Как изменить скорость вращения асинхронного двигателя
Управление скоростью вращения однофазных двигателей
Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.
Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки - рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.
Регулировать скорость вращения таких двигателей необходимо, например, для:
- изменения расхода воздуха в системе вентиляции
- регулирования производительности насосов
- изменения скорости движущихся деталей, например в станках, конвеерах
В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.
Способы регулирования
Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.
Рассмотрим способы с изменением электрических параметров:
- изменение напряжения питания двигателя
- изменение частоты питающего напряжения
Регулирование напряжением
Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя - разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:
S=(n1-n2)/n2
n1 - скорость вращения магнитного поля
n2 - скорость вращения ротора
При этом обязательно выделяется энергия скольжения - из-за чего сильнее нагреваются обмотки двигателя.
Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз - то есть, снижением питающего напряжения.
При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.
Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.
На практике для этого применяют различные схемы регуляторов.
Автотрансформаторное регулирование напряжения
Автотрансформатор - это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.
На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.
Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.
Преимущества данной схемы:
- неискажённая форма выходного напряжения (чистая синусоида)
- хорошая перегрузочная способность трансформатора
Недостатки:
- большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
- все недостатки присущие регулировке напряжением
Тиристорный регулятор оборотов двигателя
В данной схеме используются ключи - два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.
Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно "отрезается" кусок вначале или, реже в конце волны напряжения.
Таким образом изменяется среднеквадратичное значение напряжения.
Данная схема довольно широко используется для регулирования активной нагрузки - ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).
Ещё один способ регулирования - пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно - шумы и рывки при работе.
Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:
- устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
- добавляют на выходе конденсатор для корректировки формы волны напряжения
- ограничивают минимальную мощность регулирования напряжения - для гарантированного старта двигателя
- используют тиристоры с током в несколько раз превышающим ток электромотора
Достоинства тиристорных регуляторов:
- низкая стоимость
- малая масса и размеры
Недостатки:
- можно использовать для двигателей небольшой мощности
- при работе возможен шум, треск, рывки двигателя
- при использовании симисторов на двигатель попадает постоянное напряжение
- все недостатки регулирования напряжением
Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.
Транзисторный регулятор напряжения
Как называет его сам производитель - электронный автотрансформатор или ШИМ-регулятор.
Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы - полевые или биполярные с изолированным затвором (IGBT).
Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.
Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.
Выходной каскад такой же как и у частотного преобразователя, только для одной фазы - диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.
Плюсы электронного автотрансформатора:
- Небольшие габариты и масса прибора
- Невысокая стоимость
- Чистая, неискажённая форма выходного тока
- Отсутствует гул на низких оборотах
- Управление сигналом 0-10 Вольт
Слабые стороны:
- Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
- Все недостатки регулировки напряжением
Частотное регулирование
Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина - не было дешёвых силовых высоковольтных транзисторов и модулей.
Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие - массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.
На данный момент частотное преобразование - основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
Однофазные двигатели могут управляться:
- специализированными однофазными ПЧ
- трёхфазными ПЧ с исключением конденсатора
Преобразователи для однофазных двигателей
В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей - INVERTEK DRIVES.
Это модель Optidrive E2
Для стабильного запуска и работы двигателя используются специальные алгоритмы.
При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
Xc=1/2πfC
f - частота тока
С - ёмкость конденсатора
В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя - в некоторых моделях это сделать довольно сложно.
Преимущества специализированного частотного преобразователя:
- интеллектуальное управление двигателем
- стабильно устойчивая работа двигателя
- огромные возможности современных ПЧ:
- возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
- многочисленные защиты (двигателя и самого прибора)
- входы для датчиков (цифровые и аналоговые)
- различные выходы
- коммуникационный интерфейс (для управления, мониторинга)
- предустановленные скорости
- ПИД-регулятор
Минусы использования однофазного ПЧ:
- ограниченное управление частотой
- высокая стоимость
Использование ЧП для трёхфазных двигателей
Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого - магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
При работе без конденсатора это приведёт к:
- более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
- разному току в обмотках
Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна
Преимущества:
- более низкая стоимость по сравнению со специализированными ПЧ
- огромный выбор по мощности и производителям
- более широкий диапазон регулирования частоты
- все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)
Недостатки метода:
- необходимость предварительного подбора ПЧ и двигателя для совместной работы
- пульсирующий и пониженный момент
- повышенный нагрев
- отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями
Как изменить направление вращения двигателя постоянного тока?
Существует два типа двигателей постоянного тока - щеточный двигатель постоянного тока и бесщеточный двигатель постоянного тока. Направление вращения этих двигателей контролируется разными методами.
Матовый двигатель постоянного тока
Небольшие двигатели постоянного тока (с напряжением 12 В или ниже 12 В) состоят из постоянного магнита, то есть содержат постоянное магнитное поле. Если мы хотим изменить направление вала, мы меняем только полярность. Потому что он содержит только обмотку якоря.
Другой метод заключается в использовании H-моста для управления направлением двигателя постоянного тока. Это специальная схема, которая позволяет вращать двигатель в обоих направлениях. С четырех клемм H-моста вы можете управлять направлением двигателя постоянного тока. Метод кратко объяснен в этой статье.

Высоковольтные двигатели постоянного тока (которые имеют 220 В или более 220 В), состоящие из временного магнита, то есть поля и якоря, имеют отдельную обмотку. Поэтому, если мы изменим полярность питания, общая схема изменится.Благодаря этому двигатель будет вращаться в нормальном направлении.
Если мы хотим изменить направление вала, нам нужно изменить подачу поля или арматуры. Позаботьтесь, чтобы вы меняли либо поле, либо провода якоря. Если оба изменяются одновременно, направление остается прежним. Обратитесь к рисунку выше.
Бесщеточный двигатель постоянного тока
Для трехфазного бесщеточного двигателя постоянного тока - вам нужно изменить порядок коммутации, это немного сложнее, потому что как это сделать, зависит от того, какой тип датчика положения используется.
Для бесщеточных моторов типа «хобби», таких как те, которые вы найдете в радиоуправляемом автомобиле или квадрокоптере, и для других моторов, которые используют бездатчиковое управление для определения положения, вы можете просто поменять любые два фазовых соединения. Вы также можете перепрограммировать контроллер драйвера двигателя (если такие средства существуют).
Для устройств, которые используют датчики Холла или другие датчики положения низкого разрешения, вам также необходимо переключить однофазное соединение и соответствующий датчик Холла. Кроме того, вы можете перепрограммировать контроллер драйвера двигателя.
Для двигателей, которые используют датчики абсолютного положения, такие как колеса энкодера, вы можете сделать это только путем перепрограммирования контроллера привода двигателя.
Для 3-фазных бесщеточных двигателей постоянного тока, если они пытаются переключиться в неправильном порядке, вы можете повредить двигатель или драйвер двигателя.
Использование микроконтроллера
Есть много вещей, которые вы можете сделать с вашим двигателем постоянного тока при взаимодействии с микроконтроллером. Например, вы можете контролировать скорость двигателя, вы можете контролировать направление вращения, вы также можете кодировать вращение двигателя постоянного тока i.е. отслеживание количества оборотов ваших двигателей и т. д. Таким образом, вы можете видеть, что двигатели постоянного тока не меньше, чем шаговые.
Обычно H-мост предпочитает способ сопряжения двигателя постоянного тока. В настоящее время многие производители микросхем имеют на рынке драйверы двигателей H-bridge, например, L293D - наиболее часто используемая ИС драйверов H-Bridge.

Как вы можете видеть на рисунке выше, есть четыре переключающих элемента, которые называются «Верхняя сторона слева», «Верхняя сторона справа», «Низкая сторона справа», «Низкая сторона слева». Когда эти переключатели включены попарно, двигатель соответствующим образом меняет свое направление. Например, если мы переключаемся на левую и правую верхнюю сторону, то двигатель вращается в прямом направлении, так как ток течет от источника питания через катушку двигателя и направляется на землю через нижнюю сторону переключателя вправо.Это показано на рисунке ниже.
Высокий левый | Высокий правый | Низкий левый | Низкий правый | Описание |
---|---|---|---|---|
Вкл. | Выкл. | Выкл. | Вкл. | Двигатель работает по часовой стрелке |
Выкл. | Вкл. | Вкл. | Выкл. | Двигатель работает против часовой стрелки |
Вкл. | Вкл. | Выкл. | Выкл. | Отключение или замедление двигателя |
Выкл. | Выкл. | В | Вкл. | Остановка двигателя или замедляет |
H-мост может быть сделан с помощью транзисторов, а также полевых МОП-транзисторов, единственное, что является способностью к управлению мощностью схемы.Если двигатели нужны для работы с высоким током, то существует большая рассеиваемая мощность. Так что для охлаждения цепи нужны мойки.
Три способа управления однофазным асинхронным двигателем
Каждый день инженеры разрабатывают продукты, в которых используются однофазные асинхронные двигатели. Регулирование скорости однофазных асинхронных двигателей является желательным в большинстве приложений управления двигателями, поскольку оно не только обеспечивает переменную скорость, но также снижает потребление энергии и слышимый шум.
Большинство однофазных асинхронных двигателей являются однонаправленными, что означает, что они предназначены для вращения в одном направлении.Либо добавив дополнительные обмотки, внешние реле и переключатели, либо добавив зубчатые механизмы, можно изменить направление вращения. Используя микроконтроллерные системы управления, можно добавить изменение скорости в систему. В дополнение к опции изменения скорости, направление вращения также может быть изменено в зависимости от используемых алгоритмов управления двигателем.
Двигатели с постоянным разделенным конденсатором (PSC) являются наиболее популярным типом однофазных асинхронных двигателей. В этой статье будут обсуждаться различные методы и топологии привода для управления скоростью двигателя PSC в одном и двух направлениях.
Интерфейс микроконтроллера
Микроконтроллер является мозгом системы. Часто контроллеры, используемые для управления двигателем, имеют специализированные периферийные устройства, такие как ШИМ управления двигателем, высокоскоростные аналого-цифровые преобразователи (АЦП) и диагностические выводы. PIC18F2431 и dsPIC30F2010 от Microchip оба имеют эти встроенные функции.
Наличие доступа к специализированной микроконтроллерной периферии облегчает реализацию алгоритмов управления.
Каналы АЦПиспользуются для измерения тока двигателя, температуры двигателя и температуры радиатора (подключенных к выключателям питания). Третий канал АЦП используется для считывания уровней потенциометра, который затем используется для установки скорости двигателя. Дополнительные каналы АЦП могут использоваться в конечном приложении для считывания различных датчиков, таких как датчик приближения, датчики мутности, уровень воды, температура морозильной камеры и т. Д.
Входы и выходы общего назначения (входы / выходы) могут использоваться для сопряжения переключает и отображает в приложении.Например, в холодильной установке эти универсальные входы / выходы могут использоваться для управления ЖК-дисплеем, семисегментным светодиодным дисплеем, кнопочным интерфейсом и т. Д. Каналы связи, такие как I2C (TM) или SPI ( TM) используются для соединения платы управления двигателем с другой платой для обмена данными.
Интерфейсы неисправностей и диагностики включают входные линии со специальными функциями, такими как возможность отключения ШИМ в случае катастрофических неисправностей в системе. Например, в посудомоечной машине, если привод заблокирован из-за скопившихся отходов, это может помешать вращению двигателя.Эта блокировка может быть обнаружена в виде перегрузки по току в системе управления двигателем. Используя функции диагностики, эти типы неисправностей могут быть зарегистрированы и / или отображены, или переданы на ПК для устранения неисправностей обслуживающего персонала. Зачастую это предотвращает серьезные сбои и сокращает время простоя продукта, что приводит к снижению затрат на обслуживание.
Аппаратный интерфейс для PIC 18F2431 или dsPIC30F2010. |
ШИМ - это май
.Роторно-роторный синхронный двигатель
Дмитрий Левкин
Роторно-роторный синхронный двигатель представляет собой синхронный электродвигатель, ротор которого выполнен с обмоткой возбуждения.Синхронный двигатель с обмоткой ротора, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор является фиксированной частью. Ротор является вращающейся частью. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с полевой обмоткой.Обмотка возбуждения соединена с контактными кольцами, на которые питание подается через щетки.

Синхронный двигатель с обмоткой ротора (щетки не показаны)
Постоянная скорость синхронного двигателя достигается взаимодействием постоянного и вращающегося магнитного поля. Ротор синхронного двигателя создает постоянное магнитное поле, а статор - вращающееся магнитное поле.
Работа синхронного двигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора
Статор: вращающееся магнитное поле
Трехфазное питание переменного тока подается на обмотки катушек статора.В результате возникает вращающееся магнитное поле, которое вращается со скоростью, пропорциональной частоте напряжения питания. Подробнее о том, как вращающееся магнитное поле генерируется трехфазным напряжением питания, читайте в статье «Трехфазный асинхронный двигатель».

Взаимодействие вращающегося (статора) и постоянного (роторного) магнитного поля
ротор: постоянное магнитное поле
Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле, создаваемое вокруг ротора, возбужденного постоянным током, показано ниже.Очевидно, что ротор ведет себя как постоянный магнит, поскольку у него одинаковое магнитное поле (в качестве альтернативы вы можете представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим, вы даете ротору начальное вращение в том же направлении, что и вращающееся магнитное поле. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу, и они будут заблокированы с помощью магнитных сил. Это означает, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитные поля ротора и статора связаны друг с другом
Скорость, с которой вращается магнитное поле, может быть рассчитана по следующему уравнению:
,
- где N с - частота вращения магнитного поля, об / мин,
- f - частота тока статора, Гц,
- р - количество пар полюсов.
Это означает, что скорость синхронного двигателя можно точно контролировать, изменяя частоту тока питания.Таким образом, эти электродвигатели подходят для высокоточных применений.
Почему синхронные двигатели не запускаются самостоятельно от электрической сети?
Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля и начнет двигаться в том же направлении. Но поскольку ротор имеет определенный момент инерции, его начальная скорость будет очень низкой.В это время южный полюс вращающегося магнитного поля будет заменен северным полюсом. Таким образом, силы отталкивания появятся. В результате ротор начнет вращаться в противоположном направлении и не будет запущен.
Демпферная обмотка - прямой запуск синхронного двигателя от электрической сети
Чтобы реализовать самозапуск синхронного двигателя без системы управления, между концами ротора помещена «короткозамкнутая клетка», которая также называется обмоткой демпфера.При запуске двигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля в витках «беличьей клетки» индуцируется ток, и ротор начинает вращаться так же, как запускаются асинхронные двигатели.
Когда ротор достигает максимальной скорости, питание подается на полевую обмотку ротора. В результате полюса ротора сцепляются с полюсами вращающегося магнитного поля, и ротор начинает вращаться с синхронной скоростью. Когда ротор вращается с синхронной скоростью, относительное движение между короткозамкнутым ротором и вращающимся магнитным полем равно нулю.Это означает, что в короткозамкнутых витках нет тока, и, следовательно, «беличья клетка» не влияет на синхронную работу электродвигателя.
Синхронные электродвигатели имеют постоянную скорость, независимую от нагрузки (при условии, что нагрузка не превышает максимально допустимую). Если крутящий момент нагрузки больше, чем крутящий момент, создаваемый самим электродвигателем, он выйдет из синхронизма и остановится. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причиной нарушения синхронизации.
Синхронные двигатели также могут быть использованы для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных двигателей является повышение коэффициента мощности, они называются синхронными компенсаторами. В этом случае вал двигателя не связан с механической нагрузкой и вращается свободно.