Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как определить витковое замыкание в асинхронном двигателе


Межвитковое замыкание. Как проверить различные замыкание витков

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.


Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.


Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Что такое тестирование заблокированного ротора асинхронного двигателя?

Испытание с заблокированным ротором асинхронного двигателя аналогично испытанию на короткое замыкание трансформатора. В этом тесте вал двигателя блокируется, так что он не может двигаться, а обмотка ротора короткозамкнута. В двигателе контактных колец обмотка ротора коротко замкнута через контактные кольца. В случае двигателей с клеткой, роторные стержни имеют постоянное короткое замыкание. Он также известен как Locked Rotor Test .

Принципиальная схема теста с заблокированным ротором показана ниже.

Пониженное напряжение на пониженной частоте подается на статор через трехфазный автотрансформатор, так что номинальный ток при полной нагрузке протекает в статоре. Следующие три показания получены из испытания заблокированного ротора. Они заключаются в следующем: -

  • Общая потребляемая мощность при коротком замыкании P sc = алгебраическая сумма двух показаний ваттметра.

Входная мощность при испытании с заблокированным ротором равна сумме потерь в меди статора и ротора для всех трех фаз. Сердечник и механические потери пренебрежимо малы, поскольку на статор подается пониженное напряжение, и в результате вращение ротора не допускается.

Где cosϕ - коэффициент мощности короткого замыкания.

Эквивалентное сопротивление двигателя относительно стороны статора определяется уравнением, показанным ниже.

Эквивалентное полное сопротивление двигателя относительно стороны статора определяется уравнением, показанным ниже.

Эквивалентное реактивное сопротивление двигателя со стороны статора определяется уравнением, показанным ниже.

Испытание заблокированного ротора выполняется в нормальных рабочих условиях, когда ток и частота ротора находятся в одинаковых условиях. Как правило, скольжения асинхронного двигателя изменяется от 2 до 4 процентов , и результирующая частота ротора находится в диапазоне от 1 до 2 Гц для частоты статора 50 Гц на нормальные условия.

Этот тест следует проводить на пониженной частоте. Чтобы получить точные результаты, тест с заблокированными роторами выполняется с частотой , 25 процентов, или , меньшей, чем , номинальной частоты . Реактивные сопротивления рассеяния на номинальной частоте получены с учетом того, что реактивное сопротивление пропорционально частоте.

Однако для двигателя мощностью менее 20 киловатт влияние частоты незначительно, и тест с заблокированным ротором может быть выполнен непосредственно на номинальной частоте.

,

Запуск асинхронного двигателя - Способы запуска

Трехфазный асинхронный двигатель - Сам запуск от . Когда источник питания подключен к статору трехфазного асинхронного двигателя, создается вращающееся магнитное поле, и ротор начинает вращаться, и асинхронный двигатель запускается. Во время запуска скольжение двигателя составляет единицы , и пусковой ток очень велик.

Назначение стартера - не просто запустить двигатель, а выполнить две основные функции.Они заключаются в следующем.

  • Для уменьшения пускового тока
  • Для обеспечения защиты от перегрузки и пониженного напряжения.

Трехфазный асинхронный двигатель можно запустить, подключив двигатель напрямую к полному напряжению питания. Двигатель также можно запустить, подав на двигатель пониженное напряжение при запуске двигателя.

Крутящий момент асинхронного двигателя пропорционален квадрату приложенного напряжения. Таким образом, больший крутящий момент создается двигателем при его запуске на полном напряжении, чем при запуске на пониженном напряжении.

Существует три основных метода Запуск асинхронного двигателя клетки . Они заключаются в следующем.

Прямой на линии стартера

Асинхронный двигатель с прямым пуском в прямом режиме прост и экономичен. В этом методе стартер подключается напрямую к источнику питания. Этим способом запускаются малые двигатели мощностью до 5 кВт, чтобы избежать колебаний напряжения питания.

Star delta starter

Метод «звезда-треугольник» для запуска трехфазных асинхронных двигателей очень распространен и широко используется среди всех методов.В этом методе двигатель работает на обмотках статора, соединенных треугольником.

Авто стартер трансформатора

Автоматический трансформатор используется в обоих типах соединений, т. Е. Подключен ли звезда или соединен треугольником. Автотрансформатор используется для ограничения пускового тока асинхронного двигателя.

Вышеупомянутые три стартера используются для асинхронного двигателя с ротором клети.

Пусковое кольцо асинхронного двигателя

Способ запуска асинхронного двигателя

В пускателе асинхронного двигателя пускателя полное напряжение питания подключено к пускателю.Схема подключения асинхронного двигателя пускового кольца приведена ниже.

Полное пусковое сопротивление подключено, и, следовательно, ток питания статора уменьшается. Ротор начинает вращаться, и сопротивления ротора постепенно отключаются при увеличении скорости двигателя. Когда двигатель работает с номинальной скоростью при полной нагрузке, пусковые сопротивления полностью отключаются, а контактные кольца замыкаются накоротко.

,Трехфазный асинхронный двигатель

: принцип построения и работы

Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в отрасли. Они работают по принципу электромагнитной индукции.

Из-за сходства в принципе работы трансформатора, он также известен как вращающийся трансформатор .

Они работают с практически постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко адаптировать к управлению скоростью .

Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

Давайте разберемся в конструкции трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

Конструкция трехфазного асинхронного двигателя

Как и любой электродвигатель, трехфазный асинхронный двигатель имеет , статор и ротор . Статор имеет трехфазную обмотку (называемую обмоткой статора), а ротор имеет обмотку с короткозамкнутой обмоткой (называемую обмоткой ротора).

Только 3 обмотка статора питается от 3-фазного питания. Обмотка ротора получает свое напряжение и мощность от обмотки статора с внешним питанием посредством электромагнитной индукции и, следовательно, названия.

3-фазный асинхронный двигатель состоит из двух основных частей

  1. Статор
  2. Ротор

Ротор отделен от статора небольшим воздушным зазором , который составляет от 0,4 мм до 4 мм, в зависимости от мощности двигателя.

1. Статор 3-фазного асинхронного двигателя

Статор состоит из стальной рамы, которая заключает в себе полый цилиндрический сердечник, состоящий из тонких слоев кремниевой стали, для уменьшения гистерезиса и потерь на вихревые токи.

Ряд равномерно расположенных прорезей предусмотрен на внутренней периферии слоев. Изолированные проводники соединяются, образуя сбалансированную трехфазную звезду или треугольник.

Наружная рама и статор трехфазного асинхронного двигателя

3-фазная обмотка статора намотана на определенное количество полюсов в соответствии с требованием скорости.Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины. Это вращающееся поле индуцирует токи в роторе посредством электромагнитной индукции.

2. Ротор 3-фазного асинхронного двигателя

Ротор, установленный на валу, представляет собой полый многослойный сердечник с пазами на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

  1. Тип короткозамкнутого ротора
  2. Тип обмоточного ротора

Принцип работы Трехфазный асинхронный двигатель

Для объяснения принципа действия Трехфазный асинхронный двигатель, рассмотрим часть трехфазного асинхронного двигателя, как показано на рисунке.

Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

Когда на трехфазную обмотку статора асинхронного двигателя подается питание от 3-фазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N с ).

Часть вращающегося магнитного поля в трехфазном асинхронном двигателе

Синхронная скорость,

N с = 120 f / P

Где,

f = частота

P = Количество полюсов

(Подробнее о вращающемся магнитном поле читайте в разделе Производство вращающегося магнитного поля).

Это вращающееся поле проходит через воздушный зазор и обрезает неподвижные проводники ротора.

ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора короткозамкнута, в проводниках ротора начинают течь токи.

Токопроводящие проводники ротора размещены в магнитном поле, создаваемом статором. Следовательно, механическая сила действует на проводники ротора.Сумма механических сил на всех проводах ротора создает крутящий момент , который стремится перемещать ротор в том же направлении, что и вращающееся поле.

Тот факт, что ротор вынужден следовать полю статора (то есть ротор движется в направлении поля статора), может быть объяснен законом Ленца .

Согласно закону Ленца, направление токов ротора будет таким, что они будут противодействовать причине их возникновения.

Теперь причиной возникновения токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает вращаться в том же направлении, что и поле статора, и пытается его зафиксировать. Вот как начинает работать трехфазный асинхронный двигатель.

Скольжение в асинхронном двигателе

Мы видели выше, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

На практике ротор никогда не может достичь скорости потока статора. Если это произойдет, не будет относительной скорости между полем статора и проводниками ротора, не будет индуцированных токов ротора и, следовательно, не будет крутящего момента для привода ротора.

Трение и обмотка немедленно приведут к замедлению ротора. Следовательно, скорость вращения ротора (N) всегда меньше скорости вращения статора (N с ). Эта разница в скорости зависит от нагрузки на двигатель.

Разница между синхронной скоростью N с вращающегося поля статора и фактической частотой вращения ротора N в трехфазном асинхронном двигателе называется проскальзыванием .

Скольжение обычно выражается в процентах от синхронной скорости i.

скольжения, с = (N с - N) / N с × 100%

Величина N s - N иногда называется , скорость скольжения .

Когда ротор неподвижен (то есть N = 0), проскальзывание s = 1 или 100%.

В асинхронном двигателе изменение скольжения от холостого хода к полной нагрузке составляет едва ли от 0,1% до 3% , так что по сути это двигатель с постоянной скоростью .

Видео: работа трехфазного асинхронного двигателя

На видео с Learnengineering демонстрируется работа трехфазных асинхронных двигателей в анимационной форме.,

Смотрите также


avtovalik.ru © 2013-2020