Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как подключить двигатель к частотному преобразователю


Подключение частотного преобразователя к электродвигателю (схема)

Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.

Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.

Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.

Некоторые особенности подключения любого частотника в связку с электрическим двигателем.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Во вторых

Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.

Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.

В третьих

Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.

Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.

Всё зависит от конкретных обстоятельств и требований производства.

Первый пуск и настройка преобразователя частоты

После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.

Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.

Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.

После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.

Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.

При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.

  • Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
  • Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
  • Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
  • Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
  • Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.

Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.

Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.

В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.

[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.


Watch this video on YouTube

Поддержание двигателя при правильной температуре при подключении к преобразователю частоты

Два вида влияния

Когда двигатель подключен к преобразователю частоты, он должен поддерживаться при правильной температуре, и это зависит от двух типов влияния :

  1. Если скорость уменьшается, объем охлаждающего воздуха уменьшается .
  2. Если присутствует несинусоидальный ток двигателя, в двигателе генерируется еще тепла.
Поддержание двигателя при правильной температуре при подключении к преобразователю частоты (фото Yaconto LLC.)

На низких скоростях вентилятор двигателя не может подавать достаточно воздуха для охлаждения. Эта проблема возникает, если момент нагрузки постоянен во всем диапазоне регулирования.

Эта нижняя вентиляция определяет уровень крутящего момента, допустимый при длительных нагрузках. Рисунок 1 - Необходимость внешней вентиляции для двигателя с номинальным размером и двигателя негабаритного размера

Если двигатель работает непрерывно - с номинальным крутящим моментом 100% - со скоростью, которая меньше половины номинальной скорости, то для двигателя требуется дополнительного воздуха для охлаждения (серые области на Рис. 1 ).

В качестве альтернативы коэффициент нагрузки двигателя можно уменьшить, выбрав двигатель большего размера . Тем не менее, необходимо соблюдать осторожность, чтобы двигатель не был слишком большим для данного преобразователя частоты.

Если ток двигателя не является синусоидальным, он не должен постоянно подвергаться нагрузке 100%, так как он будет получать гармонические токи, которые повышают его температуру. Размер гармонических токов определяет количество тепла. Рисунок 2 - Несинусоидальный ток генерирует дополнительное тепло в двигателе

Ссылка: Факты, которые необходимо знать о преобразователях частоты - Danfoss

Связанные материалы EEP со спонсорскими ссылками

,

Что такое преобразователь частоты? Как это устроено?

Работа с переменной частотой была в форме генератора переменного тока с момента появления асинхронного двигателя. Измените скорость вращения генератора, и вы измените его выходную частоту. До появления высокоскоростных транзисторов это был один из немногих доступных вариантов изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора снижало выходную частоту, но не напряжение. Мы увидим, почему это важно, чуть позже.В нашей отрасли применение насосов с регулируемой скоростью было намного сложнее в прошлом, чем сегодня. Одним из более простых методов было использование многополюсного двигателя, который был намотан таким образом, чтобы переключатель (или переключатели) мог изменять количество полюсов статора, которые были активны в любой момент времени. Скорость вращения может быть изменена вручную или с помощью датчика, подключенного к переключателям. Во многих приложениях с переменным расходом все еще используется этот метод. Примеры включают циркуляционные насосы для горячей и охлажденной воды, насосы для бассейнов, а также вентиляторы и насосы градирни.Некоторые бытовые дожимные насосы использовали гидравлический привод или системы с переменным ременным приводом (своего рода автоматическая коробка передач) для изменения скорости насоса на основе обратной связи от мембранного клапана давления. И некоторые другие были еще более сложными.

На основе обручей, через которые нам приходилось прыгать в прошлом, становится совершенно очевидно, почему появление современного преобразователя частоты произвело революцию (еще один каламбур) в насосной среде с переменной скоростью. Все, что вам нужно сделать сегодня, - это установить относительно простую электронную коробку (которая часто заменяет более сложное пусковое оборудование) на месте применения, и внезапно вы можете, вручную или автоматически, изменить скорость насоса по своему желанию.

Итак, давайте посмотрим на компоненты преобразователя частоты и посмотрим, как они на самом деле работают вместе, чтобы изменять частоту и, следовательно, скорость двигателя. Я думаю, вы будете поражены простотой этого процесса. Все, что потребовалось, это созревание твердотельного устройства, которое мы знаем как транзистор.

Компоненты преобразователя частоты

Выпрямитель
Поскольку в режиме переменного тока сложно изменить частоту синусоидальной волны переменного тока, первой задачей преобразователя частоты является преобразование волны в постоянный ток.Как вы увидите чуть позже, DC довольно легко манипулировать, чтобы он выглядел как AC. Первым компонентом всех преобразователей частоты является устройство, известное как выпрямитель или преобразователь, и оно показано слева на рисунке ниже.

Выпрямительная схема преобразует переменный ток в постоянный и делает это во многом аналогично зарядному устройству или сварочному аппарату. Он использует диодный мост, чтобы ограничить движение синусоиды переменного тока только в одном направлении. Результатом является полностью выпрямленная форма волны переменного тока, которая интерпретируется схемой постоянного тока как собственная форма волны постоянного тока.Трехфазные преобразователи частоты принимают три отдельные входные фазы переменного тока и преобразуют их в один выход постоянного тока. Большинство трехфазных преобразователей частоты также могут принимать однофазное питание (230 В или 460 В), но, поскольку имеется только два входных плеча, выход преобразователей частоты (HP) должен быть уменьшен, поскольку производимый постоянный ток уменьшается пропорционально. С другой стороны, настоящие однофазные преобразователи частоты (те, которые управляют однофазными двигателями) используют однофазный вход и создают выход постоянного тока, который пропорционален входу.

Существует две причины, по которым трехфазные двигатели более популярны, чем их однофазные счетчики, когда речь идет о работе с переменной скоростью. Во-первых, они предлагают гораздо более широкий диапазон мощности. Но не менее важна их способность самостоятельно начать вращение. С другой стороны, однофазный двигатель часто требует вмешательства извне, чтобы начать вращение. В этом случае мы ограничимся обсуждением трехфазных двигателей, используемых на трехфазных преобразователях частоты.

Шина постоянного тока
Второй компонент, известный как шина постоянного тока (показан в центре иллюстрации), не виден и во всех преобразователях частоты, поскольку он не вносит непосредственный вклад в работу с переменной частотой.Но это всегда будет в высококачественных преобразователях частоты общего назначения (изготовленных специализированными производителями преобразователей частоты). Не вдаваясь в подробности, шина постоянного тока использует конденсаторы и катушку индуктивности для фильтрации «пульсирующего» напряжения переменного тока от преобразованного постоянного тока до его входа в секцию инвертора. Он также может включать фильтры, которые препятствуют гармоническим искажениям, которые могут возвращаться в источник питания, питающий преобразователь частоты. Прежние преобразователи частоты и некоторые преобразователи частоты для конкретных насосов требуют отдельных сетевых фильтров для выполнения этой задачи.

Инвертор
Справа от иллюстрации "кишки" преобразователя частоты. Инвертор использует три набора высокоскоростных переключающих транзисторов для создания «импульсов» постоянного тока, которые эмулируют все три фазы синусоидальной волны переменного тока. Эти импульсы определяют не только напряжение волны, но и ее частоту. Термин инвертор или инверсия означает «разворот» и просто относится к движению вверх и вниз генерируемой формы волны. Современный преобразователь частоты использует технику, известную как «широтно-импульсная модуляция» (ШИМ), для регулирования напряжения и частоты.Мы рассмотрим это более подробно, когда посмотрим на выход инвертора.

Другой термин, с которым вы, вероятно, сталкивались при чтении литературы или рекламы преобразователя частоты, - «IGBT». IGBT относится к «изолированному затвору, биполярному транзистору», который является переключающим (или пульсирующим) компонентом инвертора. Транзистор (который заменил вакуумную трубку) выполняет две функции в нашем электронном мире. Он может действовать как усилитель и усиливать сигнал, как это происходит в радио или стерео, или он может действовать как переключатель и просто включать и выключать сигнал.IGBT - это просто современная версия, которая обеспечивает более высокие скорости переключения (3000 - 16000 Гц) и снижает тепловыделение. Более высокая скорость переключения приводит к повышению точности эмуляции волны переменного тока и снижению слышимого шума двигателя. Снижение генерируемого тепла означает меньшие теплоотводы и, следовательно, меньшую занимаемую площадь преобразователя частоты.

Выход инвертора
На рисунке справа показана форма волны, генерируемая инвертором ШИМ-преобразователя частоты, по сравнению с синусоидальной волной переменного тока.Выход инвертора состоит из серии прямоугольных импульсов с фиксированной высотой и регулируемой шириной. В этом конкретном случае есть три набора импульсов - широкий набор в середине и узкий набор в начале и конце как положительной, так и отрицательной частей цикла переменного тока. Сумма площадей импульсов равна эффективному напряжению настоящей волны переменного тока (мы обсудим эффективное напряжение через несколько минут). Если вы отрежете части импульсов выше (или ниже) истинной волны переменного тока и используете их для заполнения пробелов под кривой, вы обнаружите, что они почти идеально совпадают.Таким образом, преобразователь частоты контролирует напряжение, поступающее на двигатель.

Сумма ширины импульсов и пробелов между ними определяет частоту волны (следовательно, ШИМ или широтно-импульсную модуляцию), видимую двигателем. Если бы импульс был непрерывным (то есть без пробелов), частота все равно была бы правильной, но напряжение было бы намного больше, чем у истинной синусоидальной волны переменного тока. В зависимости от требуемого напряжения и частоты преобразователь частоты будет изменять высоту и ширину импульса и ширину пробелов между ними.Хотя внутренности, которые выполняют это, являются относительно сложными, результат элегантно прост!

Теперь, некоторые из вас, вероятно, задаются вопросом, как этот «поддельный» переменный ток (фактически постоянный ток) может приводить в действие асинхронный двигатель переменного тока. В конце концов, разве не требуется переменный ток, чтобы «вызвать» ток и соответствующее ему магнитное поле в роторе двигателя? Ну, переменный ток вызывает индукцию естественно, потому что он постоянно меняет направление. DC, с другой стороны, не делает этого, потому что он обычно неподвижен после активации цепи.Но DC может индуцировать ток, если он включен и выключен. Для тех из вас, кто достаточно стар, чтобы помнить, автомобильные системы зажигания (до появления твердотельного зажигания) имели набор точек в распределителе. Цель этих пунктов состояла в том, чтобы «подать» энергию от аккумулятора на катушку (трансформатор). Это вызвало заряд в катушке, который затем увеличил напряжение до уровня, который позволял бы зажигать свечи зажигания. Широкие импульсы постоянного тока, показанные на предыдущем рисунке, на самом деле состоят из сотен отдельных импульсов, и именно это включение и выключение выходного сигнала инвертора обеспечивает индукцию через постоянный ток.

Эффективное напряжение
Мощность переменного тока является довольно сложной величиной, и неудивительно, что Эдисон почти выиграл битву за то, чтобы сделать DC стандартом в США. К счастью, для нас все его сложности были объяснены, и все, что нам нужно сделать, это следовать правилам, которые были изложены до нас.

Одним из атрибутов, которые делают комплекс переменного тока, является то, что он непрерывно меняет напряжение, переходя от нуля к некоторому максимальному положительному напряжению, затем обратно к нулю, затем к некоторому максимальному отрицательному напряжению и затем снова к нулю.Как определить фактическое напряжение, приложенное к цепи? Слева изображена синусоида 60 Гц, 120 В. Обратите внимание, однако, что его пиковое напряжение составляет 170 В. Как мы можем назвать это волной 120 В, если ее фактическое напряжение составляет 170 В? В течение одного цикла он начинается с 0 В и поднимается до 170 В, затем снова падает до 0. Он продолжает падать до –170, а затем снова повышается до 0. Оказывается, что площадь зеленого прямоугольника, верхняя граница которого составляет 120 В, равна к сумме площадей под положительными и отрицательными частями кривой.Может ли 120 В быть средним? Что ж, если бы вы усреднили все значения напряжения в каждой точке цикла, результат был бы примерно 108 В, так что ответ не должен быть. Почему тогда значение, измеренное VOM, составляет 120 В? Это связано с тем, что мы называем «эффективное напряжение».

Если бы вы измеряли тепло, производимое постоянным током, протекающим через сопротивление, вы бы обнаружили, что оно больше, чем тепловое напряжение эквивалентного переменного тока. Это связано с тем, что переменный ток не поддерживает постоянное значение на протяжении всего своего цикла.Если вы сделали это в лаборатории, в контролируемых условиях, и обнаружили, что определенный постоянный ток генерировал повышение температуры на 100 градусов, его эквивалент переменного тока мог бы привести к увеличению на 70,7 градуса, или только к 70,7% от значения постоянного тока. Следовательно, эффективное значение переменного тока составляет 70,7% от постоянного тока. Оказывается также, что эффективное значение напряжения переменного тока равно квадратному корню из суммы квадратов напряжения на первой половине кривой. Если пиковое напряжение равно 1, и вы должны были измерить каждое из отдельных напряжений от 0 до 180 градусов, эффективное напряжение будет равно 0.707 пикового напряжения. 0,707 раз пиковое напряжение 170, которое видно на иллюстрации, равно 120 В. Это эффективное напряжение также известно как среднеквадратичное или среднеквадратичное напряжение. Отсюда следует, что пиковое напряжение всегда будет 1,414 от действующего напряжения. 230 В переменного тока имеет пиковое напряжение 325 В, в то время как 460 имеет пиковое напряжение 650 В. Мы увидим влияние пикового напряжения чуть позже.

Ну, я, вероятно, говорил об этом дольше, чем необходимо, но я хотел, чтобы вы получили представление об эффективном напряжении, чтобы вы поняли иллюстрацию ниже.В дополнение к изменяющейся частоте преобразователь частоты также должен изменять напряжение, даже если напряжение не имеет никакого отношения к скорости, на которой работает двигатель переменного тока.

На рисунке показаны две синусоидальные волны 460 В переменного тока. Красный - это кривая 60 Гц, а синий - 50 Гц. Оба имеют пиковое напряжение 650 В, но 50 Гц намного шире. Вы можете легко увидеть, что область под первой половиной (0 - 10 мс) кривой 50 Гц больше, чем область первой половины (0 - 8,3 мс) кривой 60 Гц.И, поскольку площадь под кривой пропорциональна эффективному напряжению, его эффективное напряжение выше. Это увеличение эффективного напряжения становится еще более значительным с уменьшением частоты. Если бы двигателю 460 В разрешалось работать при этих более высоких напряжениях, его срок службы мог бы быть существенно уменьшен. Следовательно, преобразователь частоты должен постоянно варьировать «пиковое» напряжение относительно частоты, чтобы поддерживать постоянное эффективное напряжение. Чем ниже рабочая частота, тем ниже пиковое напряжение и наоборот.Именно по этой причине двигатели 50 Гц, используемые в Европе и некоторых частях Канады, рассчитаны на 380В. Видите, я говорил вам, что кондиционер может быть немного сложным!

Теперь вы должны хорошо понимать работу преобразователя частоты и то, как он управляет скоростью двигателя. Большинство преобразователей частоты предоставляют пользователю возможность устанавливать скорость двигателя вручную с помощью многопозиционного переключателя или клавиатуры или использовать датчики (давление, расход, температура, уровень и т. Д.) Для автоматизации процесса.

.

Определение размеров двигателей и преобразователей частоты для конкретной нагрузки машины

Правильный размер двигателей и преобразователей

Производители электродвигателей и преобразователей частоты разработали различные методы для быстрого выбора размеров двигателей и преобразователей частоты для конкретной нагрузки машины. Та же самая основная процедура используется большинством прикладных инженеров.

Определение размеров двигателя и преобразователя частоты для конкретной нагрузки машины (фото предоставлено: focusondrives.ком)

В наши дни выбор приложений обычно осуществляется на основе программного обеспечения для ПК. Однако инженерам важно четко понимать процедуру выбора.

Одна из лучших процедур использует простую номограмму на основе кривых предела нагрузки для базового выбора размера двигателя. Эта процедура описана ниже. Затем проверяются другие факторы, чтобы убедиться, что выбрана оптимальная комбинация двигателя и преобразователя.


4 принципа отбора

Рекомендуются пять следующих принципов отбора:


Принцип выбора 1 //

Сначала необходимо выбрать тип и размер двигателя. Число полюсов (базовая скорость) должно быть выбрано так, чтобы двигатель работал как можно быстрее на скорости, немного превышающей базовую скорость 50 Гц.

Это желательно, потому что:

  • Тепловая мощность двигателя улучшается на при f ≥ 50 Гц благодаря более эффективному охлаждению на более высоких скоростях.
  • Коммутационные потери преобразователя минимальны, когда он работает в диапазоне ослабления поля выше 50 Гц.
  • Для нагрузки постоянного крутящего момента больший диапазон скорости получается, когда двигатель работает хорошо в диапазоне ослабления поля на максимальной скорости.Это означает, что наиболее эффективно используется способность крутящего момента / скорости привода с регулируемой скоростью. Типичные кривые крутящего момента и мощности в приложении с постоянной мощностью / крутящим моментом


    Это может означать экономию в виде двигателя меньшего размера и преобразователя .

  • Хотя многие производители утверждают, что их преобразователи могут генерировать выходные частоты до 400 Гц, эти высокие частоты практически не используются, за исключением очень специальных (и необычных) применений.Конструкция стандартных электродвигателей с сепаратором и снижение пикового крутящего момента в зоне ослабления поля ограничивают их использование на частотах выше 100 Гц.

    Максимальная скорость, при которой может работать стандартный короткозамкнутый двигатель, всегда должна проверяться производителем, особенно для более крупных 2-полюсных (3000 об / мин) двигателей мощностью более 200 кВт. Шум вентилятора, создаваемый двигателем, также существенно увеличивается при увеличении скорости двигателя.

  • Сравнение крутящего момента, создаваемого 4-полюсным и 6-полюсным двигателем , показано на рисунке 1.Это иллюстрирует более высокий крутящий момент 6-полюсной машины.
Рисунок 1 - Сравнение предельных кривых теплоемкости для двух короткозамкнутых двигателей TEFC 90 кВт
  1. 4-полюсный двигатель 90 кВт (1475 об / мин)
  2. 90 кВт 6-полюсный двигатель (985 об / мин)

Принцип выбора 2 //

Выбор двигателя увеличенного размера просто для «безопасной» безопасности обычно не рекомендуется , поскольку это означает, что преобразователь частоты слишком большого размера также должен быть выбран.Преобразователи частоты, особенно типа ШИМ, рассчитаны на самое высокое значение пикового тока, которое является суммой основных и гармонических токов в двигателе.

Чем больше двигатель, тем больше пиковые токи.

Во избежание того, что этот пиковый ток превысит расчетный предел, никогда не следует использовать преобразователь с двигателем, размер которого больше указанного для него . Даже когда двигатель большего размера слегка нагружен, его пики гармонического тока высоки.


Принцип выбора 3 //

После того, как двигатель был выбран, достаточно просто выбрать правильный размер преобразователя из каталога производителя .Они обычно оцениваются в единицах тока (не кВт) в зависимости от конкретного напряжения. Это следует использовать только в качестве ориентира, поскольку преобразователи всегда следует выбирать исходя из максимального продолжительного тока двигателя.

Хотя большинство каталогов основано на стандартных значениях мощности двигателя IEC (кВт), у двигателей разных производителей значения тока немного отличаются.

Преобразователи частоты Danfoss (фото любезно предоставлено: schulz.st)
Принцип выбора 4 //

Хотя кажется очевидным, двигатель и преобразователь должны быть указаны для напряжения питания и частоты, к которой должен быть подключен привод с регулируемой скоростью.

В большинстве стран, использующих стандарты МЭК, стандартное напряжение питания составляет 380 В ± 6%, 50 Гц . В Австралии это 415 В ± 6%, 50 Гц . В некоторых приложениях, где размер привода очень велик, часто экономно использовать более высокие напряжения для снижения стоимости кабелей. Другие обычно используемые напряжения: 500 В и 660 В .

В последние годы преобразователи переменного тока производятся для использования при напряжении 3,3 кВ и 6,6 кВ . Преобразователи частоты предназначены для выработки того же выходного напряжения, что и напряжение питания, поэтому для двигателя и преобразователя должно быть указано одинаковое базовое напряжение.

Хотя выходная частота преобразователя является переменной, входная частота (50 Гц или 60 Гц) должна быть четко указана , поскольку это может повлиять на конструкцию индуктивных компонентов .

Справочник // Практические приводы с переменной скоростью и силовая электроника от Малкольма Барнса CPEng, BSc (ElecEng), MSEE, Автоматизированные системы управления, Перт, Австралия (Покупка печатной копии у Amazon)

,

Смотрите также


avtovalik.ru © 2013-2020