Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как найти начало и конец обмоток 3 фаз двигателя


Определение начала и конца обмоток электродвигателя

Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

Что делать в такой ситуации? 

Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

 

 Шаг 1

Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

Вот что получилось.

 Шаг 2

Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

Как это делается?

Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

Аналогично продолжаем искать остальные две обмотки.

На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

Шаг 3

Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

Перейдем к практике.

Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

Эта же схема на моем примере.

На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

Смотрим, что получилось в нашем случае.

Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

Измерение переменного напряжения проводим на выводах V1 и V2.

Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

 

 Шаг 4

После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

Для наглядности предлагаю посмотреть видео:

P.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


однослойная обмотка трехфазного асинхронного двигателя

3. Трехфазная технология намотки

3. Трехфазная технология намотки VATech Hydro, Австрия проф.A. Биндер 3/1 Однослойная обмотка На слот устанавливается только одна сторона катушки. Катушки, изготовленные как: а) Катушки с одинаковым размахом катушек: W = τ p

Дополнительная информация

Основные понятия машины

Концепции asic of a Machine Концепции asic a Machine (1) татор: неподвижная часть ахинового ротора: вращающаяся часть ахинового вала: жесткий стержень, на котором установлен ротор на воздушном зазоре (зазоре): между

Дополнительная информация

Блок 33 трехфазных двигателей

Блок 33 Трехфазные двигатели Задачи: Обсудить работу двигателей с намотанным ротором.Обсудить работу моторов selsyn. Обсудите работу синхронных двигателей. Определить направление вращения

Дополнительная информация

ПРЯМЫЕ ТЕКУЩИЕ ГЕНЕРАТОРЫ

ПРЯМЫЕ ТЕКУЩИЕ ГЕНЕРАТОРЫ Редакция 12:50 14 ноября 05 ВВЕДЕНИЕ Генератор - это машина, которая преобразует механическую энергию в электрическую с использованием принципа магнитной индукции. Это принцип

Дополнительная информация

Основы мотора.Двигатель постоянного тока

Основы двигателя Прежде чем мы сможем изучить функцию привода, мы должны понять основные принципы работы двигателя. Он используется для преобразования электрической энергии, подаваемой контроллером, в механическую

Дополнительная информация

НАЦИОНАЛЬНЫЙ СЕРТИФИКАТ (ПРОФЕССИОНАЛЬНЫЙ)

НАЦИОНАЛЬНЫЕ СЕРТИФИКАТЫ (ПРОФЕССИОНАЛЬНЫЕ) СУБЪЕКТНЫЕ РУКОВОДЯЩИЕ ПРИНЦИПЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПЫ И ПРАКТИКА NQF Уровень 4 Сентябрь 2007 ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПЫ И ПРАКТИКА УРОВЕНЬ 4 СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ПРОДОЛЖИТЕЛЬНОСТЬ И ОБУЧЕНИЕ

Дополнительная информация

PI734D - Технический паспорт

PI734D - Технический паспорт PI734D ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ОПЦИИ СТАНДАРТЫ Промышленные генераторы Newage Stamford соответствуют требованиям BS EN 60034 и соответствующим разделам других национальных и международных

Дополнительная информация

PI734B - Технический паспорт

PI734B - Технический паспорт PI734B ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ОПЦИИ СТАНДАРТЫ Промышленные генераторы Newage Stamford соответствуют требованиям BS EN 60034 и соответствующим разделам других национальных и международных

Дополнительная информация

ЭЛЕКТРОТЕХНИКА

ЭЛЕКТРОТЕХНИКА Программа магистерской подготовки преподавателей в области электроники предназначена для развития компетенций выпускников в области разработки учебных программ и обучения

Дополнительная информация

СИНХРОННЫЕ МАШИНЫ

СИНХРОННЫЕ МАШИНЫ Геометрия синхронной машины очень похожа на геометрию индукционной машины.Сердечник статора и обмотки трехфазной синхронной машины практически идентичны

Дополнительная информация

Основы электричества

Основы теории электрогенераторов PJM Государство и обучение членов Департамента PJM 2014 8/6/2013 Цели Учащийся сможет: Описать процесс электромагнитной индукции Определить основные компоненты

Дополнительная информация

ЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014

ЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014 В этом уроке мы: Описание урока Обсудите эффект двигателя Обсудите, как работают генераторы и двигатели.Резюме Моторный эффект Чтобы реализовать моторный эффект,

Дополнительная информация

Генераторы переменного тока и моторы

Генераторы и двигатели переменного тока № курса: E03-008 Кредит: 3 PDH A. Bhatia Continuing Education and Development, Inc. 9 Суд Greyridge Farm Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info @ cedengineering.com

Дополнительная информация

Ключевые слова: синхронный генератор, синхронный двигатель, автоматический регулятор напряжения, V-образные кривые, мощность синхронизации, охота, система возбуждения

СИНХРОННЫЕ МАШИНЫ Tze-Fun Chan Гонконгский политехнический университет, Гонконг, Китай Ключевые слова: синхронный генератор, синхронный двигатель, автоматический регулятор напряжения, V-образные кривые, мощность синхронизации, охота,

Дополнительная информация

ВЕТРОТУРБИННЫЕ ТЕХНОЛОГИИ

Модуль 2.2-2 ВЕТРОВАЯ ТУРБИННАЯ ТЕХНОЛОГИЯ Электрическая система Герхард Дж. Гердес Семинар по возобновляемым источникам энергии 14-25 ноября 2005 г. Нади, Республика Острова Фиджи Содержание Модуль 2.2 Типы генераторных систем

Дополнительная информация

Двигатели постоянного тока

Двигатели постоянного тока Двигатели постоянного тока Машина постоянного тока может работать как генератор и как двигатель. Глава 5. Электрические машины Уилди, 6 е Лектор: Р. Альба-Флорес, Альфред, государственный колледж, весна 2008 г. Когда машина постоянного тока

Дополнительная информация

UCI274C - Технический паспорт

- Технический паспорт ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ОПЦИИ СТАНДАРТЫ Промышленные генераторы Newage Stamford отвечают требованиям BS EN 60034 и соответствующим разделам других международных стандартов, таких как BS000,

Дополнительная информация

Настройка для ШИМ-испытаний двигателя BLDC

Установка для ШИМ-тестов двигателя BLDC Автор: Арбер Никай Дата: 11.11.13 Аннотация В данной заметке по применению рассматривается управление двигателем BLDC и предлагается решение для настройки мотора BLDC для тестирования ШИМ с использованием Texas

. Дополнительная информация

UCI274H - Технический паспорт

- Технический паспорт ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ОПЦИИ СТАНДАРТЫ Промышленные генераторы Newage Stamford отвечают требованиям BS EN 60034 и соответствующим разделам других международных стандартов, таких как BS000,

Дополнительная информация

ГЕНЕРАТОРЫ СЕРВИСА СУДОВ (AC)

ГЛАВА 14 ГЕНЕРАТОРЫ ОБСЛУЖИВАНИЯ СУДОВ (AC) ВВЕДЕНИЕ Все генераторы превращают механическую энергию в электрическую.Это самый простой способ передачи энергии на расстояния. Топливо используется для работы

Дополнительная информация

BCI184E - Технический паспорт

BCI184E - Технический паспорт BCI184E ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ОПЦИИ СТАНДАРТЫ Промышленные генераторы Newage Stamford отвечают требованиям BS EN 60034 и соответствующим разделам других международных стандартов

Дополнительная информация

Теория нагрева индукцией

ГЛАВА 2 Теория нагрева индукционным индукционным нагревом впервые была отмечена, когда было обнаружено, что тепло вырабатывается в обмотках трансформатора и двигателя, как упоминалось в главе «Обработка металла

». Дополнительная информация

Теория асинхронного двигателя

PDHonline Course E176 (3 PDH) Теория асинхронного двигателя Инструктор: Джерри Р.Беднарчик П.Е. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Телефон и факс: 703-988-0088 www.pdhonline.org

Дополнительная информация ,

Однофазный асинхронный двигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель представляет собой асинхронный электродвигатель, который работает от однофазной сети переменного тока без использования преобразователя частоты и который в базовом режиме работы (после запуска) использует только одну обмотку (фазу). статора.

Сплитфазный двигатель - это однофазный асинхронный двигатель, имеющий вспомогательную (пусковую) обмотку на статоре, смещенную от основной, и короткозамкнутый ротор [2].

Конструкция однофазного асинхронного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор является вращающейся частью электродвигателя, статор является неподвижной частью электродвигателя, с помощью которого создается магнитное поле для вращения ротора. Construction of a single-phase motor

Основные части однофазного асинхронного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90 ° относительно друг друга.Основная (рабочая) обмотка обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически двухфазный, но поскольку после запуска работает только одна обмотка, электродвигатель называется однофазным.

Ротор обычно представляет собой короткозамкнутую обмотку, также называемую «короткозамкнутой клеткой» из-за сходства. Чьи медные или алюминиевые стержни закрыты кольцами на концах, а пространство между стержнями часто заполнено алюминиевым сплавом.Ротор однофазного двигателя также может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Windings of single-phase motor

Однофазный асинхронный двигатель со вспомогательной обмоткой имеет две обмотки, расположенные перпендикулярно друг другу

Принцип работы однофазного асинхронного двигателя

Чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотках.

Induction motor windings

Анализ корпуса с двумя обмотками, имеющими один оборот

Рассмотрим случай, когда ток не течет во вспомогательной обмотке.При включении основной обмотки статора переменный ток, проходящий через обмотку, создает пульсирующее магнитное поле, стационарное в пространстве, но колеблющееся от + Ф макс. до -Ф макс. .

Старт

Стоп

Pulsating magnetic field

Колеблющееся магнитное поле

Если вы поместите короткозамкнутый ротор с начальным вращением в флуктуирующее магнитное поле, он продолжит вращаться в том же направлении.

Чтобы понять принцип работы однофазного асинхронного двигателя, мы разделяем флуктуирующее магнитное поле на два одинаковых вращающихся поля с амплитудой, равной Ф макс. /2 и вращающихся в противоположных направлениях с одинаковой частотой:

,

  • где n f - скорость вращения магнитного поля в прямом направлении, об / мин,
  • n r - скорость вращения магнитного поля в обратном направлении, об / мин,
  • f 1 - частота тока статора, Гц,
  • - число пар полюсов,
  • n 1 - скорость вращения магнитного потока, об / мин

Старт

Стоп

The decomposition of the fluctuating magnetic field

Разложение флуктуирующего магнитного потока на два вращающихся

Действие флуктуирующего поля на вращающийся ротор

Рассмотрим случай, когда ротор в флуктуирующем магнитном потоке имеет начальное вращение.Например, мы вручную вращали вал однофазного двигателя, одна обмотка которого подключена к электросети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать крутящий момент, поскольку ротор скольжения относительно прямого и обратного магнитного потока будет неравным.

Предположим, что прямой магнитный поток Ф f вращается в направлении вращения ротора, а обратный магнитный поток Ф r в противоположном направлении. Поскольку скорость вращения ротора n 2 меньше скорости вращения магнитного потока n 1 , то скольжение ротора относительно потока Ф f будет:

,

  • где s f - скольжение ротора относительно прямого магнитного потока,
  • n 2 - частота вращения ротора,
  • с асинхронным двигателем скольжения
Single-phase motor magnetic field

Прямой и обратный вращающийся магнитный поток вместо флуктуирующего магнитного потока

Магнитный поток Ф r вращается против вращения ротора, скорость вращения ротора n 2 относительно этого потока отрицательна, а скольжение ротора относительно Ф r

,

  • , где s r - скольжение ротора относительно обратного магнитного потока

Старт

Magnetic field penetrating the rotor

Стоп

Rotating magnetic field

Вращающееся магнитное поле, пронизывающее ротор

The current of induction motor rotor

Ток, индуцированный в роторе переменным магнитным полем

Согласно закону электромагнитной индукции, магнитные потоки прямого Ф f и обратного Ф r , генерируемые обмоткой статора, индуцируют ЭДС в обмотке ротора, которая, соответственно, в короткозамкнутом роторе генерирует токи I 2f. а я .Частота тока в роторе пропорциональна скольжению, поэтому:

,

  • где f 2f - частота тока I 2f , индуцированного прямым магнитным потоком, Гц

,

  • где f 2r - частота тока I 2r , индуцированного обратным магнитным потоком, Гц

Таким образом, когда ротор вращается, электрический ток I 2r , индуцированный обратным магнитным полем в обмотке ротора, имеет частоту f 2r , намного превышающую частоту f 2f тока ротора I 2f индуцируется передним полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f 1 = 50 Гц при n 1 = 1500 и n 2 = 1440 об / мин,

скольжения ротора относительно прямой магнитный поток s f = 0,04;
частота тока, индуцированного прямым магнитным потоком f 2f = 2 Гц;
проскальзывание ротора относительно обратного магнитного потока а с р = 1,96;
частота тока, индуцированного обратным магнитным потоком f 2r = 98 Гц

Magnetic torque acting on the rotor

Согласно закону Ампера, крутящий момент возникает в результате взаимодействия электрического тока I 2f с магнитным полем F f

,

  • где M f - магнитный момент, создаваемый прямым магнитным потоком, Н, м,
  • с М - постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I 2r , взаимодействуя с магнитным полем Ф r , создает тормозной момент M r , направленный против вращения ротора, то есть в противоположность моменту M f :

,

  • , где M r - магнитный момент, создаваемый обратным магнитным потоком, Н 900 м

Результирующий крутящий момент, действующий на ротор однофазного асинхронного двигателя,

,

Примечание: В связи с тем, что во вращающемся роторе прямое и обратное магнитное поле будет индуцировать ток различной частоты, крутящие моменты, действующие на ротор в разных направлениях, не будут одинаковыми.Следовательно, ротор будет продолжать вращаться в флуктуирующем магнитном поле в направлении, в котором он имел начальное вращение.

Эффект торможения обратного поля

Когда однофазный двигатель работает в пределах номинальной нагрузки, то есть при малых значениях скольжения s = s f , крутящий момент создается в основном за счет крутящего момента M f . Эффект торможения от крутящего момента обратного поля M r незначительный. Это связано с тем, что частота f 2r значительно выше частоты f 2f , поэтому индуктивное сопротивление обмотки ротора а х 2r = x 2 с r к току У меня намного больше, чем у него активное сопротивление.Поэтому ток I 2r , имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Ф r , значительно ослабляя его.

,

  • где r 2 - сопротивление стержней ротора, Ом,
  • x 2r - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности мал, то станет понятно, почему M r под нагрузкой двигателя не оказывает существенного тормозного воздействия на ротор однофазного двигателя.

Torques acting on the fixed rotor

При одной фазе ротор не может быть запущен.

Torques acting on the rotating rotor

Ротор с начальным вращением будет продолжать вращаться в поле, создаваемом однофазным статором

Действие флуктуирующего поля на неподвижный ротор

При неподвижном роторе (n 2 = 0) скольжение s f = s r = 1 и M f = M r , поэтому начальный пусковой момент однофазного асинхронного двигателя M f = 0.Чтобы создать пусковой момент, необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, равенство моментов М f и М r нарушается, и результирующий электромагнитный момент приобретает некоторое значение M = M f - M r ≠ 0.

Запуск однофазного асинхронного двигателя. Как создать начальный поворот?

Одним из способов создания пускового крутящего момента в однофазном асинхронном двигателе является расположение вспомогательной (пусковой) обмотки B, которая смещена в пространстве относительно главной (рабочей) обмотки A под углом 90 электрических градусов.Для того чтобы обмотки статора создавали вращающееся магнитное поле, токи I A и I B в обмотках должны быть не в фазе относительно друг друга. Для получения фазового сдвига между токами I A и I B вспомогательная (пусковая) обмотка B подключена к фазосдвигающему элементу, который представляет собой сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор). [1].

После того, как ротор двигателя ускоряется до скорости вращения, близкой к постоянной, пусковая обмотка B отключается.Вспомогательная обмотка отключается либо автоматически с помощью центробежного переключателя, реле задержки времени, тока или дифференциального реле, либо вручную с помощью кнопки.

Таким образом, во время запуска однофазный асинхронный двигатель работает как двухфазный, а после запуска - как однофазный.

Подключение однофазного асинхронного двигателя

Сопротивление пуска асинхронного двигателя

Сопротивление пуска Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки отличается повышенным сопротивлением.

Wiring diagram of a single-phase motor with starting resistance

Омический фазовый сдвиг, бифилярная пусковая обмотка

Single phase motor with different winding resistance

Различное сопротивление и индуктивность обмоток

Для запуска однофазного асинхронного двигателя вы можете использовать пусковой резистор, который последовательно подключен к пусковой обмотке. В этом случае можно добиться сдвига фаз на 30 ° между токами главной и вспомогательной обмоток, чего вполне достаточно для запуска двигателя.В двигателе с пусковым сопротивлением разность фаз объясняется различным комплексным сопротивлением цепей.

Кроме того, фазовый сдвиг можно создать с помощью пусковой обмотки с меньшей индуктивностью и большим сопротивлением. Для этого пусковая обмотка выполняется с меньшим числом витков и с использованием более тонкой проволоки, чем в основной обмотке.

Пусковой конденсаторный асинхронный двигатель

Конденсаторный запуск Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Wiring diagram of a single-phase motor with starting capacitor

Емкостный фазовый сдвиг с пусковым конденсатором

Для достижения максимального пускового крутящего момента требуется создать круговое вращающееся магнитное поле, для этого необходимо, чтобы токи в основной и вспомогательной обмотках были смещены относительно друг друга на 90 °. Использование резистора или дросселя в качестве элемента, сдвигающего фазу, не обеспечивает требуемого сдвига фаз. Только включение конденсатора определенной емкости позволяет сдвиг фазы на 90 °.

Среди фазосдвигающих элементов только конденсатор позволяет достичь наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели, в цепи которых постоянно включенный конденсатор, используют две фазы для работы и называются конденсаторными. Принцип работы этих двигателей основан на использовании вращающегося магнитного поля.

Асинхронный двигатель с заштрихованными полюсами представляет собой двухфазный двигатель, в котором вспомогательная обмотка замкнута накоротко.

Статор однофазного асинхронного двигателя с заштрихованными полюсами обычно имеет выступающие полюса. Каждый полюс статора разделен на две неравные секции осевой канавкой. Меньшая часть полюса имеет короткозамкнутый виток. Ротор однофазного двигателя с заштрихованными полюсами закорочен в виде короткозамкнутого сепаратора.

Когда однофазная обмотка статора включена в электрическую сеть, в магнитной цепи двигателя создается флуктуирующий магнитный поток.Одна часть которого проходит через затененный Ф ', а другая Ф' вдоль затененного участка полюса. Поток Ф 'вызывает короткое замыкание ЭДС E k , в результате чего ток I k отстает от E В фазе к из-за индуктивности катушки. Ток I к создает магнитный поток Ф к , направленный противоположно Ф ", создавая результирующий поток в затененном участке полюса Ф с = Ф" + Ф к . Таким образом, в двигателе потоки затененных и незатененных участков полюса смещаются во времени на определенный угол.

Пространственные и временные углы сдвига между потоками Ф с и Ф 'создают условия для появления вращающегося эллиптического магнитного поля в двигателе, начиная с Ф с ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя низкие. КПД намного ниже, чем у асинхронных двигателей с пусковым конденсатором той же мощности, что связано со значительными электрическими потерями в короткозамкнутой катушке.

Single-phase induction motor with asymmetrical stator

Статор такого однофазного двигателя выполнен с выступающими полюсами на несимметричном многослойном сердечнике.Ротор имеет короткозамкнутую обмотку.

Этот двигатель для работы не требует использования фазосдвигающих элементов. Недостатком этого мотора является низкий КПД.

Также прочитайте

.

Как найти уравнения касательных и нормальных линий

Краткий обзор

  • Чтобы найти уравнение прямой, вам нужны точка и наклон.
  • Наклон касательной линии - это значение производной в точке касания.
  • Нормальная линия - это линия, которая перпендикулярна касательной и проходит через точку касания.

Примеры

Пример 1

Предположим, $$ f (x) = x ^ 3 $$.2 - (-1) = 1 + 1 = 2 $$

Дело в том, что $$ (- 1, 2) $$.

Шаг 4

Найти уравнение прямой через точку $$ (- 1,2) $$ с наклоном $$ m = -3 $$.

$$ \ Начать {*} Align y -y_1 & = m (x-x_1) \\ [6pt] у - 2 & = -3 (х - (-1)) \\ [6pt] у - 2 & = -3 (х + 1) \ Конец {*} выравнивание $$

Ответ

$$ у - 2 = -3 (х + 1) $$

Для справки вот график функции и касательной, которую мы только что нашли.

Касательные линии к неявным кривым

Процедура не изменяется при работе с неявно определенными кривыми.2 & = 12 \\ [6pt] y & = \ pm \ sqrt {12} \\ [6pt] y & = \ pm \ sqrt {4 \ cdot 3} \\ [6pt] y & = \ pm2 \ sqrt 3 \ Конец {*} выравнивание $$

Поскольку в задаче говорится, что нас интересует $$ y> 0 $$, мы используем $$ y = 2 \ sqrt 3 $$.

Точка касания $$ (2, 2 \ sqrt 3) $$.

Шаг 2

Найдите уравнение для $$ \ frac {dy} {dx} $$.

Так как уравнение неявно определено, мы используем неявное дифференцирование.

$$ \ Начать {*} Align 2x + 2y \, \ frac {dy} {dx} & = 0 \\ [6pt] 2y \, \ frac {dy} {dx} & = -2x \\ [6pt] \ frac {dy} {dx} & = - \ frac {2x} {2y} \\ [6pt] \ frac {dy} {dx} & = - \ frac x y \ Конец {*} выравнивание $$

Шаг 3

Найти наклон касательной в точке касания.

В точке $$ (2,2 \ sqrt 3) $$ наклон касательной линии составляет

$$ \ Начать {*} Align \ frac {dy} {dx} \ bigg | _ {(\ blue {2}, \ red {2 \ sqrt 3})} & = - \ frac {\ blue 2} {\ red {2 \ sqrt 3}} \\ [6pt] & = - \ frac 1 {\ sqrt 3} \\ [6pt] & = - \ frac 1 {\ sqrt 3} \ cdot \ blue {\ frac {\ sqrt 3} {\ sqrt 3}} \\ [6pt] & = - \ frac {\ sqrt 3} 3 \ Конец {*} выравнивание $$

Наклон касательной линии составляет $$ m = - \ frac {\ sqrt 3} 3 $$.

Шаг 4

Найти уравнение касательной через $$ (2,2 \ sqrt 3) $$ с наклоном $$ m = - \ frac {\ sqrt 3} 3 $$.

В точке $$ (2,2 \ sqrt 3) $$ наклон касательной линии составляет

$$ \ Начать {*} Align y - y_1 & = m (x-x_1) \\ [6pt] y - 2 \ sqrt 3 & = - \ frac {\ sqrt 3} 3 (x-2) \ Конец {*} выравнивание $$

Ответ

Уравнение касательной линии: $$ y - 2 \ sqrt 3 = - \ frac {\ sqrt 3} 3 (x-2) $$

Для справки: график кривой и касательной, которую мы нашли, показан ниже.

Нормальные Линии

Предположим, у нас есть касательная к функции. Функция и касательная пересекаются в точке касания.Линия, проходящая через ту же точку, которая перпендикулярна касательной линии, называется нормальной линией .

Напомним, что когда две линии перпендикулярны, их наклоны являются отрицательными взаимными. Так как на склоне тан

.

Смотрите также


avtovalik.ru © 2013-2020