Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как обозначается мощность двигателя


Мощность электродвигателя | Полезные статьи

Наиболее распространенным типом промышленных силовых установок являются асинхронные электродвигатели. Один из наиболее важных их параметров — мощность электродвигателя, которая в зависимости от модели может варьироваться в широких пределах. От мощности зависит тип энергосистемы, к которой двигатель можно подключить, а также тип и производительность оборудования, с которым он будет сопряжен. По этой причине, не зная мощность электродвигателя, использовать его практически невозможно.

Определение мощности электромотора по размерам сердечка статора

Если технического паспорта нет, можно произвести расчет мощности электродвигателя, исходя из размеров сердечника статора и частоты вращения. Для этого используется формула P 2H = C * D12 / N1 * 10-6кВт. Здесь:
С —постоянная мощность;
D — размер внутреннего диаметра сердечника статора в см;
l — длина статора в см;
N1 — значение синхронной частоты вращения в об/мин.

Постоянная мощность зависит от частоты вращения и габаритов мотора. Она определяется по величине полюсного деления как зависимость мощности от количества полюсов и размеров полюсного деления τ, если U1 < 500В.

Число полюсов Полюсное деление, см
10 20 30 40 50 60
2 0,4 1,4 2,2 2,7 3,15 3,9
4 1,1 2,2 3,0 3,5 3,8 4,2
6 1,7 2,9 3,8 4,35 4,8

τ = πD1 / 2р см.
2р здесь — количество полюсов в моторе.

Полученный по этой формуле результат необходимо округлить до наиболее подходящего значения в таблице. Это самый простой и доступный метод, по которому может быть осуществлен расчет мощности электродвигателя.

Подбор требуемой мощности электродвигателя

Правильно подобранная мощность электродвигателя позволяет получить оптимальные технико-экономические показатели электропривода по себестоимости, размерам, экономичности и прочим параметрам. При стабильной нагрузке на электродвигатель определить его мощность можно просто выбором по каталогу, исходя из соотношения Р н ≥ Рнагр. Здесь Рн — это мощность подбираемого двигателя, а Рнагр — предполагаемая мощность нагрузки.

Потребляемая мощность электромотора

Рисунок 1. Шильдик с параметрами на корпусе электродвигателя Работая с электромоторами, нужно знать, как по шильдику определяется потребляемая мощность электродвигателя. Значение мощности Р — это не электрическая мощность мотора, а механическая мощность на валу, обозначенная в кВт.

Чтобы найти потребляемую мощность, нужно обратить внимание на КПД и cosφ двигателя, указанные на шильдике. Причем КПД может быть обозначен как просто буквами КПД, так и буквой η, что и видно на шильдике. Сначала необходимо найти активную мощность, потребляемую двигателем от сети, по формуле Ра = Р / КПД.

Т. е. в нашем случае (рис. 1) потребляемая электродвигателем из сети активная мощность равна Ра = 0,75кВт/0,75 = 1 кВт. Теперь, чтобы найти полную потребляемую мощность, нужно воспользоваться формулой S = P a/cosφ = 1/0,78 = 1,28 кВт.

 

Коэффициент мощности электромотора

Коэффициент мощности электродвигателя, или cos φ — это соотношение активной и полной мощности двигателя. Определяется коэффициент мощности электродвигателя по формуле cosφ = P/S. Здесь:
Р — активная мощность в Вт;
S — полная мощность в ВА.

В большинстве случаев активная мощность имеет меньшее значение, чем полная, из-за чего коэффициент составляет меньше единицы. Только тогда, когда нагрузка будет исключительно активной, cosφ станет равен единице.

Чем ниже коэффициент мощности потребителя, тем более мощными должны быть трансформаторы, электрические станции, а также питающие линии электропередач. Кроме того, моторы с низким коэффициентом имеют меньший КПД и большие энергопотери.

Как работают двигатели за 10 минут

Двигатель является частью каждого легкового и грузового автомобиля на планете. Является ли двигатель на бензине или электричестве ваш автомобиль не двигался бы, если бы не двигатель. газ приводимые в движение двигатели бывают двух видов, бензиновые или дизельные. Оба замечательно похоже с единственной реальной разницей, являющейся степенью сжатия и зажигания система, которая зажигает топливо внутри камеры сгорания. Давайте начнем глубоко внутри двигателя в центре, где производится мощность, сгорание камера.Эта камера состоит из поршня, в цилиндре двигателя внутри блока цилиндров цилиндр голова вместе с впускными и выпускными клапанами. Пока поршень движется вниз в цилиндре заряд эмульгированного топлива отправляется в сгорание камера через топливо инжектор.

Как только это произойдет, поршень начнет двигаться вверх в отверстии цилиндра. при этом впускной клапан закрывается. Это уплотняет камеру сгорания, чтобы поршень может сделать сжатие при движении вверх, которое затем воспламеняется системой зажигания когда поршень приближается к вершине своего хода.Это вызывает заряд топлива / воздуха зажигать, вызывая взрыв, который ведет поршень вниз, что создает сила. В руководстве ниже мы покажем вам каждую часть двигателя и как мощность передается на передачу, которая затем подключается к задние или передние колеса.

СПОНСОРНЫЕ ССЫЛКИ

Вот видео двигателя в действии, чтобы вы могли понять, что происходит внутри двигателя во время его работы.Это видео показывает каждый цикл обработать; впуск, сжатие, сгорание и выхлоп. Требуется поршень два вверх и вниз, чтобы завершить цикл, поэтому мы называем это четыре велосипедный двигатель.

Смотреть видео!

Что не так?

Двигатель работает с невероятной силой и теплом при каждой тяге. поршня. Есть несколько вспомогательных систем, которые должны работать такой порядок, как смазка и система охлаждения чтобы двигатель работал.Кроме того, есть множество быстро движущихся внутренних движущихся частей, которые ставятся через стресс и напряжение от толчка и натяжения при экстремальных давлениях. Когда есть небольшая внутренняя проблема, такая как с частями клапана клапана, такими как ведомый кулачок это может привести к тикающий или щелкающий шум вместе с осечка цилиндра. Когда происходят более экстремальные отказы, такие как поршень или шток отказ может привести к более серьезной проблеме двигателя, такой как вибрация или двигатель полностью заблокируется.

Сколько это стоит?

При выходе из строя двигателя существует три способа решения проблемы, каждый из которых будет связан с разницей затрат. Когда двигатель имеет проблемы, Первым шагом является оценка ущерба и возможных сценариев такой ремонт. Например; двигатель сбросил седло клапана с цилиндра голову, и это заставило клапан оставаться открытым, который затем контактирует с поршнем. Один диагноз может быть снять головку и закрепить клапан.Дополнительный ремонт, который должен быть Мысль о том, что с поршнем он контактировал и в какой степени повреждения это вызвало? В некоторых случаях есть незначительный ущерб, который больше не причинит проблемы в то время как в других случаях кольцо было скомпрометировано на поршне, который будет Требуется дальнейшая разборка, чтобы исправить с дополнительной стоимостью, а также.

Если двигатель имеет просто изношен или поврежден до момента замены, затем новый, восстановленный или Подержанный двигатель может быть установлен.Эти расходы будут значительно варьироваться из-за производитель и как двигатель вместе, когда он прибывает для установки такие как впускной и выпускной коллекторы. Для замены типичного автомобиля вы можете ожидайте, что заплатите от 1400,00 до 2500,00 долларов США за рабочую силу и от 2500,00 долларов США. и 5000 долларов США (США) за восстановленный заводской двигатель. Подержанные двигатели будут стоить дешевле между 800,00 и 1800,00 долл. США (США). Если вы решили пойти с подержанным трудом снимите двигатель в случае, если он неисправен, как правило, не распространяется, так что это хорошая идея, чтобы получить двигатель с низким пробегом на нем.

СПОНСОРНЫЕ ССЫЛКИ

Давайте начнем

1. Камера сгорания

На изображении ниже - камера сгорания (выреза), где находится топливно-воздушная смесь сжатый и воспламененный. В нижнем центре вы можете увидеть поршень и поршневые кольца, когда они движутся вверх и вниз внутри отверстия цилиндра. Впускной и выпускной клапаны находятся в верхняя часть вместе с электродом свечи зажигания, где искра генерируется для воспламенения горючей воздушно-газовой смеси.Это тоже хорошо посмотрите на впускной и выпускной клапаны и порты. Многие двигатели имеют два впускных и два выхлопных клапаны, чтобы помочь работе двигателя.

2. Поршни и отверстие цилиндра

Вот изображение в разрезе двигателя V8, которое показывает, как поршни прикреплен к коленчатому валу, который вращается внутри блока цилиндров вместе с головками цилиндров прикручен к верхней части блока колод. Прямо шесть, пять или четыре цилиндра имеет только одна головка цилиндра.

СПОНСОРНЫЕ ССЫЛКИ

3. Шатуны поршневые

На этом изображении показано, как поршень крепится к коленчатому валу с помощью поршень или шатун. Этот стержень имеет крышку, расположенную в нижней части стержня который разделяется на две части, так что его можно прикрутить к коленчатому валу с помощью двух стержней болты. (Трудно увидеть линию, где отделяется крышка штока.) Это место, где расположен подшипник штока, который позволяет коленчатому валу поворачивайте при смазке масляным насосом и системой смазки.На вершине На штоке есть штырь, который расположен через поршень и может поворачиваться в нижней части корпуса поршня.

4. Коленвал

Коленчатый вал - это то, где все поршни и шатуны тоже соединены и часть, которая прикреплена болтами к маховику и трансмиссии. Вся сила двигатель создает переданный через коленчатый вал, который сидит в нижней середина блока двигателя.Он удерживается на месте благодаря использованию крышек коренных подшипников. которые крепятся болтами к блоку, в котором находятся главные подшипники коленчатого вала. Эти подшипники также смазывается моторным маслом и системой смазки. Передняя часть коленчатого вала выступает наружу из двигателя, чтобы обеспечить власть, чтобы включить автомобильные аксессуары такой как генератор, вода насос и воздух кондиционер. Задняя часть коленчатого вала выходит из задней части двигателя в подключиться к маховик, а затем трансмиссия для обеспечения питания автомобиля.Утечки масла контролируются фронт главное уплотнение и заднее главное уплотнение.

СПОНСОРНЫЕ ССЫЛКИ

5. Главные подшипники и блок двигателя

Вот как выглядят главные подшипники коленчатого вала двигателя, когда коленчатый вал устранен. На изображении ниже приведен пример половины или подшипник. Оставшаяся половина находится в крышке подшипника, которая крепится болтами к блок двигателя.Подшипники штока поршня выглядят одинаково, за исключением того, что они немного меньше по размеру. Вы можете увидеть отверстие в середине подшипника, где моторное масло предоставляется для смазки.

6. Распределительный вал и головка цилиндра

Распределительный вал - длинный цилиндрический металлический вал, который сделан с очень специфическим лепестки, которые предназначены для открытия и закрытия впускных и выпускных клапанов, которые вовремя с положением поршня.Этот вал расположен в цилиндр головка или блок двигателя в зависимости от конструкции двигателя. Это важная часть двигателя - это то, что контролирует впускные и выхлопные газы от проникновения и покидая камеру сгорания во время процессов сгорания. На этом изображении Головка цилиндров была частично снята, чтобы вы могли увидеть, как работают распределительные валы с клапанами.

Вот разрез головки блока цилиндров, на котором показаны впускной и выпускной патрубки которые контролируются клапаном в каждом порту.Эти клапаны герметизируют горение камера, поэтому, когда поршень движется вверх, это может создать сжатие для процесс сгорания.

СПОНСОРНЫЕ ССЫЛКИ

7. Цепь или ремень ГРМ

Цепь или ремень ГРМ используется для поворота распределительных валов, которые открывают и закрывают клапаны. Эта цепь или ремень предназначены для идеального сохранения распредвала корреляция с коленчатым валом и повороты распредвала один раз на каждые два раз коленчатый вал крутится.Эта цепь или ремень проходит от коленчатого вала до распределительные валы.

Натяжитель используется для предотвращения провисания цепи привода ГРМ или ремня, которая необходимо удерживать цепь или ремень от времени прыжка, пока двигатель Бег. Цепь ГРМ или ремень приводится в движение коленчатым валом с помощью привода рядом с передним главным уплотнением и гармонический балансировщик.

СПОНСОРНЫЕ ССЫЛКИ

, где все начинается

8.Дроссельная заслонка

Двигатель в основном большой воздушный насос, который сжигает топливо. Процесс начинается в отверстии дросселя, которое связано с впускным коллектором. Это где двигатель воздуха регулируется. Частота вращения и мощность двигателя контролируются этим устройство, которое открывается, чтобы дать больше воздуха внутри, создавая дополнительный питание, а затем закрывается, чтобы отключить питание. Этот воздушный поток контролируется датчик массового расхода воздуха и очищается воздушный фильтр.

9.Впускной коллектор

Как только воздух прошел через дроссель Привод он поступает во впускной коллектор, где он разделен и разделен между отдельными цилиндрами впускные отверстия внутри головки цилиндров. Затем воздух контролируется впускным клапаном. Этот коллектор болтов прямо на головки цилиндров и могут быть изготовлены из пластика или алюминия.

10. Топливная форсунка

СПОНСОРНЫЕ ССЫЛКИ

А топливная форсунка используется для контроля и измерения количества поступающего топлива двигатель в любой момент времени.Пока двигатель находится под нагрузкой и больше мощности Необходимая команда для большего количества топлива дается автомобилем компьютер (PCM). Топливная форсунка является частью топливо Система впрыска. На изображении ниже представлен комплект с непосредственным впрыском топлива инжекторы, которые распыляют топливо непосредственно в камеру сгорания вблизи времени воспламенение в отличие от традиционных топливных форсунок, которые распыляют во впускной канал сразу за впускным клапаном.

11.Катушка зажигания

После сжатия топливно-воздушной смеси катушка зажигания подает заряд высокого напряжения с малой силой тока на свеча зажигания. Этот процесс также управляется компьютером машины, который получает ссылку на каждый поршень положение с помощью Датчик угла поворота коленчатого вала.

12. Масляный насос

Масляный насос используется для сбора масла из масляного поддона и его накачки двигатели внутренних движущихся частей.Этот насос может приводиться в движение различными способами, этот конкретный насос приводится в действие цепью в передней части коленчатого вала. масляный насос определяет величину давления масла в двигателе, используя пружина давления установлена ​​в предохранительном клапане насоса.

СПОНСОРНЫЕ ССЫЛКИ

Охлаждающая жидкость двигателя используется для охлаждения двигателя во время работы с помощью система охлаждения. Эта охлаждающая жидкость циркулирует внутри блока двигателя и головок цилиндров, чтобы сохранить тепло двигателя от внутреннего повреждения.Водяной насос используется для перемещения охлаждающей жидкости в радиатор охлаждаться и затем возвращаться обратно в двигатель, чтобы процесс мог начаться снова.

Есть вопросы?

Если у вас есть двигатель пожалуйста, посетите наш форум. Если тебе надо совет по ремонту автомобиля, пожалуйста спросите наше сообщество механиков с радостью вам помогу и это всегда 100% свободно.

Мы надеемся, что вам понравилось это руководство и видео. Мы создаем полный набор руководства по ремонту автомобилей.пожалуйста подписаться на наш 2CarPros Канал YouTube и часто проверяйте наличие новых видео, которые загружены почти каждый день.

СПОНСОРНЫЕ ССЫЛКИ

Статья опубликована 2018-09-06

,Самостоятельная диагностика

: причины низкой мощности двигателя

Вялое поведение двигателя очень часто можно проследить по изношенным или неисправным деталям в системе зажигания. Некоторые компоненты системы нуждаются в обслуживании через регулярные промежутки времени. Например, свечи зажигания и провода свечей зажигания, но следует также проверить катушку зажигания и время зажигания. Если какой-либо из этих компонентов приведет к тому, что вы не получите хорошую искру, ваш двигатель будет работать медленно.

Что вы можете сделать: Когда вы чувствуете, что ваш двигатель работает вяло, одной из первых проверок должна быть проверка силы искры.Используйте регулируемый искровой тестер (Thexton является приемлемым брендом), чтобы проверить состояние искры. Проверьте на 40 кВ и 30 кВ. Если ваша искра не может преодолеть этот зазор при таких настройках, возможно, у вас изношены провода, слабый или неисправный распределитель, плохая катушка зажигания или плохой модуль управления зажиганием, в зависимости от вашего конкретного модуля. Проверьте последующие тесты и обратитесь к руководству по ремонту вашего автомобиля для правильной диагностики для вашей конкретной модели. Если у вас нет инструкции по обслуживанию производителя, я настоятельно рекомендую приобрести руководство по послепродажному обслуживанию для вашей конкретной модели (Haynes - хороший недорогой бренд).

При визуальном осмотре компонентов системы зажигания, таких как крышка распределителя, ротор, катушка зажигания или пакет катушек, также обратите внимание на следы углерода, накопление углерода и повреждения. Следы углерода похожи на маленькие линии углерода, которые образуются вокруг этих компонентов. Они могут отключить напряжение, проходящее через систему, лишив свечи зажигания необходимого напряжения, чтобы произвести хорошую искру. Замените их при необходимости.

После проверки силы искры, при необходимости, проверьте следующие отдельные компоненты системы.

1. Свечи зажигания

Свечи зажигания могут быть загрязнены отложениями углерода и другими химическими побочными продуктами, особенно если автомобиль не обслуживается в соответствии с предложенным графиком.

Загрязненные свечи не могут дать достаточную искру для воспламенения топливовоздушной смеси. Кроме того, после многих миль обслуживания, зазор между электродами искрового парка увеличится из-за износа.

Что вы можете сделать: Проведите визуальный осмотр свечей зажигания, проверьте зазор между электродами с помощью щупа и отрегулируйте его при необходимости.В руководстве по эксплуатации вашего автомобиля или в руководстве по ремонту предусмотрен зазор для свечей зажигания. Ваше руководство по обслуживанию может помочь вам проанализировать ваши свечи зажигания, которые могут многое рассказать о состоянии вашего двигателя.

2. Провода свечи зажигания

Точно так же, как свечи зажигания, провода свечей зажигания изнашиваются, и после миль работы они могут препятствовать тому, чтобы искра достигла свечей зажигания.

Что вы можете сделать: Проверьте сопротивление каждого провода с помощью цифрового мультиметра (DMM) и сравните ваши показания со спецификациями в вашем руководстве по ремонту.Обычно вам нужно около 5000 Ом на фут провода. В противном случае замените их качественным комплектом проводов.

3. Катушка зажигания

Катушка зажигания вырабатывает высокое напряжение, необходимое для того, чтобы искра прыгала в промежуток между электродами свечи зажигания. Это напряжение обычно составляет от 4000 до 30000 вольт, в зависимости от конкретной модели автомобиля.

Катушки зажигания также изнашиваются или выходят из строя, что приводит к слабой искре, прерывистой искре или ее отсутствию.

Что вы можете сделать: Возможно, вы сможете проверить катушку (и) зажигания в вашем автомобиле с помощью цифрового мультиметра с помощью руководства по ремонту вашего автомобиля.

4. Время зажигания

Время зажигания относится к взаимосвязи между искрой и положением поршня в цилиндре во время рабочего такта.

Время зажигания должно быть правильным для правильного сгорания топливовоздушной смеси. При задержке зажигания вы можете заметить увеличение расхода топлива, снижение мощности двигателя и плохое ускорение.

Проблемы с синхронизацией могут возникнуть из-за изношенного (чрезмерно растянутого) или поврежденного ремня ГРМ или цепи. Даже 2 или 3 степени отличия от правильного времени могут привести к проблемам с работой двигателя.

На большинстве современных автомобилей момент зажигания не может быть отрегулирован напрямую, но вы все равно можете проверить время самостоятельно. На старых моделях с дистрибьютором вы можете проверить и отрегулировать время самостоятельно.

Чтобы узнать характеристики синхронизации, проверьте наклейку контроля выбросов, расположенную в моторном отсеке, или руководство по ремонту.

Что вы можете сделать: Проверьте время зажигания с помощью индикатора времени и тахометра. Если ваша система зажигания использует распределитель, вы можете отрегулировать время самостоятельно, если это необходимо. Обратитесь к руководству по ремонту вашего автомобиля. В вашем руководстве также может быть указан интервал обслуживания для ремня или цепи.

Как работает реактивный двигатель

Возможно, вы задавались вопросом, как работает реактивный двигатель, но отказались от идеи, что вы сможете понять ракетостроение. Но на самом деле это простая концепция, которая поразит человека рядом с вами на вашем следующем рейсе. Итак, мы собираемся объяснить вовлеченные процессы, чтобы каждый мог получить хорошее представление о принципах, лежащих в основе реактивных двигателей.

Реактивные двигатели, более часто используемые для самолетов, представляют собой тип газотурбинного двигателя.Теперь вы можете знать паровые турбины, где топливо сжигается для производства высокотемпературного протекающего пара, который приводит в движение турбину, а затем вращает вал, прежде чем будет выпущен из системы. Поворот этого вала является выходной мощностью, и именно это вращение приводит в движение вращающийся объект. Газовая турбина напоминает те же основные принципы, однако за работу турбины отвечает газ под давлением. В реактивных двигателях высокотемпературный газ под давлением обеспечивает вращение компрессора спереди, но, что более важно, то, что выпускается из системы, вылетает сзади на высоких скоростях, создавая то, что известно как тяга.

Проще говоря, реактивные двигатели имеют сердечник, который разделен на три основные части:

  • Компрессор - в передней части двигателя расположены лопасти вентилятора, некоторые вращающиеся (роторы) и некоторые статические (статоры), которые всасывают воздух в двигатель. Существует множество рядов лопастей, и, когда воздух проходит мимо каждого ряда, он становится все более герметичным и температура повышается.
  • Камера сгорания - этот сжатый воздух затем распыляется с топливом (чаще всего Jet A или Jet A-1, которые имеют керосиновый тип), а затем электрическая искра зажигает смесь топлива и воздуха в камере.Это приводит к тому, что смесь воздуха и топлива сгорает, что значительно увеличивает давление и температуру.
  • Турбины - горячий сжатый газ вытягивается из двигателя задней турбиной, которая забирает энергию из газа и вызывает падение давления и температуры. Когда давление снижается, газ течет быстрее (подумайте о том, чтобы отпустить надувной баллон). Энергия от газа, который приводит в движение заднюю турбину, обеспечивает вращение компрессора, который всасывает воздух спереди.

Высокоскоростные газы, выпускаемые через заднее сопло, вызывают тягу. Чтобы понять это, мы ссылаемся на третий закон движения Ньютона: для каждого действия существует равная и противоположная реакция. Когда газ вырывается из спины, вперед направляется равная и противоположная сила. Подумайте о том, когда вы толкаете стену бассейна, чтобы скользить в противоположном направлении; даже если сила вашего толчка направлена ​​к стене, равная и противоположная сила реакции заставляет вас двигаться в противоположном направлении.

При скорости около 400 миль в час один фунт тяги равен одной лошадиной силе, но на более высоких скоростях это соотношение увеличивается, а фунт тяги больше, чем одна лошадиная сила. На скорости менее 400 миль в час это соотношение уменьшается. Эта сила позволяет большим самолетам, таким как 747, летать со скоростью до 600 миль в час.

Существуют также различные типы реактивного двигателя, такие как турбовинтовой двигатель. Вы узнаете, является ли это турбовинтовым двигателем с помощью больших выталкивающих винтов в передней части, который отвечает за тягу, так как большая часть энергии от газа передается в компрессор задними турбинами, поэтому воздействующий газ не отвечает за тяга.

Турбовальный вал - это тип вертолетов, силовых установок и даже танка М1. Процесс аналогичен турбовинтовому двигателю, однако вместо привода гребных винтов вращающийся вал может питать различные устройства, такие как насосы, генераторы, колеса и вообще все, что вращается.

Современные большие самолеты используют турбовентилятор High-Bypass Turbofan, который похож на стандартный турбореактивный двигатель, за исключением того, что большой вентилятор спереди всасывает больше воздуха в двигатель. Однако не весь воздух проходит через компрессор и турбины, при этом большая часть воздуха фактически проходит через сердечник и проходит через каналы снаружи от сердечника (в среднем в 5 раз больше воздуха обходится, чем фактически проходит через сердечник).Они более эффективны, особенно на дозвуковых скоростях (т. Е. Ниже скорости звука, 768 миль в час), а также намного тише, при этом все еще имея способность разгоняться с более тяжелой скоростью, чем локомотив, от 0 до 200 миль в час менее чем за 60 секунд.


Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.