Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как подключить асинхронный двигатель от стиральной машины


Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный ("наждачный") станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на "ножы" которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.

Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент - вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)


Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами - рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора "SB" может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной "запитки" пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно - дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт "SB" строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку "SB" зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс - нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 - 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 - 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с "нулевым" сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом "спалить" его из за того что неправильно подключили, спокойно можно и
"поэкспериментировать" и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье - "Подключение трехфазного двигателя"

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

асинхронные двигатели переменного тока | Как работают двигатели переменного тока

Реклама

Крис Вудфорд. Последнее обновление: 21 апреля 2020 г.

Знаете ли вы, как работают электродвигатели? Ответ, вероятно, да и нет! Хотя многие из нас узнали, как основные моторные работы, от простых научных книг и веб-страниц, таких как это, многие из двигатели, которые мы используем каждый день - во всем, от заводских машин до электрички - вообще-то не работают.Какие книги научите нас о простых двигателях постоянного тока, которые имеют петля проволоки вращается между полюсами постоянного магнита; в реальной жизни, большинство мощных двигателей используют переменный ток (AC) и работать совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте внимательнее посмотрим!

Фото: повседневный асинхронный двигатель переменного тока со снятым корпусом и ротором, на котором показаны медные обмотки катушек, составляющих статор (статическая неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (движущуюся часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено US DOE / NREL.

Как работает обычный двигатель постоянного тока?

Работа: Электродвигатель постоянного тока основан на петле проволоки, вращающейся внутри неподвижного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют электрический ток каждый раз, когда проволока переворачивается, что позволяет ему вращаться в одном направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки согнут в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током, сидящий в магнитном поле.) Когда Вы подключаете провод к батарее таким образом, чтобы через него протекал постоянный ток, создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, вызывая проволоку перевернуть.Обычно провод останавливается в этой точке, а затем снова переворачивается, но если мы используем гениальное вращающееся соединение называется коммутатором, мы можем сделать текущий обратный каждый раз, когда провод переворачивается, и это означает, что провод будет вращаться в в том же направлении, пока ток течет. Это Суть простого электродвигателя постоянного тока, который был задуман в 1820-е годы Майкл Фарадей и превратился в практическое изобретение о десятилетие спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро Подводя итог, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю, статическую часть двигатель (статор), в то время как катушка провода, несущего электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который является постоянный магнит, в то время как вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянным магнитом поле статора и временное магнитное поле, создаваемое ротором, составляет что заставляет мотор вращаться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, в большинстве домов, офисов, заводы и другие здания не питаются от маленьких батарей: они не снабжаются постоянным током, а переменным током (AC), который меняет свое направление примерно 50 раз в секунду (с частотой 50 Гц). Если вы хотите запустить двигатель от электросети переменного тока вашей семьи, вместо батареи постоянного тока вам нужен другой дизайн двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляют статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора есть цельнометаллическая ось, петля из проволоки, катушка, короткозамкнутый каркас из металлических стержней и соединений (подобно вращающимся клеткам, люди иногда забавляют домашних мышей), или какая-то другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию на внутренний ротора, в двигателе переменного тока вы посылаете питание на внешние катушки, которые составляют статор. Катушки подаются в пары, последовательно, создавая магнитное поле, которое вращается вокруг двигателя.

Фото: статор создает магнитное поле, используя плотно намотанные витки медного провода, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим двигателем. Иногда проще заменить обмотки двигателя новым проводом - квалифицированная работа, которая называется перемоткой, что и происходит здесь. Фото Сет Скарлетт любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри Магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него в виде петли. Если проводник представляет собой просто твердый кусок металла, то вокруг него циркулируют вихревые токи. В любом случае, индуцированный ток производит его собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращением.(Вы можете думать о роторе отчаянно пытаясь «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция является ключом к тому, почему такой двигатель вращается, и именно поэтому он называется асинхронным двигателем.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары электромагнитных катушек, показанные здесь красным и синим, поочередно запитываются от источника переменного тока (не показан, но подключается к выводам справа).Две красные катушки соединены последовательно и под напряжением вместе, а две синие Катушки подключены одинаково. Поскольку это переменный ток, ток в каждой катушке не включается и не отключается внезапно (как показывает эта анимация), но плавно поднимается и опускается в форме синусоиды: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (смещение по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между собой, вызывает электрический ток в роторе.Этот ток создает свое собственное магнитное поле, которое пытается противостоять тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями вызывает вращение ротора.
  3. Поскольку магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (в теории) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером того, что называется асинхронным двигателем переменного тока.Теоретическая скорость вращения ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, что он ведет) также играет свою роль - имеет тенденцию замедлять ротор. Чем больше нагрузка, тем больше «скольжение» между скоростью вращающегося магнитного поля и фактической скоростью вращения ротора. Чтобы контролировать скорость двигателя переменного тока (заставить его двигаться быстрее или медленнее), вы должны увеличить или уменьшить частоту источника переменного тока, используя так называемую частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, работающей от асинхронного двигателя переменного тока, вы действительно управляете цепью, которая поворачивает частоту тока, который приводит двигатель в движение вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить ротор с четырьмя катушками (две противоположные пары), как показано здесь. Можно построить асинхронные двигатели со всеми другими типами катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Число отдельных электрических токов, подающих питание на катушки независимо друг от друга, известно как фаза двигателя, поэтому показанная выше конструкция представляет собой двухфазный двигатель (с двумя токами, подающими питание на четыре катушки, которые работают не шаг за шагом в двух парах). ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно распределенных катушек (три пары) или даже 12 катушек (три комплекта по четыре катушки) с одной, двумя или четырьмя катушками. включаются и выключаются вместе тремя отдельными токами в противофазе.

Анимация

: трехфазный двигатель, питаемый от трех токов (обозначается красным, зеленым и синие пары катушек), 120 ° в противофазе.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ моторы, напротив, имеют коммутатор и угольные щетки, которые изнашиваются и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Artwork: Электродвигатели чрезвычайно эффективны, обычно преобразуя около 85 процентов поступающей электрической энергии в полезную, уходящую механическую работу. Несмотря на это, внутри обмоток все еще расходуется много энергии, поэтому двигатели могут сильно нагреваться. Большинство промышленных двигателей переменного тока имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который управляет машиной, к которой подключен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса мимо вентиляционных ребер. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), это причина: они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, который приводит его в движение, он вращается со постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного проще контролировать, просто увеличивая или уменьшая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за своей обмотки катушки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника питания постоянного тока (например, от солнечных батарей) без использования инвертора (устройства, которое превращает постоянный ток в переменный ток). Это потому, что им нужно изменение магнитного поля, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Работа: оригинальный дизайн Никола Тесла для асинхронного двигателя переменного тока.Он работает точно так же, как анимация выше, с двумя синими и двумя красными катушками, попеременно включаемыми генератором справа. Это произведение искусства получено из оригинального патента Tesla, депонированного в Бюро по патентам и товарным знакам США, которое вы можете прочитать сами в ссылках ниже.

Никола Тесла (1856–1943) был физиком и плодовитый изобретатель, чей удивительный вклад в науку и технику никогда не был полностью признан. После того, как он прибыл в Соединенные Штаты в возрасте 28 лет, он начал работает на знаменитого пионера электротехники Томаса Эдисона.Но двое мужчин выпали катастрофически и вскоре стали жестокими соперниками. Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал об обратном. Со своим партнером Джорджем Вестингауз, Тесла защищал AC, в то время как Эдисон был решил управлять миром на DC и придумал все виды рекламные трюки, чтобы доказать, что AC был слишком опасен для широкого использования (изобретая электрический стул, чтобы доказать, что переменный ток может быть смертельным, и даже электрический ток Топси слону с AC, чтобы показать, насколько смертельно и жестоко это было).Битва между этими двумя очень разные взгляды на электроэнергию иногда называют войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Тесла выиграл день, и теперь электричество переменного тока дает много сил мира. Именно поэтому многие из электродвигателей, которые водить технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Тесла разработан в 1880-х годах (его патент, показанный здесь, был выдан в мае 1888 года).Итальянский физик по имени Галилео Феррарис независимо придумал ту же идею примерно в то же время, но история относилась к нему еще более жестоко, чем Тесла и его имя теперь почти забыты.

Узнайте больше

На этом сайте

На других сайтах

книг

Для пожилых читателей
Для младших читателей
  • Электричество для молодых производителей: веселые и простые проекты «Сделай сам». Автор Mark deVinck.Maker Media / O'Reilly, 2017. Отличное практическое знакомство с электричеством, в том числе пара мероприятий, которые включают создание электродвигателей с нуля. Возраст 9–12.
  • Эксперименты с электродвигателем Эд Собей. Enslow, 2011. Это отличное общее введение в электродвигатели с широким научным и технологическим контекстом. Однако по очевидным практическим соображениям и соображениям безопасности он сфокусирован только на двигателях постоянного тока и подходит для возраста 11–14 лет.
  • Сила и Энергия Криса Вудфорда.Факты в архиве, 2004. Одна из моих книг, рассказывающая об истории человеческих усилий по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: Крис Вудфорд, разработчик электроэнергии, в книге «Изобретатели и изобретения», том 5. Нью-Йорк: Маршал Кавендиш, 2008. Краткая биография Теслы, которую я написал несколько лет назад. На момент написания статьи все это было доступно через Интернет по этой ссылке в Google Книгах. Возраст 9–12.

Патенты

Патенты предлагают более глубокие технические детали - и собственные идеи изобретателя в своей работе.Вот очень маленький выбор из многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель, Никола Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели, Томас Х. Бартон и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 года. Асинхронный двигатель с улучшенным управлением скоростью.
  • Патент США 4311932: жидкостное охлаждение для асинхронных двигателей. Автор - Raymond N. Olson, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, Umesh C. Gupta, Vickers, Inc.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Следуйте за нами

Поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать об этом друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (Введите дату здесь)]

Подробнее на нашем сайте...

,

Смотрите также


avtovalik.ru © 2013-2020