Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как перемотать 3 фазный асинхронный двигатель


Перемотка электродвигателей своими руками - инструкция


Многие бытовые устройства и самодельные конструкции работают от электроприводов, которые имеют небольшую мощность. Однако электродвигатели, хоть и отличаются высокой надежностью, они также не редко могут выходить из строя по разным причинам. С учетом относительно высокой стоимости таких моторов проще будет их ремонтировать, а не менять. В этой статье мы рассмотрим, как перематывать электродвигатели своими силами.

Обычно в бытовой технике применяются коллекторные моторы с постоянным током и бесколлекторные асинхронные модели с переменным током. Сейчас мы разберемся, как осуществлять ремонт именно такого оборудования. Конструктивные особенности и принципы работы систем асинхронного и коллекторного типа можно найти у нас на сайте.

Как ремонтировать асинхронные двигатели


Если в двигателе есть проблемы, то это проблемы или механического, или электрического характера. В первом случае поломка может сопровождаться сильной вибрацией и характерным шумом. Обычно это указывает на проблемы с подшипником – как правило, в торцевой крышке. Не устраните поломку вовремя – и вал может заклинить, а в итоге из строя выйдут обмотки статора. В это же время может не успеть сработать функция тепловой защиты автоматического выключателя.

Практика показывает, что примерно в 90% неисправностей моторов асинхронного типа появляются проблемы в обмотке статора – в виде обрыва, межвиткового замыкания, КЗ на корпус. В это время короткозамкнутый якорь чаще всего продолжает функционировать исправно. Таким образом, если повреждения двигателя имеют механическую причину, электрическую часть обязательно следует проверять.


Чаще всего проблему можно выявить по внешним признакам и характерному запаху (рис. 1). Если поломку не удалось обнаружить эмпирическим способом, тогда прибегаем к диагностированию и делаем прозвонку на обрыв. Если мы ее обнаружили, выполняем разборку мотора (про это детальнее мы поговорим дальше) и тщательно осматриваем соединения. Когда дефекты не обнаружены, можно сказать, что у нас обрыв в какой-нибудь катушке. Поэтому нужно делать перемотку.

Если после прозвонки обрыв не зафиксирован, тогда мы измеряем сопротивление обмоток, при этом учитываем такие нюансы:
• необходимо, чтобы сопротивление изоляции катушек на корпус стремилось к бесконечности;
• нужно, чтобы у трехфазного привода обмотки показывали одинаковое сопротивление;
• требуется, чтобы у однофазных моделей сопротивление пусковых катушек превышало эти параметры рабочих обмоток.

Также нужно помнить о том, что статорные катушки имеют весьма низкое сопротивление. Поэтому, чтобы его измерить, нет смысла пользоваться приборами, которые имеют низкий класс точности – это большая часть мультиметров. Решить вопрос можно, если собрать простую схему на потенциометре, добавив дополнительный источник питания – к примеру, автомобильную аккумуляторную батарею.


Как проводить измерения:
• подключаем катушку привода к схеме, которая представлена выше;
• с помощью потенциометра устанавливаем ток 1 А;
• делаем расчет сопротивления катушке, используя такую формулу: где R К и U ПИТ описаны на рис. 2. R – сопротивление потенциометра, – падение напряжения на катушке измерения (на схеме показывает вольтметр).

Работа со статором


При ремонте и перемотке электродвигателя в первую очередь составляется схема расположения и подключения обмоток мотора. В случае с трехфазным двигателем под каждую фазу аккуратно составляется схема катушек. Они наматываются, как правило, одним проводом. Только, когда схема подключения обмоток хорошо изучена и правильно составлена, можно их разбирать и удалять. Для удобства помечаем обмотки разными цветами и фотографируем. Также проверяем, все ли понятно в фотографиях и схемах.
Перед тем, как делать перемотку статора электромотора, изготовляем шаблон по его размеру. Ширина равняется размеру между пазами, в который будет уложена катушка. Чтобы заизолировать статор от обмотки, в пазы вставляем картонные или специальные пластиковые пластинки. Чтобы уложить катушку в пазы, используется деревянная или пластмассовая лопатка – трамбовка.

Когда одну катушку намотали, провод не откусываем, катушку укладываем в пазы и продолжаем мотать на шаблон. Все катушки одной фазы мотаем, используя цельный провод, не перекусываем его. В первую очередь перематываем все витки одной фазы, и поочередно их укладываем. Аналогичным путем мотаем и укладываем катушки для других фаз. Верхняя часть обмотки в пазах статора над витками закрывается пластинками из того самого материала изоляции, что применен в пазах статора.


Когда катушка одной из фаз намотана и уложена, в обязательном порядке делается обвязка и формировка катушек в ровные пучки. Стараемся, чтоб витки находились в одной связке, не касаясь корпуса статора. Если катушка чуть большая и касается корпуса, одеваем на нее разрезанный кембрик, и потом обвязываем. Не следует допускать касание неизолированных проводов корпуса, поскольку во время вибрации, к которой приводит электромагнитное поле, лак может протираться, и в итоге произойдет замыкание катушки на корпус. После укладки берется омметр и проверяется сопротивление.

Нужно точно следить за количеством витков в каждой катушке, чтобы избежать перегревания обмоток. Следует обращать пристальное внимание на то, чтобы не появилось перехлестов витков на обмотке. Также необходимо следить, дабы провод не завязался в виточный узел, чтоб на нем не была обтертая изоляция. Те элементы, которые выходят за пределы корпуса пазов, аккуратным образом утрамбовываем.


Каждый вывод от каждой катушки заправляем в кембрик – изоляционную трубку. Материал трубок должен обладать не только изоляционными свойствами, но и стойкостью к нагреванию проводов. Чтобы избежать плавления, класс изоляции должен применяться не ниже, чем применимый раньше.

Классы устойчивости изоляции к температуре:

Проверяем и собираем


Следующий этап – сборка мотора. Наживляем основные болты, чтобы сделать прозвонку и проверяем ток каждой из фаз. Используя токовые клещи, проверяем токи обмоток каждой фазы через нагрузку и автоматический выключатель. Нужно, чтобы они были одинаковы. После этого мотор собираем, закручиваем все болты и проверяем его на правильность вращения и работу в холостом режиме.
Если все работает, систему снова разбираем, чтобы покрыть обмотки статора лаком. Статор помещаем в лак для пропитки обмоток и заполнения пустот. После этого его поднимаем, чтобы лак стек, и сушим, поместив в специальную сушилку или на открытый воздух. Чтобы ускорить сушку, воспользуемся лампой накаливания (мощность 0,5–1 кВт) – ее вставляем в статор и включаем в сеть.

Когда мотор просушен, полностью его собираем, и снова проверяем сопротивление изоляции. Проверяем, как работает электродвигатель на холостом ходу. Для этой задачи лучше воспользуемся понижающим трансформатором и автоматическим выключателем (рекомендуется УЗО). И лишь когда мотор прошел проверку, его можно применять, давая полное напряжение.


Для правильного проведения перемотки стоит следовать таким рекомендациям специалистов:
• Когда мы определяем неисправности электромотора, то учитываем, что сопротивление изоляции часто может снижаться по той причине, что на него может попасть грязь или металлическая стружка. В таком случае мотор нужно аккуратно прочистить, промыть от грязи и высушить, используя фен или тепловую пушку.

• Очень часто не обязательно делать всю перемотку. В случае короткого замыкания под фланцами по причине вибрации следует устранить поврежденную изоляцию. В итоге мы проводим зачистку и меняем изоляцию, после чего заливаем место повреждения лаком.

• Если во время прозвонки происходит межвитковое замыкание, то с помощью омметра определяем замкнутый виток. После того, как испорченный элемент удалось определить – заменяем его, концы спаиваем и изолируем. После этого двигатель проверяем на стенде.

• Если вы хотите, чтобы обмотка электромотора была перемотана на шаблон равномерно, тогда укладываем провод к проводу, не делая нахлесты и перекосы по размерам статора. После этого внимательно проверяем, нет ли выступов изоляции обмотки из пазов статора, чтобы во время вставки ротора он ее не цеплял. На проводе не должны быть витковые узлы. Марка и сечение провода должны быть такими же, как и в оригинале.


Теперь у вас есть полная инструкция и понимание того, как перемотать электродвигатель своими руками. Успехов! Трехфазный асинхронный двигатель

: принцип построения и работы

Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в отрасли. Они работают по принципу электромагнитной индукции.

Из-за сходства в принципе работы трансформатора, он также известен как вращающийся трансформатор .

Они работают с практически постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко адаптировать к управлению скоростью .

Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

Давайте разберемся в конструкции трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

Конструкция трехфазного асинхронного двигателя

Как и любой электродвигатель, трехфазный асинхронный двигатель имеет , статор и ротор . Статор имеет трехфазную обмотку (называемую обмоткой статора), а ротор имеет обмотку с короткозамкнутой обмоткой (называемую обмоткой ротора).

Только 3 обмотка статора питается от 3-фазного питания. Обмотка ротора получает свое напряжение и мощность от обмотки статора с внешним питанием посредством электромагнитной индукции и, следовательно, названия.

3-фазный асинхронный двигатель состоит из двух основных частей

  1. Статор
  2. Ротор

Ротор отделен от статора небольшим воздушным зазором , который составляет от 0,4 мм до 4 мм, в зависимости от мощности двигателя.

1. Статор 3-фазного асинхронного двигателя

Статор состоит из стальной рамы, которая заключает в себе полый цилиндрический сердечник, состоящий из тонких слоев кремниевой стали, для уменьшения гистерезиса и потерь на вихревые токи.

Ряд равномерно расположенных прорезей предусмотрен на внутренней периферии слоев. Изолированные проводники соединяются, образуя сбалансированную трехфазную звезду или треугольник.

Наружная рама и статор трехфазного асинхронного двигателя

3-фазная обмотка статора намотана на определенное количество полюсов в соответствии с требованием скорости.Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины. Это вращающееся поле индуцирует токи в роторе посредством электромагнитной индукции.

2. Ротор 3-фазного асинхронного двигателя

Ротор, установленный на валу, представляет собой полый многослойный сердечник с пазами на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

  1. Тип короткозамкнутого ротора
  2. Тип обмоточного ротора

Принцип работы Трехфазный асинхронный двигатель

Для объяснения принципа действия Трехфазный асинхронный двигатель, рассмотрим часть трехфазного асинхронного двигателя, как показано на рисунке.

Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

Когда на трехфазную обмотку статора асинхронного двигателя подается питание от 3-фазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N с ).

Часть вращающегося магнитного поля в трехфазном асинхронном двигателе

Синхронная скорость,

N с = 120 f / P

Где,

f = частота

P = Количество полюсов

(Подробнее о вращающемся магнитном поле читайте в разделе Производство вращающегося магнитного поля).

Это вращающееся поле проходит через воздушный зазор и обрезает неподвижные проводники ротора.

ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора короткозамкнута, в проводниках ротора начинают течь токи.

Токопроводящие проводники ротора размещены в магнитном поле, создаваемом статором. Следовательно, механическая сила действует на проводники ротора.Сумма механических сил на всех проводах ротора создает крутящий момент , который стремится перемещать ротор в том же направлении, что и вращающееся поле.

Тот факт, что ротор вынужден следовать полю статора (то есть ротор движется в направлении поля статора), может быть объяснен законом Ленца .

Согласно закону Ленца, направление токов ротора будет таким, что они будут противодействовать причине их возникновения.

Теперь причиной возникновения токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает вращаться в том же направлении, что и поле статора, и пытается его зафиксировать. Вот как начинает работать трехфазный асинхронный двигатель.

Скольжение в асинхронном двигателе

Мы видели выше, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

На практике ротор никогда не может достичь скорости потока статора. Если это произойдет, не будет относительной скорости между полем статора и проводниками ротора, не будет индуцированных токов ротора и, следовательно, не будет крутящего момента для привода ротора.

Трение и обмотка немедленно приведут к замедлению ротора. Следовательно, скорость вращения ротора (N) всегда меньше скорости вращения статора (N с ). Эта разница в скорости зависит от нагрузки на двигатель.

Разница между синхронной скоростью N с вращающегося поля статора и фактической частотой вращения ротора N в трехфазном асинхронном двигателе называется проскальзыванием .

Скольжение обычно выражается в процентах от синхронной скорости i.

скольжения, с = (N с - N) / N с × 100%

Величина N s - N иногда называется , скорость скольжения .

Когда ротор неподвижен (то есть N = 0), проскальзывание s = 1 или 100%.

В асинхронном двигателе изменение скольжения от холостого хода к полной нагрузке составляет едва ли от 0,1% до 3% , так что по сути это двигатель с постоянной скоростью .

Видео: работа трехфазного асинхронного двигателя

На видео с Learnengineering демонстрируется работа трехфазных асинхронных двигателей в анимационной форме.,

Способы запуска трехфазного асинхронного двигателя

Методы запуска трехфазного асинхронного двигателя, как правило, включают прямой запуск, запуск с пониженным напряжением и плавный пуск.

Прямой пуск в режиме онлайн
Этот тип запуска является наиболее простым и простым при запуске двигателя. Способ характеризуется меньшими затратами, простым оборудованием и небольшим количеством. Хотя время запуска короткое, крутящий момент при запуске меньше, а ток большой, что подходит для запуска двигателей небольшой мощности.

Пуск при пониженном напряжении
Метод пуска при пониженном напряжении может быть внедрен в асинхронные двигатели среднего и большого размера для ограничения пускового тока. Когда двигатель завершает запуск, он возвращается к работе с полным давлением. Однако результат запуска с пониженным напряжением снизит пусковой момент. Поэтому запуск при пониженном напряжении подходит только для запуска двигателя в режиме холостого хода или при небольшой нагрузке. Ниже приведены некоторые распространенные методы пуска при пониженном напряжении.

  • Сопротивление последовательно включенной цепи статора
    Трехфазный электрический реактор вставлен в цепь обмоток статора двигателя. Электрический реактор можно просто рассматривать как катушку, которая может создавать индуцированную электродвижущую силу для снижения напряжения на частоте прямого источника питания.
  • Запуск по схеме звезда-треугольник
    При нормальной работе 3-фазный асинхронный двигатель, обмотка статора которого предназначена для соединения в треугольник-соединение, может быть запущен при пуске в звезду, чтобы снизить напряжение каждой фазы двигателя и затем уменьшить пусковой ток.После окончания пуска он соединяется в дельту.
    Star-delta start широко используется благодаря своим преимуществам, включая простое пусковое оборудование, низкую стоимость, более надежную эксплуатацию и простоту обслуживания.
  • Запуск автотрансформатора
    Запуск пониженного напряжения автотрансформатора означает, что пониженное напряжение сети подается на обмотки статора двигателя до тех пор, пока скорость не достигнет устойчивого значения, а затем двигатель подключится к электрической сети.
    При запуске переключатель переводится в положение «пуск», и автотрансформатор подключается к сети, а затем подключается к обмоткам статора двигателя для достижения пуска с пониженным напряжением.Когда скорость вращения приближается к номинальному значению, переключатель будет переведен в положение «работа», и двигатель напрямую получит доступ к сети при работе под полным давлением через отключение автотрансформатора.

    Автотрансформаторный пуск с пониженным напряжением вводится в звездообразное соединение для двигателя большой мощности или нормальной работы с определенным запуском нагрузки. В зависимости от нагрузки, ответвление трансформатора выбирается в зависимости от требуемого пускового напряжения и пускового момента.В этот момент пусковой крутящий момент все еще ослаблен, но не уменьшен на треть (по сравнению с пусковым напряжением звездного треугольника). Тем не менее, автотрансформатор имеет большие габариты и легкий вес с высокой ценой и неудобствами в обслуживании, что не позволяет часто перемещаться.

Устройство плавного пуска
Устройство плавного пуска - это устройство управления нового типа, основными преимуществами которого являются плавный пуск, легкая нагрузка и энергосбережение, а также быстрота. Одной из наиболее важных особенностей является то, что электронная схема проводится в кремниевом управляемом выпрямителе двигателя при тандемном подключении источника питания.Использование устройства плавного пуска для подключения источника питания к двигателю и различных методов управления углом проводимости в выпрямителе, управляемом кремнием, может постепенно увеличивать входное напряжение двигателя с нуля и передавать все напряжение на двигатель от начала до конца, что называется мягким запуском. При запуске таким образом, крутящий момент двигателя будет постепенно увеличиваться с увеличением скорости. Фактически, устройство плавного пуска - это регулятор напряжения, который только изменяет напряжение без изменения частоты при запуске.

,

Основы 3-фазного асинхронного двигателя (часть 1)

Введение в 3-фазный двигатель

В этой статье будут рассмотрены те концепции трехфазного асинхронного двигателя, которые необходимы для правильного выбора, приобретения, установки и технического обслуживания.

Основы 3-фазного асинхронного двигателя (часть 1)

Перед тем, как начнется любое фактическое обсуждение двигателя, лучше провести сравнение пускового поведения асинхронного двигателя и трансформатора, поскольку согласно представлению эквивалентной схемы трехфазный асинхронный двигатель является обобщенным трансформатором.

Предполагается, что читатели уже знакомы с элементарной концепцией принципа действия и конструкции трехфазного асинхронного двигателя.

В чем принципиальная разница в принципе работы асинхронного двигателя и трансформатора ? То есть, даже если эквивалентная схема двигателя и трансформатора совпадает, ротор двигателя вращается там, где вторичная обмотка трансформатора - нет.

Асинхронный двигатель является обобщенным трансформатором.Разница в том, что трансформатор представляет собой машину с переменным магнитным потоком, в то время как асинхронный двигатель является машиной с вращающимся магнитным потоком. Вращающийся поток возможен только в том случае, когда трехфазное напряжение (или многофазное), которое находится на расстоянии 120 градусов друг от друга, приложено к трехфазной обмотке (или многофазной обмотке), расположенной на расстоянии 120 градусов в пространстве, после чего создается трехфазный вращающийся магнитный поток, величина которого постоянно, но направление постоянно меняется. В трансформаторе создаваемый поток чередуется и не вращается.

Воздушный зазор между первичной и вторичной обмотками трансформатора отсутствует, поскольку между статором и ротором двигателя имеется отчетливый воздушный зазор, который обеспечивает механическую подвижность двигателя.Из-за более высокого сопротивления (или низкой проницаемости) воздушного зазора ток намагничивания, требуемый в двигателе, составляет 25-40% от номинального тока двигателя, тогда как в трансформаторе он составляет только 2-5% от номинального первичного тока.

В машине с переменным магнитным потоком частота наведенной ЭДС на первичной и вторичной стороне такая же, где частота ЭДС ротора зависит от скольжения. Во время запуска, когда S = 1 , частота наведенной ЭДС в роторе и статоре одинакова, но после нагрузки - нет.

Другое отличие состоит в том, что вторичная обмотка и сердечник установлены на валу, установленном в подшипниках, которые могут свободно вращаться, и, следовательно, в названии ротора.

Если вообще вторичная обмотка трансформатора установлена ​​на валу, установленном на подшипниках, то скорость среза взаимного магнитного потока с вторичной цепью будет отличаться от первичной, а их частота будет отличаться. Индуцированная ЭДС будет не пропорциональна отношению числа витков, а произведению отношения числа витков и частоты. Отношение первичной частоты к вторичной частоте называется скольжением.

Любой токонесущий проводник, если он помещен в магнитное поле, испытывает силу, поэтому проводник ротора испытывает вращающий момент, и согласно Закону Ленца направление движения таково, что оно пытается противостоять вызвавшему изменение, поэтому оно начинает преследовать поле ,


Диаграмма мощности асинхронного двигателя

Входная электрическая мощность статора = A
Потери статора = B
Потери в роторе = C
Механическая мощность = P
A - (B + C) = P
Грубо B = 003A, C = 0,04A
A - 0,07A = P
0,93A = P, Следовательно, КПД = (P / A) x 100 = 93%

Схема мощности асинхронного двигателя

Почему двигатели LT соединены треугольником, а двигатели HT соединены звездой?

Причина - техно коммерческий.

  1. У звезды фазовый ток такой же, как и у линии. Но фазовое напряжение в 1 / 1,732 раза больше линейного напряжения. Таким образом, изоляция, требуемая в случае двигателя HT, меньше.
  2. Пусковой ток для двигателей в 6-7 раз больше тока полной нагрузки.Таким образом, пусковая мощность будет большой, если HT-двигатели подключены треугольником. Это может привести к нестабильности (падению напряжения) в случае малой мощности системы. Пусковой ток двигателя HT со звездой будет меньше по сравнению с двигателем, подключенным треугольником. Таким образом, стартовая мощность уменьшается. Пусковой момент также будет уменьшен. (Это не будет проблемой, поскольку двигатели имеют большую мощность.)
  3. Кроме того, поскольку ток составляет , меньше меди (Cu) , необходимых для намотки, будет меньше.
  4. Двигатели
  5. LT соединены треугольником.
    1. Изоляция не будет проблемой, так как уровень напряжения ниже.
    2. Пусковой ток не будет проблемой, так как пусковая мощность у всех будет меньше. Так что никаких проблем с провалами напряжения.
    3. Пусковой момент должен быть большим, так как двигатели имеют небольшую мощность.
Сравнение запуска двигателя по схеме звезда и треугольник Двигатели
LT подключены к треугольнику обмотки.

1. В случае, если он имеет пускатель звезда-треугольник, они запускаются как двигатель со звездой.
2.После достижения 80% скорости синхронизации происходит переключение со звезды на дельту исходной конфигурации.
3. В звезду напряжения на обмотках меньше, что в 1 / 1,732 раза больше, чем в дельте, поэтому ток ограничен.
4. Когда он снова переходит в треугольник, напряжение является напряжением полной линии, поэтому ток увеличивается, даже если он меньше, чем ток в линии, он остается выше, чем ток в линии, потребляемой звездой при пониженном напряжении. Таким образом, кабели для двигателя рассчитаны на этот ток, который он потребляет в соединении треугольником.

Рекомендации:

1. НЕМА МГ-1.
2. Руководство по промышленной энергетике и применению K C Agarwaal.
3. Справочник по промышленной энергетике, Шоаиб Хан.
4. Теория и расчет явлений переменного тока от Charles Proteus Steinmetz
5. Руководство по реле защиты двигателя (MM30) от L & T

,

Смотрите также


avtovalik.ru © 2013-2020