Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как определить по двигателю визуально кубатуру


Как узнать реальный объем двигателя китайского скутера

Весьма зачастую изготовители скутеров из Поднебесной умалчивают реальный объем мотора своих мотороллеров по причине не соответствия законным 49,9 кубических сантиметров согласно маркировке двигателя. Порой, кубатурные скутеры обозначаются как 50сс, таким образом, Вы имеете возможность управлять 80-150 кубовым скутером и даже не ведать об этом (как и сотрудники ГАИ ;)).

Более-менее матерый скутерист сходу определит, что у него под сиденьем размещен движок большего объема, но заявить буквально какой конкретно этот объем попросту так на слух или на глаз, нереально.

Это все относится к 4-тактным китайским скутерам и конкретно о них эта статья.

Как определить кубатуру четырехтактного скутера

Что бы узнать, какой размер поршневой вашего китайского мотороллера, довольно обладать штангенциркулем или микрометром (как на рисунке вверху). Безусловно, эти показанию будут приближенными, так как не все моторы обладают одинаковым ходом поршня, отсюда диаметр при равных объемах может быть немного другим. Но основная масса китайских скутеров комплектуются собственно данными поршнями, диаметр каких показан в таблице.

Объем двигателяДиаметр поршня
50cc39 мм
60cc43 мм
62cc44 мм
72cc47 мм
82cc — 85cc50 мм
90cc51,5 мм

Владимир Иванов/ автор статьи

Автомеханик с опытом более 20 лет в ремонте и обслуживании автомобильной и мотоциклетной техники. Пишу статьи и отвечаю на вопросы посетителей сайта skuterov.ru

4.4 / 5 ( 5 голосов )

Понравилась статья? Сохраните себе и поделитесь с друзьями!

Как определить, перегревается ли двигатель

Первоначально Послано princesirohi

Я думаю, что оба правы ... ваш механик и сервисный центр, ребята. Посмотрите, если вы установите воздушный фильтр со свободным потоком на велосипед, например, K & N, он увеличит поток воздуха к двигателю. когда это происходит, двигатель получает больше воздуха, поэтому сгорание топлива завершено. это немного увеличивает мощность и пробег. звук двигателя тоже немного лучше.но помните, что увеличивается только воздухозаборник двигателя, а не топливо, расход топлива такой же, как и раньше, поэтому двигатель работает на бедной смеси. это делает двигатель горячим. поэтому двигатель нагревается больше. так что ваш механик прав. что происходит, когда двигатель перегревается - возникают всевозможные проблемы, двигатель может начать потреблять много масла, избыточное тепло может привести к разрыву масляных уплотнений, чрезмерный перегрев может повредить свечи зажигания, может испортить клапаны, изгибы клапанов из-за перегрева и в худшем случае ваш двигатель может завладеть.теперь это все возможные проблемы, которые могут возникнуть из-за перегрева. Теперь, какая часть будет разрушена, зависит от состояния вашего велосипеда, то есть какая часть является самой слабой. самая слабая часть будет испорчена первой. так что в вашем случае вполне возможно, что ваши клапаны разрушены. Я думаю, теперь у тебя есть представление о том, что случилось с твоим байком. Устранение перегрева двигателя из-за обедненной смеси заключается в замене струи в вашем карбюраторе на большую, чтобы увеличить потребление топлива для велосипеда, чтобы сбалансировать увеличенное потребление воздуха.


, так как у меня была старая свеча зажигания, я показывал свечи мистеру Шерри (старому и очень надежному механику из Пуны ... и я думаю, что он связан с aspi of bike india)

комментарии, которые я получил, заключались в том, что штепсельная вилка абсолютно черного цвета, и это может быть
1) богатая смесь.
2) очень плохо обслуживаемый двигатель
3) из-за неподходящего топлива

, поскольку в моем случае смесь должна быть очень бедной, он сказал мне, что, поскольку я регулярно езжу в дальние поездки (250 км + в день), это Может быть, это просто регулярный износ двигателя.я попросил его осмотреть головку цилиндра, и он назначил мне встречу завтра. т.е. вторник ..

, кстати, так как вы упомянули, что уплотнения разрываются, у меня есть эта проблема на моем велосипеде ...

, чтобы быть очень конкретным, я мою свой велосипед лично каждое воскресенье, и это включает в себя двигатель снаружи и поэтому я получаю хорошую оценку относительно того, когда печати полностью вышли из строя.

я получил велосипед 7 мая 2008 года ... и у него было немного масла возле крышки головки.

в ближайшее воскресенье, я умылся голова чистая от масла....
в течение следующих 7-8 месяцев мне не нужно было чистить голову, потому что нет утечек ..

тогда, в марте 2009 года, я заметил остатки масла на голове, но я специально не чистил его так, чтобы я мог определить источник утечки ...
в апреле 2009 года мой велосипед преодолел 15000 км, поэтому я показал голову своему другу (который очень хороший механик), и он заменил уплотнительное кольцо для болта крышки головки. ..

следующие 2 месяца были в порядке, но в июле была снесена прокладка головки блока цилиндров.мне заменили прокладку ..

, затем мне пришлось заменить прокладку и сальники снова в сентябре, декабрь, чтобы утечка была под контролем.

до января, мой мотоцикл был в наличии и не имел никаких модов и возвращал 50-55 км / ч в шоссе.

22 января 2010 года я установил k & n без перемотки, и с тех пор ад сломался на моем байк ... утечка масла прекратилась, но тогда байку понадобился штуцер для запуска по утрам .. дважды, двигатель просто не заводился., поэтому мой мех очистил свечу зажигания, а затем 2 недели работал как обычно, после чего он простаивал с 27 февраля по 22 марта, а затем снова возникла та же проблема, и мотоцикл перестал работать в середине бетонной панели nh5 и лонавала. поэтому я получил новую вилку
(за 350 баксов, что тоже вилка пульсера) и ехал на велосипеде медленно, чтобы настроиться ... производительность велосипеда значительно улучшилась благодаря новой вилке ..
, поэтому я догадался, что старая вилка была Виновник однако, 3 апреля.то есть в субботу, велосипед снова остановился, и на этот раз я решил, что пришло время для надлежащей проверки перегрева ...

теперь, так как вы говорите, что уплотнения дуют быстрее на горячем двигателе, я начинаю беспокоиться, потому что с тех пор последний декабрь, уплотнения работают нормально .. это, вероятно, означает, что двигатель не перегревается .. также углерод на старых пробках говорит о том, что смесь была слишком богата ..

теперь это совершенно противоречивые ситуации и вот почему я хочу очень надежный метод определения того, перегрелся ли мой двигатель или нет...

и действительно спасибо за последнюю информацию

.

Как работают игровые движки?

Компании постоянно хвастаются своим новейшим игровым движком. Напрашивается вопрос: что именно является игровым движком?

Игровой движок закладывает программную основу для создания и создания видеоигр. Они предоставляют функции от анимации до искусственного интеллекта. Игровые движки отвечают за визуализацию графики, обнаружение столкновений, управление памятью и многие другие параметры.

Игровые движки предоставляют разработчикам инструменты для создания многочисленных игровых приложений.Дизайнеры часто используют эти движки для создания других игр, что делает их ценными инвестициями.

Игровой движок состоит из пяти компонентов: основная игровая программа, которая содержит игровую логику; механизм рендеринга, который можно использовать для создания трехмерной анимированной графики; звуковой движок, который состоит из алгоритмов, связанных со звуками; физический движок для реализации «физических» законов в системе; и Искусственный интеллект, модуль, предназначенный для использования программистами со специальным назначением.

Современные инструменты и программы позволили начать разработку игр проще, чем когда-либо.

С многочисленными игровыми движками может быть сложно выбрать правильный для вашего проекта.

Ниже представлен список игровых движков, доступных в настоящее время для всех, кто интересуется разработкой игр.

Unity

Пользователи считают Unity одним из самых простых игровых движков благодаря простому интерфейсу. Одной из основных функций, которые он содержит, является то, что он позволяет разрабатывать игры для нескольких платформ.Используя движок Unity, можно создавать игры для Android, iOS и других операционных систем телефона, включая ОС ПК.

Помимо кроссплатформенных возможностей, платформа имеет активное сообщество разработчиков плагинов, которые предлагают много бесплатного и недорогого контента для использования в игровом движке. Некоторые примеры игр, созданных на движке, включают Temple Run, Rust и Deus Ex: The Fall. Примечательно, что их личный пакет совершенно бесплатный и включает в себя множество инструментов для начинающих и любителей.Вы можете посмотреть на различные планы Unity здесь.

Unreal Game Engine

Unreal Engine - один из лучших игровых движков для рендеринга детальной графики. Некоторые известные игры, созданные с помощью Unreal Engine, включают Borderlands 2, Dishonored, Mass Effect 3 и Street Fighter V. Сторонники Unreal Game Engine говорят, что он может создавать одни из лучших пейзажей в играх.

Модель ценообразования этого движка включает в себя бесплатную версию с полным доступом. Тем не менее, Unreal Engine берет 5% роялти за любые игры, сделанные из него.

Вы можете подписаться на Unreal Engine здесь.

GameMaker: Студия

Хотя некоторые утверждают, что GameMaker не является настоящим игровым движком, он все еще широко используется и используется многими разработчиками игр. Вместо обычного программирования пользователи могут буквально «перетаскивать» элементы, чтобы создавать игры намного быстрее и с большей легкостью.

СМОТРИТЕ ТАКЖЕ: ВЫ НЕ МОЖЕТЕ ДОЛЖНО СКАЗАТЬ РАЗНИЦУ МЕЖДУ РЕАЛЬНОЙ ЖИЗНЬЮ И ВИДЕО ИГРОМ

Одна из примечательных игр, созданных с помощью GameMaker, - это Hotline Miami.Однако из-за природы «перетаскивания» разработчики имеют ограничения в создании расширений и дополнений с помощью альтернативного кода.

Как и другие движки, Studio включает в себя бесплатную версию с ограниченным доступом. Вы можете зарегистрироваться в студии GameMaker здесь.

Автор Maverick Бейкер

,

Smart Farming - автоматизированное и подключенное сельское хозяйство> ENGINEERING.com

Сейчас на Земле живет больше людей, чем когда-либо прежде, - 7,3 миллиарда - и это число все еще растет, согласно прогнозам ООН, к 2050 году оно достигнет 9,7 миллиарда. Население такого масштаба ставит множество проблем, в первую очередь среди производителей продовольствия. их. Продовольственная и сельскохозяйственная организация ООН прогнозирует, что в ближайшие несколько десятилетий нам необходимо увеличить производство продовольствия в мире на 70 процентов, чтобы прокормить ожидаемое население в 2050 году.

Увеличение производства до такой степени непросто, но сегодняшние инженеры и фермеры работают вместе над созданием технологического решения: точного земледелия и «умной фермы».

Сельское хозяйство является старейшей индустрией для людей, но оно, безусловно, не чужд технологическим изменениям. Промышленные революции 19 9988 и 20 веков заменили ручной инструмент и конные плуги бензиновыми двигателями и химическими удобрениями.

Теперь мы стоим на пороге очередного фундаментального сдвига в сельском хозяйстве благодаря новой промышленной революции и технологиям Индустрии 4.0.

Интеллектуальное сельское хозяйство и точное земледелие включают в себя внедрение передовых технологий в существующие методы ведения сельского хозяйства с целью повышения эффективности производства и качества сельскохозяйственной продукции. В качестве дополнительного преимущества они также улучшают качество жизни сельскохозяйственных рабочих, сокращая тяжелый труд и утомительные задачи.

«Как будет выглядеть ферма через 50–100 лет?» это вопрос, поставленный Дэвидом Слотером, профессором биологической и экологической инженерии в Калифорнийском университете в Дэвисе. «Мы должны решать проблемы роста населения, изменения климата и труда, и это вызвало большой интерес к технологиям».

Практически все аспекты фермерства могут извлечь выгоду из технологических достижений - от посадки и полива до здоровья урожая и сбора урожая. Большинство современных и будущих сельскохозяйственных технологий подразделяются на три категории, которые, как ожидается, станут столпами интеллектуальной фермы: автономные роботы, дроны или беспилотники, сенсоры и Интернет вещей (IoT).

Как эти технологии уже меняют сельское хозяйство и какие новые изменения они принесут в будущем?

Замена человеческого труда автоматизацией является растущей тенденцией во многих отраслях, и сельское хозяйство не является исключением. Большинство аспектов сельского хозяйства являются исключительно трудоемкими, и большая часть этого труда состоит из повторяющихся и стандартизированных задач - идеальной ниши для робототехники и автоматизации.

Мы уже видим, как сельскохозяйственные роботы - или агроботы - начинают появляться на фермах и выполняют задачи, начиная от посадки и полива до сбора урожая и сортировки.В конце концов, эта новая волна интеллектуального оборудования позволит производить больше и более качественные продукты питания с меньшими трудовыми ресурсами.

тракторов без водителя

Трактор является сердцем фермы и используется для решения множества различных задач в зависимости от типа фермы и конфигурации ее вспомогательного оборудования. По мере развития технологий автономного вождения тракторы, как ожидается, станут одними из самых ранних машин, подлежащих переоборудованию.

На ранних этапах все равно потребуются человеческие усилия для настройки полевых и граничных карт, программирования наилучших полевых маршрутов с использованием программного обеспечения для планирования маршрутов и определения других условий эксплуатации.Люди также все еще будут нуждаться в регулярном ремонте и обслуживании.

Тем не менее, автономные тракторы со временем станут более способными и самодостаточными, особенно с включением дополнительных камер и систем машинного зрения, GPS для навигации, IoT-подключения для удаленного мониторинга и работы, а также радиолокатора и LiDAR для обнаружения и предотвращения объекта. Все эти технологические достижения значительно уменьшат потребность людей в активном управлении этими машинами.

По данным CNH Industrial, компании, которая специализируется на сельскохозяйственном оборудовании и представила концепт автономного трактора в 2016 году: «В будущем эти концептуальные тракторы смогут использовать« большие данные », такие как информация метеорологического спутника в реальном времени, для автоматического создания наилучшее использование идеальных условий, независимо от участия человека и независимо от времени суток ».

(Изображение любезно предоставлено CNH Industrial.)

Посев и посадка

(Изображение предоставлено CEMA.)

Посев семян был когда-то трудоемким ручным процессом. Современное сельское хозяйство улучшило это с помощью сеялок, которые могут покрывать большую площадь почвы намного быстрее, чем человек. Тем не менее, они часто используют метод разброса, который может быть неточным и расточительным, когда семена падают за пределы оптимального места. Эффективный посев требует контроля над двумя переменными: посадка семян на правильную глубину и разнесение растений на соответствующем расстоянии друг от друга, чтобы обеспечить оптимальный рост.

Прецизионное высевающее оборудование спроектировано так, чтобы каждый раз максимизировать эти параметрыСочетание данных геокартирования и данных датчиков, детализирующих качество почвы, плотность, влажность и уровень питательных веществ, значительно упрощает процесс посева. Семена имеют лучшие шансы прорасти и вырасти, а урожай в целом получит больший урожай.

По мере продвижения сельского хозяйства в будущее существующие точные сеялки будут поставляться с автономными тракторами и системами с поддержкой IoT, которые передают информацию фермеру. Таким образом можно засеять целое поле, так как только один человек наблюдает за процессом через видеопоток или цифровую панель управления на компьютере или планшете, в то время как по полю перемещается несколько машин.

Автоматический полив и орошение

Подземное капельное орошение (SDI) уже является распространенным методом орошения, который позволяет фермерам контролировать, когда и сколько воды получают их культуры. Соединяя эти системы SDI со все более сложными датчиками с поддержкой IoT для постоянного мониторинга уровня влажности и здоровья растений, фермеры смогут вмешиваться только в случае необходимости, в противном случае система будет работать автономно.

Пример системы SDI для сельского хозяйства.В то время как современные системы часто требуют, чтобы фермер вручную проверял линии и контролировал насосы, фильтры и датчики, будущие фермы могут подключать все это оборудование к датчикам, которые передают данные мониторинга непосредственно на компьютер или смартфон. (Изображение предоставлено Jain Irrigation.)

Хотя системы SDI не являются полностью автоматизированными, они могут работать полностью автономно в контексте интеллектуальной фермы, полагаясь на данные от датчиков, установленных на полях, для выполнения ирригации по мере необходимости.

Прополка и уход за растениями

Прополка и борьба с вредителями являются важными аспектами технического обслуживания и задачами, которые идеально подходят для автономных роботов.Несколько прототипов уже разрабатываются, включая Bonirob из Deepfield Robotics и автоматизированный культиватор, который является частью исследовательской инициативы UC Davis Smart Farm.

Робот Bonirob размером с автомобиль и может автономно перемещаться по полям, используя видео, LiDAR и спутниковый GPS. Его разработчики используют машинное обучение, чтобы научить Bonirob распознавать сорняки перед их удалением. Благодаря усовершенствованному машинному обучению или даже искусственному интеллекту (ИИ) в будущем такие машины могут полностью заменить потребность людей в прополке или контроле урожая.

Сельскохозяйственный робот Bonirob. (Изображение предоставлено Deepfield Robotics.)

Прототип UC Davis работает немного по-другому. Их культиватор буксируется за трактором и оснащен системами визуализации, которые могут идентифицировать флуоресцентный краситель, которым покрываются семена при посадке, и который передается молодым растениям, когда они прорастают и начинают расти. Затем культиватор срезает не светящиеся сорняки.

Хотя эти примеры представляют собой роботов, предназначенных для прополки, одна и та же базовая машина может быть оснащена датчиками, камерами и опрыскивателями для выявления вредителей и применения инсектицидов.

Эти роботы и другие подобные им не будут работать изолированно на фермах будущего. Они будут подключены к автономным тракторам и IoT, что позволит практически полностью выполнить саму операцию.

Сбор урожая с поля, дерева и винограда

Сбор урожая зависит от того, когда вы будете знать, когда урожай будет готов, работать в любую погоду и завершить сбор урожая за ограниченное время. В настоящее время для уборки урожая используется большое количество машин, многие из которых пригодятся для автоматизации в будущем.

Традиционные комбайны, фуражные и специализированные комбайны могли бы сразу воспользоваться технологией автономного трактора для обхода полей. Добавьте более изощренную технологию с датчиками и возможностью подключения к IoT, и машины смогут автоматически начинать сбор урожая, как только условия станут идеальными, освобождая фермера для выполнения других задач.

Развитие технологий, способных к деликатной уборке урожая, таких как сбор фруктов с деревьев или овощей, таких как помидоры, - это то, где высокотехнологичные фермы будут действительно блестящими.Инженеры работают над созданием правильных роботизированных компонентов для этих сложных задач, таких как робот для сбора помидоров Panasonic, который включает в себя сложные камеры и алгоритмы для определения цвета, формы и местоположения помидора для определения его зрелости.

Этот робот собирает помидоры у стебля, чтобы избежать синяков, но другие инженеры пытаются сконструировать роботизированные конечные эффекторы, которые будут способны аккуратно хватать фрукты и овощи достаточно плотно, чтобы собрать урожай, но не настолько сильно, чтобы нанести ущерб.

Другим прототипом для сбора фруктов является вакуумный робот Abundant Robotics, который использует компьютерное зрение, чтобы найти яблоки на дереве и определить, готовы ли они собирать урожай.

Это всего лишь несколько из десятков перспективных роботизированных конструкций, которые вскоре возьмут на себя труд по уборке урожая. Опять же, с основой надежной системы IoT, эти агботы могли непрерывно патрулировать поля, проверять растения с помощью своих датчиков и собирать спелые культуры в зависимости от ситуации.

Сокращение труда, повышение урожайности и эффективности

Основная концепция внедрения автономной робототехники в сельское хозяйство остается целью снижения зависимости от ручного труда при одновременном повышении эффективности, производительности и качества продукции.

В отличие от своих предшественников, чье время было в основном занято тяжелым трудом, фермеры будущего будут тратить свое время на выполнение таких задач, как ремонт оборудования, отладка кода робота, анализ данных и планирование операций на ферме.

Как отмечалось для всех этих агоботов, наличие надежной магистрали датчиков и IoT, встроенных в инфраструктуру фермы. Ключ к по-настоящему «умной» ферме зависит от способности всех машин и датчиков взаимодействовать друг с другом и с фермером, даже если они работают автономно.

Какой фермер не хотел бы видеть их поля с высоты птичьего полета? Там, где когда-то требовалось нанять вертолета или пилота небольшого самолета, чтобы пролететь над объектом, который делает аэрофотоснимки, беспилотники, оснащенные камерами, теперь могут создавать такие же изображения за небольшую часть стоимости.

Кроме того, прогресс в технологиях обработки изображений означает, что вы больше не ограничены видимым светом и фотографиями. Доступны системы камер, охватывающие все: от стандартных фотографических изображений до инфракрасных, ультрафиолетовых и даже гиперспектральных изображений. Многие из этих камер также могут записывать видео. Разрешение изображения во всех этих методах визуализации также увеличилось, и значение «высокое» в «высоком разрешении» продолжает расти.

Все эти различные типы изображений позволяют фермерам собирать более подробные данные, чем когда-либо прежде, расширяя их возможности для мониторинга здоровья сельскохозяйственных культур, оценки качества почвы и планирования мест посадки для оптимизации ресурсов и землепользования.Возможность регулярного проведения этих полевых исследований улучшает планирование схем посева семян, ирригации и картирования местоположения как в 2D, так и в 3D. Обладая всеми этими данными, фермеры могут оптимизировать каждый аспект управления земельными и сельскохозяйственными культурами.

Но это не только камеры и возможности визуализации, которые оказывают влияние при помощи дронов в сельскохозяйственной сфере - беспилотники также находят применение при посадке и опрыскивании.

Посадка с воздуха

Дроны-прототипы строятся и испытываются для использования при посеве и посадке, чтобы заменить потребность в ручном труде.Например, несколько компаний и исследователей работают над беспилотными летательными аппаратами, которые могут использовать сжатый воздух для сжигания капсул, содержащих стручки семян с удобрениями и питательными веществами, прямо в землю.

DroneSeed и BioCarbon - две такие компании, обе из которых разрабатывают беспилотники, которые могут нести модуль, который запускает семена деревьев в землю в оптимальных местах. Несмотря на то, что в настоящее время он предназначен для проектов по лесовосстановлению, нетрудно представить, что модули могут быть перенастроены в соответствии с различными сельскохозяйственными семенами.Благодаря IoT и программному обеспечению для автономной работы парк беспилотников может выполнить чрезвычайно точную посадку в идеальные условия для роста каждой культуры, увеличивая изменения для более быстрого роста и более высокого урожая.

Пример дрона для посадки деревьев. (Изображение предоставлено BioCarbon.)

Опрыскивание сельскохозяйственных культур

DJI Agras MG-1 распылитель беспилотный. (Изображение предоставлено DJI.)

В настоящее время доступны и разрабатываются дроны для опрыскивания растений, что дает возможность автоматизировать еще одну трудоемкую задачу.Используя комбинацию GPS, лазерного измерения и ультразвукового позиционирования, беспилотники с разбрызгиванием культур могут легко адаптироваться к высоте и местоположению, приспосабливаясь к таким переменным, как скорость ветра, топография и география. Это позволяет дронам выполнять задачи по опрыскиванию культур более эффективно, с большей точностью и меньшим количеством отходов.

Например, DJI предлагает беспилотник Agras MG-1, разработанный специально для опрыскивания сельскохозяйственных культур, с емкостью бака 2,6 галлона (10 литров) жидких пестицидов, гербицидов или удобрений и дальностью полета от семи до десяти акров в час. ,Микроволновый радар позволяет этому дрону поддерживать правильное расстояние от посевов и обеспечивать равномерное покрытие. Согласно DJI, он может работать автоматически, полуавтоматически или вручную.

Работая в связке с другими роботами, посевы, которые были признаны нуждающимися в особом внимании, могут получить персональное посещение ближайшего дрона при первых признаках проблемы. Возможность обеспечить индивидуальный подход к любой части поля, как только это потребуется, может помочь остановить многие проблемы до их распространения.

Беспилотник Аграс МГ-1 опрыскивает поле. (Изображение предоставлено DJI.)

Мониторинг и анализ в реальном времени

Одной из наиболее полезных задач, которые могут выполнять дроны, является дистанционный мониторинг и анализ полей и сельскохозяйственных культур. Представьте себе преимущества использования небольшого парка беспилотников вместо группы рабочих, которые часами сидят на ногах или в автомобиле, путешествующем по полю вперед и назад, чтобы визуально проверить условия посева.

Именно здесь важна подключенная ферма, так как все эти данные должны быть полезными.Фермеры могут просматривать данные и совершать личные поездки в поля только тогда, когда существует конкретная проблема, требующая их внимания, вместо того, чтобы тратить время и усилия на заботу о здоровых растениях.

Учитывая, что беспилотники для сельскохозяйственного использования все еще находятся на ранней стадии своего развития, есть несколько недостатков. Диапазоны и время полета не столь надежны, как это требуется многим фермам - в настоящее время даже самые длинные беспилотники работают с максимальным временем полета около часа, прежде чем их нужно будет возвращать и перезаряжать.

Капитальные затраты также все еще довольно высоки, до 25 000 долларов США за дрон для чего-то вроде PrecisionHawk Lancaster. Существуют менее дорогие модели, но они могут не поставляться с необходимым оборудованием для визуализации или распыления.

Инновационные, автономные агботы и дроны полезны, но то, что действительно сделает будущую ферму «умной», будет тем, что объединит всю эту технологию: Интернет вещей.

Интернет вещей стал чем-то вроде всеобъемлющего термина для идеи о том, чтобы компьютеры, машины, оборудование и устройства всех типов были связаны друг с другом, обменивались данными и обменивались информацией таким образом, чтобы они могли работать как так называемые «Умная» система.Мы уже видим, что технологии IoT используются во многих отношениях, таких как устройства для умного дома и цифровые помощники, интеллектуальные фабрики и интеллектуальные медицинские устройства.

Умные фермы

будут иметь встроенные датчики на каждом этапе сельскохозяйственного процесса и на каждом оборудовании. Датчики, установленные на полях, будут собирать данные об уровне освещенности, состоянии почвы, орошении, качестве воздуха и погоде. Эти данные будут возвращены фермеру или непосредственно агоботам в поле. Команды роботов будут пересекать поля и работать автономно, чтобы реагировать на потребности сельскохозяйственных культур, и выполнять функции прополки, полива, обрезки и сбора урожая, руководствуясь собственным сбором датчиков, навигацией и данными об урожае.Дроны совершат путешествие по небу, увидят с высоты птичьего полета состояние растений и состояние почвы или создадут карты, которые будут направлять роботов и помогать фермерам-людям планировать дальнейшие шаги фермы. Все это поможет повысить урожайность, повысить доступность и качество продуктов питания.

BI Intelligence поделилась своими прогнозами о том, что количество устройств IoT, установленных в сельском хозяйстве, увеличится с 30 миллионов в 2015 году до 75 миллионов к 2020 году. В соответствии с этой тенденцией ожидается, что количество подключенных ферм составит 4.1 миллион точек данных каждый день в 2050 году по сравнению с 190 000 в 2014 году.

Эта куча данных и другой информации, полученной с помощью сельскохозяйственной технологии, и возможности подключения, позволяющие обмениваться ею, станут основой будущей интеллектуальной фермы. Фермеры смогут «видеть» все аспекты своей работы - какие растения здоровы или нуждаются во внимании, где поле нуждается в воде, что делают комбайны - и принимать обоснованные решения.

И эта дискуссия затронула только верхушку айсберга пословиц с акцентом на вегетативные культуры; Существует равное основание для принятия умных технологий для животноводства, и много дронов и роботов для каждого аспекта сельского хозяйства.Если каждая ферма в стране станет умной, достижение 70-процентного роста производства продуктов питания является несомненной.

Какие сельскохозяйственные технологии вы ожидаете? Комментарий ниже.



Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.