Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как отличить однофазный двигатель от трехфазного


Разница между однофазным и трехфазным двигателем | Разница Между


Ключевая разница: Основное различие между однофазными и трехфазными двигателями заключается в том, что однофазный двигатель работает от однофазного источника питания, тогда как трехфазный двигатель работает от трехфазного источника питания. Трехфазный двигатель может работать от одного источника питания, но он не запускается самостоятельно.

Однофазные и трехфазные двигатели - это два разных типа двигателей переменного тока. Двигатель переменного тока - это тип двигателя, который работает на переменном токе (AC). Основное различие между однофазными и трехфазными двигателями заключается в том, что однофазный двигатель работает от однофазного источника питания, тогда как трехфазный двигатель работает от трехфазного источника питания. Трехфазный двигатель может работать от одного источника питания, но он не запускается самостоятельно.

В однофазной электрической энергии напряжения питания изменяются в унисон. Однако в трехфазной электрической энергии функция чередуется между выработкой, передачей и распределением электроэнергии. Трехфазная электрическая энергия является наиболее часто используемым методом электрических сетей во всем мире для передачи энергии. Для сравнения, однофазная электроэнергия редко используется для больших площадей или проектов. Это также связано с тем, что однофазная электроэнергия, как правило, более дорогая и менее надежная, чем трехфазная электроэнергия. Трехфазная электрическая мощность более экономична, поскольку для передачи электрической энергии используется меньше проводников.

Однако однофазная электроэнергия и соответствующие однофазные двигатели используются в меньших масштабах, таких как дома, офисы, магазины и небольшие фабрики. Основная причина этого заключается в том, что потребность в мощности в большинстве этих мест может быть легко удовлетворена однофазными двигателями. Трехфазные двигатели и электроэнергия чаще используются в крупных отраслях промышленности или проектах, поскольку они способны генерировать больше энергии.

Как однофазные, так и трехфазные двигатели состоят из двух частей: статора и ротора. Ротор, как следует из названия, является вращающейся частью асинхронного двигателя. Это связано с механической нагрузкой через вал. Статор - это стационарный элемент, то есть он не движется. Он действует как магнит поля и помогает создавать энергию, взаимодействуя с движением, создаваемым ротором.

Однофазный двигатель не имеет вращающегося поля, но оно разворачивается на 180 градусов. Следовательно, это обычно не само начало; однако иногда он имеет некоторые условия для этого, обычно путем отключения пусковой обмотки или с помощью конденсатора. Трехфазный двигатель обычно имеет механизм самозапуска. Кроме того, в трехфазном двигателе фазы разнесены на 120 градусов, так что можно создать правильное вращающееся поле.

Для сравнения, трехфазные двигатели, как правило, дешевле и эффективнее, чем однофазные. Однако однофазные двигатели обычно дешевле и экономичнее при меньшей потребляемой мощности. Они также легче построить и более надежны в их функции.

Сравнение между однофазным и трехфазным двигателем:

Отдельная фаза двигатель

Трехфазный мотор

Источник питания

Однофазный источник питания

Обычно это более чем однофазный источник питания. Может работать от однофазного источника питания, но не запускается самостоятельно.

Пользы

Однофазные асинхронные двигатели широко использу

Однофазный асинхронный двигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель представляет собой асинхронный электродвигатель, который работает от однофазной сети переменного тока без использования преобразователя частоты и который в базовом режиме работы (после запуска) использует только одну обмотку (фазу). статора.

Сплитфазный двигатель - это однофазный асинхронный двигатель, имеющий вспомогательную (пусковую) обмотку на статоре, смещенную от основной, и короткозамкнутый ротор [2].

Конструкция однофазного асинхронного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор является вращающейся частью электродвигателя, статор является неподвижной частью электродвигателя, с помощью которого создается магнитное поле для вращения ротора. Construction of a single-phase motor

Основные части однофазного асинхронного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90 ° относительно друг друга.Основная (рабочая) обмотка обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически двухфазный, но поскольку после запуска работает только одна обмотка, электродвигатель называется однофазным.

Ротор типа обычно представляет собой короткозамкнутую обмотку, также называемую «короткозамкнутой клеткой» из-за сходства. Чьи медные или алюминиевые стержни закрыты кольцами на концах, а пространство между стержнями часто заполнено алюминиевым сплавом.Ротор однофазного двигателя также может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Windings of single-phase motor

Однофазный асинхронный двигатель со вспомогательной обмоткой имеет две обмотки, расположенные перпендикулярно друг другу

Принцип работы однофазного асинхронного двигателя

Чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотках.

Induction motor windings

Анализ корпуса с двумя обмотками, имеющими один оборот

Рассмотрим случай, когда ток не течет во вспомогательной обмотке.При включении основной обмотки статора переменный ток, проходящий через обмотку, создает пульсирующее магнитное поле, стационарное в пространстве, но колеблющееся от + Ф макс. до -Ф макс. .

Старт

Стоп

Pulsating magnetic field

Колеблющееся магнитное поле

Если вы поместите короткозамкнутый ротор с начальным вращением в флуктуирующее магнитное поле, он продолжит вращаться в том же направлении.

Чтобы понять принцип работы однофазного асинхронного двигателя, мы разделяем флуктуирующее магнитное поле на два одинаковых вращающихся поля, имеющих амплитуду, равную Ф макс. /2 и вращающихся в противоположных направлениях с той же частотой:

,

  • где n f - скорость вращения магнитного поля в прямом направлении, об / мин,
  • n r - скорость вращения магнитного поля в обратном направлении, об / мин,
  • f 1 - частота тока статора, Гц,
  • - число пар полюсов,
  • n 1 - скорость вращения магнитного потока, об / мин

Старт

Стоп

The decomposition of the fluctuating magnetic field

Разложение флуктуирующего магнитного потока на два вращающихся

Действие флуктуирующего поля на вращающийся ротор

Рассмотрим случай, когда ротор в флуктуирующем магнитном потоке имеет начальное вращение.Например, мы вручную вращали вал однофазного двигателя, одна обмотка которого подключена к электросети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать крутящий момент, поскольку скольжение ротора относительно прямого и обратного магнитного потока будет неравным.

Предположим, что прямой магнитный поток Ф f вращается в направлении вращения ротора, а обратный магнитный поток Ф r в противоположном направлении. Поскольку скорость вращения ротора n 2 меньше скорости вращения магнитного потока n 1 , то скольжение ротора относительно потока Ф f будет:

,

  • где s f - скольжение ротора относительно прямого магнитного потока,
  • n 2 - частота вращения ротора,
  • с асинхронным двигателем скольжения
Single-phase motor magnetic field

Прямой и обратный вращающийся магнитный поток вместо флуктуирующего магнитного потока

Магнитный поток Ф r вращается против вращения ротора, скорость вращения ротора n 2 относительно этого потока отрицательна, а скольжение ротора относительно Ф r

,

  • , где s r - скольжение ротора относительно обратного магнитного потока

Старт

Magnetic field penetrating the rotor

Стоп

Rotating magnetic field

Вращающееся магнитное поле, пронизывающее ротор

The current of induction motor rotor

Ток, индуцированный в роторе переменным магнитным полем

Согласно закону электромагнитной индукции, магнитные потоки прямого Ф f и обратного Ф r , генерируемые обмоткой статора, индуцируют ЭДС в обмотке ротора, которая, соответственно, в короткозамкнутом роторе генерирует токи I 2f. а я .Частота тока в роторе пропорциональна скольжению, поэтому:

,

  • где f 2f - частота тока I 2f , индуцированного прямым магнитным потоком, Гц

,

  • где f 2r - частота тока I 2r , индуцированного обратным магнитным потоком, Гц

Таким образом, когда ротор вращается, электрический ток I 2r , индуцированный обратным магнитным полем в обмотке ротора, имеет частоту f 2r , намного превышающую частоту f 2f тока ротора I 2f индуцируется передним полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f 1 = 50 Гц при n 1 = 1500 и n 2 = 1440 об / мин,

скольжения ротора относительно прямой магнитный поток s f = 0,04;
частота тока, индуцированного прямым магнитным потоком f 2f = 2 Гц;
проскальзывание ротора относительно обратного магнитного потока а с р = 1,96;
частота тока, индуцированного обратным магнитным потоком f 2r = 98 Гц

Magnetic torque acting on the rotor

Согласно закону Ампера, крутящий момент возникает в результате взаимодействия электрического тока I 2f с магнитным полем F f

,

  • где M f - магнитный момент, создаваемый прямым магнитным потоком, Н, м,
  • с М - постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I 2r , взаимодействуя с магнитным полем Ф r , создает тормозной момент M r , направленный против вращения ротора, то есть в противоположность моменту M f :

,

  • , где M r - магнитный момент, создаваемый обратным магнитным потоком, Н 900 м

Результирующий крутящий момент, действующий на ротор однофазного асинхронного двигателя,

,

Примечание: В связи с тем, что во вращающемся роторе прямое и обратное магнитное поле будет индуцировать ток различной частоты, крутящие моменты, действующие на ротор в разных направлениях, не будут одинаковыми.Следовательно, ротор будет продолжать вращаться в колеблющемся магнитном поле в направлении, в котором он имел начальное вращение.

Эффект торможения обратного поля

Когда однофазный двигатель работает в пределах номинальной нагрузки, то есть при малых значениях скольжения s = s f , крутящий момент создается в основном за счет крутящего момента M f . Эффект торможения от крутящего момента обратного поля M r незначительный. Это связано с тем, что частота f 2r значительно выше частоты f 2f , поэтому индуктивное сопротивление обмотки ротора а х 2r = x 2 с r к току У меня намного больше, чем у него активное сопротивление.Поэтому ток I 2r , имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Ф r , значительно ослабляя его.

,

  • где r 2 - сопротивление стержней ротора, Ом,
  • x 2r - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности мал, то станет понятно, почему M r под нагрузкой двигателя не оказывает существенного тормозного воздействия на ротор однофазного двигателя.

Torques acting on the fixed rotor

При одной фазе ротор не может быть запущен.

Torques acting on the rotating rotor

Ротор с начальным вращением будет продолжать вращаться в поле, создаваемом однофазным статором

Действие флуктуирующего поля на неподвижный ротор

При неподвижном роторе (n 2 = 0) скольжение s f = s r = 1 и M f = M r , поэтому начальный пусковой момент однофазного асинхронного двигателя M f = 0.Чтобы создать пусковой момент, необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, равенство моментов М f и М r нарушается, и результирующий электромагнитный момент приобретает некоторое значение M = M f - M r ≠ 0.

Запуск однофазного асинхронного двигателя. Как создать начальный поворот?

Одним из способов создания пускового крутящего момента в однофазном асинхронном двигателе является расположение вспомогательной (пусковой) обмотки B, которая смещена в пространстве относительно главной (рабочей) обмотки A под углом 90 электрических градусов.Для того чтобы обмотки статора создавали вращающееся магнитное поле, токи I A и I B в обмотках должны быть не в фазе относительно друг друга. Для получения фазового сдвига между токами I A и I B вспомогательная (пусковая) обмотка B соединяется с фазосдвигающим элементом, который представляет собой сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор). [1].

После того, как ротор двигателя ускоряется до скорости вращения, близкой к постоянной, пусковая обмотка B отключается.Вспомогательная обмотка отключается либо автоматически с помощью центробежного переключателя, реле задержки времени, тока или дифференциального реле, либо вручную с помощью кнопки.

Таким образом, во время запуска однофазный асинхронный двигатель работает как двухфазный, а после запуска - как однофазный.

Подключение однофазного асинхронного двигателя

Сопротивление пуска асинхронного двигателя

Сопротивление пуска Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки отличается повышенным сопротивлением.

Wiring diagram of a single-phase motor with starting resistance

Омический фазовый сдвиг, бифилярная пусковая обмотка

Single phase motor with different winding resistance

Различное сопротивление и индуктивность обмоток

Для запуска однофазного асинхронного двигателя вы можете использовать пусковой резистор, который последовательно подключен к пусковой обмотке. В этом случае можно добиться сдвига фаз на 30 ° между токами главной и вспомогательной обмоток, чего вполне достаточно для запуска двигателя.В двигателе с пусковым сопротивлением разность фаз объясняется различным комплексным сопротивлением цепей.

Кроме того, фазовый сдвиг можно создать с помощью пусковой обмотки с меньшей индуктивностью и большим сопротивлением. Для этого пусковая обмотка выполняется с меньшим числом витков и с использованием более тонкой проволоки, чем в основной обмотке.

Конденсаторный пуск асинхронного двигателя

Конденсаторный запуск Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Wiring diagram of a single-phase motor with starting capacitor

Емкостный фазовый сдвиг с пусковым конденсатором

Для достижения максимального пускового крутящего момента требуется создать круговое вращающееся магнитное поле, для этого необходимо, чтобы токи в основной и вспомогательной обмотках были смещены относительно друг друга на 90 °. Использование резистора или дросселя в качестве элемента, сдвигающего фазу, не обеспечивает требуемого сдвига фаз. Только включение конденсатора определенной емкости позволяет сдвиг фазы на 90 °.

Среди фазосдвигающих элементов только конденсатор позволяет достичь наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели, в цепи которых постоянно включенный конденсатор, используют две фазы для работы и называются конденсаторными. Принцип работы этих двигателей основан на использовании вращающегося магнитного поля.

Асинхронный двигатель с заштрихованными полюсами представляет собой двухфазный двигатель, в котором вспомогательная обмотка замкнута накоротко.

Статор однофазного асинхронного двигателя с заштрихованными полюсами обычно имеет выступающие полюса. Каждый полюс статора разделен на две неравные секции осевой канавкой. Меньшая часть полюса имеет короткозамкнутый виток. Ротор однофазного двигателя с заштрихованными полюсами закорочен в виде короткозамкнутого сепаратора.

Когда однофазная обмотка статора включена в электрическую сеть, в магнитной цепи двигателя создается флуктуирующий магнитный поток.Одна часть которого проходит через незатененный Ф ', а другая Ф "вдоль затененного участка полюса. Поток Ф" индуцирует ЭДС E k в короткозамкнутом витке, в результате чего ток I k отстает от E В фазе к из-за индуктивности катушки. Ток I к создает магнитный поток Ф к , направленный противоположно Ф ", создавая результирующий поток в затененном участке полюса Ф с = Ф" + Ф к . Таким образом, в двигателе потоки затененных и незатененных участков полюса смещаются во времени на определенный угол.

Пространственные и временные углы сдвига между потоками Ф с и Ф 'создают условия для появления вращающегося эллиптического магнитного поля в двигателе, начиная с Ф с ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя низкие. КПД намного ниже, чем у асинхронных двигателей с пусковым конденсатором той же мощности, что связано со значительными электрическими потерями в короткозамкнутой катушке.

Single-phase induction motor with asymmetrical stator

Статор такого однофазного двигателя выполнен с выступающими полюсами на несимметричном многослойном сердечнике.Ротор имеет короткозамкнутую обмотку.

Этот двигатель для работы не требует использования фазосдвигающих элементов. Недостатком этого мотора является низкий КПД.

Также прочитайте

.

Как использовать VFD для однофазного двигателя?

Использование VFD для регулирования скорости двигателя имеет много преимуществ. Многие маломощные двигатели используют однофазный источник питания. Как использовать VFD для контроля скорости для однофазных двигателей? АТО предоставит следующие методы.

I. Текущая ситуация однофазного двигателя
Механическое оборудование с однофазным источником питания обычно использует двигатель переменного тока мощностью менее 1,5 кВт. Кроме того, большинство из них используют однофазный пусковой емкостной двигатель, в то время как другие несколько единиц оборудования используют однофазный пусковой емкостной двигатель.Когда используется однофазный двигатель с пусковой емкостью, при запуске центробежный выключатель замыкается, а затем пусковая емкость подключается. Когда скорость двигателя достигает около 75% от номинальной скорости, центробежный выключатель отключается. Начальный крутящий момент примерно в 2,4 раза больше номинального крутящего момента. Импульсный ток примерно в 7 раз превышает номинальный ток. При таком методе импульсный ток велик, механический удар велик, пусковой крутящий момент велик и скорость не может регулироваться.При использовании однофазного двигателя с емкостным управлением центробежный выключатель отсутствует. Рабочая емкость подключена в течение длительного периода. Этот двигатель имеет небольшой пусковой крутящий момент, который обычно составляет 3/5 от номинального крутящего момента. Поэтому он подходит только для нагрузок с мягкими характеристиками, таких как воздуходувка и водяной насос и так далее. Существуют также другие двигатели с однофазной рабочей емкостью, для которых увеличение рабочей емкости может увеличить пусковой крутящий момент. Тем не менее, пусковой ток примерно в 6 раз превышает номинальный ток, и он имеет механический удар.В однофазном двигателе с емкостным питанием используется метод регулирования напряжения для изменения коэффициента скольжения двигателя. Он также может реализовывать бесступенчатое регулирование скорости. Однако такой метод имеет плохой эффект. Скорость не может быть стабилизирована. Его характеристика крутящего момента тоже плохая. Использование ЧРП позволяет однофазному оборудованию обладать хорошими характеристиками бесступенчатого регулирования скорости.

II. Методы с использованием VFD для однофазного двигателя

  1. Пусть однофазный двигатель работает как двухфазный двигатель
    Устраните пусковую или рабочую емкость однофазного двигателя и устраните центробежный выключатель, пусть однофазный двигатель работает как двухфазный двигатель.Основная обмотка и вторичная обмотка двигателя осуществляются с помощью регулятора скорости через ЧРП. В однофазном двигателе фаза вторичной обмотки продвигается на 90 ° по сравнению с основной обмоткой, в результате чего двигатель образует круглый вращающийся полет и имеет отличные характеристики двигателя. ЧРП инвертирует высокое напряжение постоянного тока через восемь силовых устройств. Четыре силовых устройства инвертированы в переменную частоту переменного тока для возбуждения главной обмотки. Остальные четыре силовых устройства инвертированы в фазоиндикатор 90 ° переменного тока для возбуждения вторичной обмотки.Общая частота контролируется цепью предусилителя синхронно (как показано ниже). Такой VFD имеет хорошие показатели. Это может заставить двухфазный двигатель вращаться под круглым полем точно. Пусковой и рабочий крутящий момент двигателя определяется постоянным напряжением главной и вторичной обмоток, и ЧРП может устанавливать эти напряжения. ЧРП позволяет двухфазному двигателю работать при мягком пуске или плавном отключении без удара, благодаря чему достигаются хорошие характеристики пускового момента.Недостатком является то, что стоимость VFD высока для использования восьми устройств питания.
  2. Использование однофазного VFD
    Однофазный двигатель нельзя просто подключить к VFD. Поскольку центробежный выключатель не может осуществлять бесступенчатое регулирование скорости, его необходимо устранить. Пусковая и рабочая емкость не могут выдержать высокочастотную несущую ЧРП. При высокой частоте емкость легко нагревается или разрушается. Рабочая емкость в однофазном двигателе оборудована для того, чтобы вторичная обмотка была выдвинута на 90 ° от основной обмотки.Такая конфигурация проводится при частоте питания 50 Гц. Емкость емкости связана с частотой питания. Следовательно, рабочая емкость не может обеспечить требование исходного фазового сдвига на 90 ° из-за изменения частоты питания. Мы должны решить вышеупомянутые проблемы, чтобы применить однофазный VFD в однофазном двигателе с емкостной емкостью. Применение однофазного ЧРП должно снизить несущую частоту, устранить высокочастотную несущую или гармоническую волну, чтобы уменьшить опасность, связанную с рабочей емкостью.В однофазном двигателе с рабочей емкостью в рабочей емкости не должен использоваться электролитический конденсатор. Вместо этого следует принять высококачественную фиксированную емкость с высокой частотной выносливостью. Таким образом, может быть применен однофазный VFD (как показано ниже). Применение однофазного ЧРП имеет низкую стоимость. Однако, из-за наличия емкости, он не может достичь глубоких характеристик двухфазного двигателя в принципе. Тем не менее, он экономичен и практичен, сочетая его хорошее применение при нормальной легкой нагрузке, имеет практические ценности.

См. Следующую видеоинструкцию по подключению ATO VFD для однофазного двигателя

В гражданских случаях, однофазный источник питания должен быть принят. После использования ЧРП двигатель может осуществлять бесступенчатое регулирование скорости, что позволяет повысить производительность. Это выгодно не только для качества работы, но и для экономии энергии. Различные ЧРП с однофазным источником питания 220 В имеют более низкую стоимость, чем ЧРП с трехфазным напряжением 380 В, поэтому они относительно экономичны.
Теперь можно купить VFD ATO для однофазного двигателя, однофазный VFD мощностью 1 л.с., однофазный VFD мощностью 2 л.с., однофазный VFD мощностью 5 л.с. ...

,

трехфазный ток - простой расчет

Расчет тока в трехфазной системе был поднят на обратной связи нашего сайта и является дискуссией, в которой я, кажется, участвую время от времени. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя основные принципы. Я думал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в Вт (или кВт).Произведение напряжения и тока - это полная мощность, измеренная в ВА (или кВА). Соотношение между кВА и кВт - это коэффициент мощности (пф):


который также может быть выражен как:

Однофазная система - с ней проще всего иметь дело. Учитывая кВт и коэффициент мощности, кВА может быть легко определена. Ток - это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициент мощности 0.86:


Примечание: вы можете сделать эти уравнения в ВА, V и A или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Для перевода из VA в кВА просто разделите на 1000.

Трехфазная система - Основным отличием трехфазной системы от однофазной системы является напряжение. В трехфазной системе мы имеем линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или как:

чтобы лучше понять это или получить более глубокое понимание, вы можете прочитать статью Введение в трехфазную электроэнергию

Для меня самый простой способ решить трехфазные задачи - это преобразовать их в однофазные.Возьмите трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий данный кВт. КВт на одну обмотку (однофазное) должно быть суммой, деленной на 3. Аналогично, трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданное кВА, будет иметь каждую обмотку, подающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общий кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (V LL ):

линия к нейтральному (фазному) напряжению V LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
Теперь просто следуйте вышеописанному однофазному методу

Достаточно просто. Чтобы найти мощность по заданному току, умножьте на напряжение, а затем коэффициент мощности для преобразования в Вт. Для трехфазной системы умножьте на три, чтобы получить полную мощность.

Личная заметка о методе

Как правило, я помню метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда забываю их скоро или становлюсь неуверенным, правильно ли я их помню. Мой совет - всегда стараться запомнить метод, а не просто запомнить формулу. Конечно, если у вас есть супер способность запоминать формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы - пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL

Преобразование в однофазную задачу:
P1ph = P3

Кажущаяся мощность однофазной сети S 1ph (ВА):
S1ph = P1phpf = P3 × pf

Фазовый ток I (A) - это кажущаяся однофазная мощность, деленная на фазное напряжение и напряжение нейтрали (и задана В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL

Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.

Более традиционные формулы могут быть использованы для получения того же результата. Они могут быть легко получены из вышесказанного, например,

I = W3 × pf × VLL, в A

Несбалансированные трехфазные системы

Вышеуказанное касается сбалансированных трехфазных систем. То есть ток в каждой фазе одинаков, и каждая фаза выдает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичных типов оборудования.

Часто, когда задействованы однофазные нагрузки, например, жилые и коммерческие помещения, система может быть несбалансированной, так как каждая фаза имеет различный ток и выдает или потребляет различное количество энергии.

Сбалансированное напряжение

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и с небольшим размышлением можно распространить вышеуказанный тип расчета на несбалансированные текущие трехфазные системы.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

линия к нейтральному (фазному) напряжению V LN = 400 / √3 = 230 В
полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА
полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА
полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Аналогично, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете конвертировать между кВА и кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несбалансированными или имеются другие соображения (то есть несбалансированный сдвиг фаз), то необходимо вернуться к более традиционному сетевому анализу.Системные напряжения и токи могут быть найдены путем составления схемы в деталях и использования законов Кирхгофа и других сетевых теорем.

Сетевой анализ не является целью этой заметки. Если вы заинтересованы во введении, вы можете просмотреть наш пост: Теория сети - Введение и обзор

Эффективность и реактивная мощность

Другие вещи, которые следует учитывать при проведении расчетов, могут включать в себя эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования - это выходная мощность, деленная на входную мощность, опять же, это легко может быть учтено. Реактивная мощность не обсуждается в статье, а дополнительные сведения можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА - это просто ток, умноженный на напряжение, поэтому, зная это, и напряжение может дать ток.При расчете тока используйте фазное напряжение, которое связано с напряжением линии квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.