вашего смартфона.Эти новые батареи будут использовать натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных батарей ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой самый распространенный элемент на планете, батареи можно сделать намного дешевле. Ожидается, что в ближайшие пять-десять лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

В настоящее время доступно портативное зарядное устройство для водородных топливных элементов Upp. Он использует водород для питания вашего телефона, сохраняя вас от пеленки и оставаясь экологически чистым.

Одна водородная ячейка обеспечивает пять полных зарядок мобильного телефона (емкость 25 Вт / ч на ячейку). И единственный произведенный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Аккумуляторы со встроенным огнетушителем

Нередко литий-ионные аккумуляторы перегреваются, загораются и, возможно, даже взрываются.Аккумулятор в Samsung Galaxy Note 7 является ярким примером. Исследователи из Стэнфордского университета придумали литий-ионные аккумуляторы со встроенными огнетушителями.

Батарея имеет компонент, называемый трифенилфосфат, который обычно используется в качестве антипирена в электронике, добавляемый к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфатный химикат.Исследования показывают, что этот новый метод может предотвратить возгорание батарей за 0,4 секунды.

Mike Zimmerman

Аккумуляторы, которые безопасны от взрыва

Литий-ионные аккумуляторы имеют довольно летучий слой пористого материала с жидким электролитом, расположенный между слоями анода и катода. Майк Циммерман, исследователь из Университета Тафтса в штате Массачусетс, разработал батарею, которая обладает удвоенной емкостью по сравнению с литий-ионными, но без присущей ей опасности.

Батарея Циммермана невероятно тонкая, немного толще двух кредитных карт и заменяет электролитную жидкость пластиковой пленкой с аналогичными свойствами.Он может противостоять прокалыванию, измельчению и может подвергаться воздействию тепла, поскольку он не воспламеняется. Еще многое предстоит сделать, прежде чем технология сможет выйти на рынок, но хорошо знать, что есть более безопасные варианты.

аккумуляторы Liquid Flow

Гарвардские ученые разработали аккумулятор, который сохраняет энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долго по сравнению с существующими литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т. П., Поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, созданной с помощью решений в области возобновляемых источников энергии, таких как ветер и солнечная энергия.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально большими результатами, требуя удвоенного напряжения обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения прерывистых источников энергии, таких как ветер или солнечная энергия, для быстрого поступления в сеть по требованию.

IBM и ETH Zurich разработали гораздо меньшую батарею с жидкостным потоком, которая потенциально может использоваться в мобильных устройствах. Эта новая батарея утверждает, что она может не только подавать питание на компоненты, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности отводится для питания батареи.

Zap & Go Углеродно-ионная батарея

Оксфордская компания ZapGo разработала и выпустила первую углеродно-ионную батарею, которая готова к использованию в настоящее время.Углеродно-ионная батарея сочетает в себе возможности сверхбыстрой зарядки суперконденсатора с характеристиками литий-ионной батареи, и при этом она полностью утилизируется.

Компания имеет зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью зарядит смартфон за два часа.

воздушно-цинковых батарей

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей гораздо дешевле, чем современные методы.Цинк-воздушные батареи можно считать превосходящими литий-ионные, потому что они не загораются. Единственная проблема - они полагаются на дорогие компоненты для работы.

Sydney Uni удалось создать воздушно-цинковую батарею без дорогих компонентов, а с более дешевыми альтернативами. Более безопасные и дешевые батареи могут быть в пути!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ использования вашей одежды в качестве источника энергии.Аккумулятор называется трибоэлектрическими наногенераторами (TENG), которые преобразуют движение в накопленную энергию. Затем накопленное электричество можно использовать для питания мобильных телефонов или таких устройств, как фитнес-трекеры Fitbit.

Технология может быть применена не только к одежде, но и к дорожному покрытию, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания фонарей или в шине автомобиля, чтобы может привести машину в действие.

Эластичные аккумуляторы

Инженеры из Калифорнийского университета в Сан-Диего разработали эластичный биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что вырабатываемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, что означает, что однажды они смогут питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновая батарея Samsung

Samsung удалось разработать «графеновые шарики», способные повысить емкость существующих литий-ионных аккумуляторов на 45 процентов и перезарядить в пять раз быстрее, чем нынешние батареи. Чтобы показать это, Samsung заявляет, что ее новая батарея на основе графена может быть полностью заряжена за 12 минут, по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что она использует не только смартфоны, заявив, что ее можно использовать для электромобилей, поскольку она может выдерживать температуру до 60 градусов по Цельсию.

Более безопасная и быстрая зарядка современных литий-ионных аккумуляторов

Ученые из WMG Университета Уорика разработали новую технологию, позволяющую заряжать современные литий-ионные аккумуляторы в пять раз быстрее, чем рекомендуемые в настоящее время пределы. Технология постоянно измеряет температуру батареи гораздо точнее, чем современные методы.

Ученые выяснили, что современные аккумуляторы действительно можно вытолкнуть за их рекомендуемые пределы, не влияя на производительность или перегрев. Может быть, нам не нужны какие-либо другие упомянутые новые батареи!

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.