Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как подключить двигатель с 4 выводами


Как подключить двигатель с 4 проводами?

Подключение двигателя с 4 проводами

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Л. Рыженков

Редактировал А. Повный

Источник: http://electrik.info/main/master/597-kak-opredelit-rabochuyu-i-puskovuyu-obmotki-u-odnofaznogo-dvigatelya.html

Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.
Находим пару проводов
Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки — нам это понадобится.
Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.
Многие считают, что для запуска такого двигателя нужен конденсатор. Это ошибка, конденсатор применяется в двигателях другого типа без пусковой обмотки. Здесь же он может сжечь мотор во время работы.
Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.
Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее — для этого и нужна кнопка (SB).
ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.
Схема подключения мотора
ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.
После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.
Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.
Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

Источник: https://ok.ru/dlyanachi/topic/68038816361385

Connect ESCs и Motors - Документация по коптерам

В этой статье объясняется, как подключить ESC, двигатели и винты к автопилоту. Pixhawk используется в качестве примера, но другие автопилоты подключены аналогичным образом.

Подключите провода питания (+), заземления (-) и сигнала (ов) для каждого ESC к главные выходные выводы автопилота по номеру двигателя. Найдите свой тип кадра ниже, чтобы определить назначенный порядок двигателей.

Pixhawk Outputpins (пронумерованы). Первые 4 контакта имеют цветовую маркировку для подключения Quadframe

Проверка направления вращения двигателя

Если вы завершили радио и ESC калибровку, вы можете проверить, что ваш двигатели вращаются в направлении коррекции:

  1. Убедитесь, что на вашем вертолете нет винтов!

  2. Включите передатчик и убедитесь, что переключатель режима полета установлен в положение Стабилизировать.

  3. Подключите аккумулятор.

  4. Включите вертолет, удерживая дроссель и руль вправо в течение пяти секунд.

  5. Если он не в состоянии вооружиться с дросселем вниз и вправо и двигатели не будут вращаться, вероятно, это не помогло предпродажной безопасности Проверьте.

    • Нарушение проверки безопасности перед постановкой на охрану также обозначается красной защитой мигает дважды, а затем повторяется.
    • Если проверка предподключения не пройдена, перейдите на страницу проверки предпусковой безопасности и устраните проблему или отключите проверка, прежде чем продолжить.
  6. Когда вы можете успешно вооружиться, примените небольшое количество газа и Соблюдайте и отметьте направление вращения каждого двигателя. Они должны соответствовать направления, показанные на изображениях выше для выбранной вами рамки.

  7. Поменяйте местами вращение двигателя в неправильном направлении.

    Совет

    Направление движения двигателя меняется на противоположное, если поменять местами два из

    три ESC к силовым проводам двигателя.

Проверка нумерации двигателя с помощью Планировщика полетов Тест двигателя

Альтернативный способ проверки подключения двигателей правильно использовать тест «Моторы» в планировщике миссий. Настройки.

Планировщик Миссии: Motor Test

При подключении к автомобилю через MAVLink, вы можете нажать на зеленый кнопки, показанные выше, и соответствующий двигатель должен вращаться в течение пяти секунд. Буквы соответствуют номерам двигателей, как показано в примере ниже.

  • Сначала сними реквизит!
  • Если двигатели не вращаются, поднимите «Throttle%» до 10% и попробуйте снова. Если это не работает, попробуйте 15%

Первым вращающимся двигателем будет двигатель, расположенный прямо вперед случай + конфигурация или первый двигатель справа от прямой вперед в случае конфигурации XЗатем будет продолжен тест двигателя по часовой стрелке.

В случае с X8 сначала будет вращаться верхний передний правый мотор, затем нижний передний правый, и продолжайте в том же порядке.

OctoV сначала вращает передний правый двигатель, а затем снова продолжает по часовой стрелке до достижения левого переднего двигателя.

Использование платы распределения питания

Существует два способа подключения выходов двигателя. Либо подключите электронные регуляторы скорости (ESC) непосредственно к автопилоту ИЛИ используют плату распределения мощности (PDB).

При использовании PDB подключите питание (+), заземление (-) и сигнал (ы) провода для каждого ESC к PDB в соответствии с номером двигателя. Найди свой кадр введите ниже, чтобы определить назначенный порядок двигателей. Затем подключите сигнальные провода от PDB к основным выходным сигнальным контактам на автопилот (убедитесь, что номера заказа двигателя соответствуют номера выводов основного выхода на контроллере). Если вы используете власть модуль, необязательно подключать провода питания и заземления от PDB к плате автопилота.Если вы хотели бы использовать эти кабели в дополнение или вместо силового модуля или как общий точка для слаботочных сервоприводов, подключите провод заземления (-) к основной вывод заземления (-) и провод питания (+) к выводу основного выхода питания (+).

KDE (и другие) Opto Isolated ESCs

Серии KDEXF-UAS и KDEF-UASHV имеют оптоизоляцию и не обеспечивают Выходная мощность BEC для периферийного оборудования. Они требуют + 5В для питания оптоизолятор и в то время как Pixhawk может питаться от сервопривода рельс, это не обеспечивает + 5V к рельсу сервомотора.ESC должны быть питание от BEC или с помощью перемычки от неиспользуемого разъема на плате. Настоятельно рекомендуется использовать BEC для питания рельса, а не чем прыгун.

ESC KDE имеют фиксированные диапазоны ШИМ, поэтому вы должны вручную установить выход диапазон каждого сигнала ШИМ, чтобы RCx_MIN было 1100, а RCx_MAX - 1900us используя страницу расширенных параметров или полных параметров в Планировщик.

Pixhawk ESC выпускает

Сообщалось, что некоторые ESC не работают с Pixhawk.

Pixhawk должен работать с каждым ESC, который работает с обычным RC приемник (потому что он посылает сигнал того же типа), но есть одно известное исключение, EMAX ESC.

В большинстве случаев проблемы связаны с неправильной проводкой. Всегда подключайте сигнал и заземление. Проверьте свой тип ESC, чтобы решить, как подключить линию + 5V. Для Pixhawk вы должны подключить и сигнал и сигнальную землю, чтобы заставить ESC работать.

Для получения дополнительной информации см. Это видео.

,

Как подключить Quadcopter Motors и ESC - DroneTrest Blog

Это руководство покажет всем, как подключить любой ESC к любому контроллеру полета, используя общие принципы, применимые к дронам FPV.

Как новичок, это может быть довольно запутанным, когда дело доходит до подключения всей вашей электроники квадрокоптера FPV. Что еще хуже, некоторые вещи в хобби не всегда сопровождаются особенно хорошими инструкциями. Однако, по мере того, как вы создаете больше дронов, вы заметите, что есть много общих способов соединить все, даже если электроника отличается.Таким образом, вместо того, чтобы писать другое руководство, относящееся к какому-либо контроллеру полета, это руководство научит вас основным концепциям, которые позволят вам понять, как подключить что-либо к FPV. В этой первой части серии мы будем говорить о Motors и ESC.

Подключение ваших моторов и ESC

Соединение ваших двигателей и ESC - это то, что вам нужно делать на каждой сборке квадрокоптера, и, к счастью, это довольно просто. Во время большинства новых сборок после сборки рамы первая задача по пайке - пайка двигателей в ESC.Затем следует пайка ESC на вашей плате распределения питания (PDB) и Flight Controller (FC). Прежде чем мы продолжим, ниже приведен базовый пример разъемов, которые вы обычно найдете в ESC.

Основные соединения ESC

Двигатели к ESC

Чтобы подключить ваши двигатели к вашей ESC, вам просто нужно припаять 3 провода двигателя к контактным площадкам двигателя на одной стороне ESC. Они будут на 3 вкладки близко друг к другу и, как правило, самые большие на ESC.Пример подключения показан на рисунке ниже.

Типовое подключение двигателя к ESC
  • Рекомендуется сначала установить двигатель на раму и измерить, как долго должны быть соединены провода двигателя для достижения ESC, а затем сократить их до нужного размера, чтобы обеспечить аккуратную сборку. , Вы не хотите, чтобы проволоки шлепали вокруг, которые могут попасть в пропеллер.
  • Другой совет - постарайтесь убедиться, что порядок проводов двигателя, идущий к каждому из ваших ESC, соответствует. Таким образом, первый провод от вашего двигателя идет к первому соединению на вашем ESC, а средний провод от вашего двигателя идет к средней вкладке на вашем ESC.Это значительно упростит настройку вашего квадрокоптера в дальнейшем. Если вы подключите его неправильно, это не имеет большого значения, так как двигатель просто будет вращаться в неправильном направлении, и вам нужно изменить настройку, чтобы изменить его с помощью вашего программного обеспечения конфигурации ESC.

ESC для контроллера полета

Чтобы ESC мог получать входы, его необходимо подключить к вашему контроллеру полета. Каждый контроллер полета имеет несколько выходных соединений двигателя, обычно обозначаемых как двигатель 1, двигатель 2., или PWM1, PWM2, иногда S1, S2 или M1, M2 и т.д.

Чтобы подключить ESC к вашему контроллеру полета, вам нужно два провода на каждый ESC. Сигнал и земля. Использование провода заземления не является абсолютно необходимым, но настоятельно рекомендуется, так как рекомендуется, чтобы все электронные устройства имели общее заземление, поэтому вы можете просто подключить его. Порядок, в котором вы подключаете ESC, важен.Вам нужно будет подключить двигатель 1 вашего дрона к разъему 1 двигателя, а двигатель 2 - к соединению 2. В руководстве по программному обеспечению контроллера полета вы узнаете, какой порядок вам нужно использовать.

В качестве примера Betaflight требует, чтобы задним правым двигателем был двигатель 1, поэтому вы должны подключить этот двигатель / ESC к соединению двигателя 1 на вашем контроллере полета. Точно так же двигатель 4 (передний левый двигатель) должен был бы соединить разъем двигателя 4 на вашем контроллере полета.

Давайте начнем смотреть на контроллер полета ниже.У этого есть хорошо маркированные связи. Каждый из 4 разъемов ESC расположен на краях платы с маркировкой S1, S2, S3 и S4. Вы бы припаяли сигнальный провод от каждого вашего ESC к соответствующему пэду. Рядом с каждым находится контактная площадка, к которой вы бы припаяли провод заземления сигнала ESC.

Расположение и соглашение об именах для диспетчеров полета различны. В качестве другого примера, приведенный ниже полис-контроллер омнибуса F4 V5 имеет все подключения двигателя подряд.Но концепция все та же: вы должны подключить ESC 1 к PWM1 на контроллере полета и т. Д.

Как насчет 4in1 ESC

Вы также получаете 4in1 ESC, и, как следует из названия, это одна плата с 4 встроенными ESC. Логика точно такая же, как и у 4х отдельных ESC, так как имеется 4 набора клемм для пайки двигателя и 4 набора сигнальных соединений ESC. ESC 4 на 1 удобнее использовать, так как проводка менее грязная, так как питание каждого ESC выполняется на плате изнутри.

,

Выбор и подключение шаговых двигателей

На платах Duet используются двухполюсные драйверы шаговых двигателей. Это означает, что вы можете использовать шаговые двигатели, подходящие для биполярного привода, которые имеют 4, 6 или 8 проводов. Вы не можете использовать двигатели с 5 проводами, потому что они предназначены для работы только в однополярном режиме. (Некоторые однополярные двигатели можно превратить в биполярные двигатели, обрезав их на печатной плате.)

Самый простой для подключения 4-проводный двигатель. Внутри шагового двигателя находятся две катушки, каждая катушка имеет провод, соединенный с каждым концом.Пара проводов и катушек называется фазой. 4 провода соответствуют 4 выходным контактам каждого шагового драйвера в Duet (для определения фаз и подключения см. Ниже).

В 6-проводных шаговых двигателях по-прежнему есть 2 катушки, но у каждой катушки есть центральный отвод, который при необходимости эффективно разрезает ее пополам. Это создает дополнительный провод для каждой катушки. Вы можете использовать их в полукатушке, оставив два концевых провода не подключенными, или в режиме полной катушки, оставив центральные провода не подключенными. Обратитесь к спецификации двигателя, чтобы убедиться, что ваш Duet может подавать достаточный ток для того, как вы хотите их подключить.

8-проводный степпер имеет 4 катушки, поэтому с двумя проводами на катушку получается 8 проводов. Вы можете запустить 8-проводный шаговый двигатель в полукатушке (с подключением только 2 катушек) или в режиме полной катушки, а в режиме полной катушки вы можете выбрать подключение катушек последовательно или параллельно. В интернете есть много другой документации о том, как это сделать, просто убедитесь, что Duet справится с текущими требованиями. В конечном итоге нам нужно всего лишь 4 провода для подключения к Duet.

Это максимальный ток, который вы можете пропустить через обе обмотки одновременно.Максимальный ток через одну обмотку (который действительно имеет значение при использовании микрошагования) редко указывается и будет немного выше. Однако, даже если одна обмотка приводится в действие при указанном номинальном токе, двигатель сильно нагревается. Таким образом, обычной практикой является установка тока двигателя не более 85% от номинального тока. Поэтому, чтобы получить максимальный крутящий момент от ваших двигателей без их перегрева, вы должны выбирать двигатели с номинальным током не более чем на 25% выше, чем рекомендуемый максимальный ток привода шагового двигателя.Это дает:

  • Duet 0.6 и Duet 0.8.5 (рекомендуемый максимальный ток двигателя 1,5 A RMS) => Номинальный ток шагового двигателя <= 1,9 A
  • Duet 2 WiFi и Duet 2 Ethernet (максимальный ток двигателя 2,4 A RMS) => Номинальный шаговый двигатель ток <= 3.0A
  • Duet 2 Maestro (рекомендуемый максимальный ток двигателя 1.4A RMS с хорошим охлаждением вентилятора) => Номинальный ток шагового двигателя <= 1.7A. Однако, если вы используете двигатели с более низким номинальным током (например, от 1,0 до 1,2 А) и мощностью 24 В, драйверы будут работать холоднее.
  • Duet 3 Материнская плата 6HC и плата расширения 3HC (рекомендуемый максимальный ток двигателя 4.45A RMS) => Номинальный ток шагового двигателя <= 5.5A
  • Duet 3 Tooboard (рекомендуемый максимальный ток двигателя 1.4A RMS) => Номинальный ток шагового двигателя < = 1,75A

Это максимальный крутящий момент, который может обеспечить двигатель, когда обе обмотки находятся под напряжением при полном токе, прежде чем начнутся скачкообразные шаги. Удерживающий момент с одной обмоткой под напряжением при номинальном токе примерно в 1 / квт (2) раза больше.Крутящий момент пропорционален току (за исключением очень малых токов), поэтому, например, если вы установите драйверы на 85% от номинального тока двигателя, то максимальный крутящий момент составит 85% * 0,707 = 60% от указанного удерживающего момента.

Крутящий момент возникает, когда угол ротора отличается от идеального угла, который соответствует току в его обмотках. Когда шаговый двигатель ускоряется, он должен создавать крутящий момент, чтобы преодолеть собственную инерцию ротора и массу нагрузки, которую он движет. Чтобы создать этот крутящий момент, угол ротора должен отставать от идеального угла.В свою очередь, нагрузка будет отставать от положения, заданного прошивкой.

Иногда будет написано, что микрошаг снижает крутящий момент. Это на самом деле означает, что когда предполагается, что угол запаздывания равен углу, соответствующему одному микрошагу (поскольку вы хотите, чтобы положение было с точностью до одного микрошага), более высокий микрошаг предполагает меньший угол запаздывания, а значит, и меньший крутящий момент. Крутящий момент на единицу угла запаздывания (что действительно имеет значение) не уменьшается при увеличении микроперехода.Иными словами, отправка мотора за один микрошаг 1/16 приводит к точно таким же фазовым токам (и, следовательно, к тем же силам), что и к отправке двух 1/32 микрошагов или четырех 1/64 микрошагов и так далее.

Существует два соответствующих размера: номер размера Nema и длина. Номер размера Nema определяет квадратный размер корпуса и положение монтажных отверстий. Самый популярный размер для 3D-принтеров - Nema 17, корпус которого имеет площадь не более 42,3 мм и фиксирующие отверстия в квадрате со стороны 31 мм.

Двигатели Nema 17 бывают различной длины, от 20-миллиметровых «блинных» двигателей до 60-миллиметровых двигателей. Как правило, чем длиннее двигатель, тем больше его удерживающий момент при номинальном токе. Более длинные шаговые двигатели также имеют большую инерцию ротора. Все дуэты должны иметь возможность управлять ими, хотя некоторые двигатели Nema 17 могут быть рассчитаны до 2 А, что является пределом для Duet 2 Maestro (хотя вы всегда можете запустить двигатели с меньшим током).

Двигатели Nema 23 имеют более высокий крутящий момент, чем двигатели Nema 17.Duet 2 (WiFi и Ethernet) может управлять ими, если вы выбираете их тщательно, в частности, в отношении номинального тока, максимум до 2,8A. Duet 3 должен иметь возможность управлять двигателями большего размера, до 5,5А. Вы должны использовать питание 24 В на Duet 2 и 32 В на Duet 3 для более крупных двигателей.

Двигатели Nema 34 еще больше, с большим крутящим моментом и обычно используются в приложениях с ЧПУ. Duet 3 также может управлять этими двигателями до 5,5А. Для достижения высоких скоростей с большими двигателями вам может потребоваться более высокое напряжение, чем максимум 32 В для Duet 3.Можно изменить Duet 3, чтобы увеличить это значение до 48 В и, возможно, до 60 В (что является ограничением драйвера шагового двигателя), хотя это аннулирует вашу гарантию; см. https://forum.duet3d.com/post/133293

Существует два общих угла шага: 0,9 и 1,8 градуса на полный шаг, что соответствует 400 и 200 шагам / оборот. Большинство 3D-принтеров используют двигатели с шагом 1,8 град / шаг.

Помимо очевидной разницы в угле шага:

  • Двигатели 0,9 градуса имеют немного более низкий удерживающий момент, чем аналогичные 1.8-градусные двигатели от того же производителя
  • Однако для получения заданного крутящего момента угол запаздывания, необходимый для 0,9-градусного двигателя, немного больше половины угла запаздывания аналогичного 1,8-градусного двигателя. Или, другими словами, при малых углах запаздывания у двигателя 0,9 градуса крутящий момент почти в два раза больше, чем у двигателя 1,8 градуса при том же угле запаздывания.
  • При заданной скорости вращения 0,9-градусный двигатель производит вдвое больше индуктивной обратной эдс, чем 1,8-градусный двигатель. Таким образом, вам, как правило, нужно использовать питание 24 В для достижения высоких скоростей с 0.Моторы 9deg.
  • 0,9 градусным двигателям нужно, чтобы шаговые импульсы доставлялись водителям с удвоенной частотой 1,8 градусного двигателя. Если вы используете высокий микрошаг, тогда скорость может быть ограничена скоростью, с которой электроника может генерировать шаговые импульсы. Для решения этой проблемы можно использовать режим интерполяции с 16-кратным микропереходом драйверов TMC2660 в Duet 2 WiFi / Ethernet. Драйверы Duet 2 Maestro и Duet 3 могут интерполироваться при любой настройке микрошагов.

Индуктивность двигателя влияет на скорость, с которой водитель шагового двигателя может управлять двигателем до того, как крутящий момент падает.Если мы временно игнорируем противо-ЭДС из-за вращения (см. Далее), а номинальное напряжение двигателя намного меньше, чем напряжение питания привода, то максимальное число оборотов в секунду перед падением крутящего момента составляет:

revs_per_second = (2 * supply_voltage) / (steps_per_rev * pi * индуктивность * ток)

Если двигатель приводит ремень GT2 через шкив, это дает максимальную скорость в мм / с как:

скорость = (4 * pulley_teeth * supply_voltage) / (steps_per_rev * pi * индуктивность * ток)

Пример: 1.8-градусный / шаговый двигатель (т.е. 200 шагов / об.) С индуктивностью 4 мГн работает при 1,5 А при напряжении питания 12 В, и привод ремня GT2 с 20-зубчатым шкивом начинает терять крутящий момент со скоростью около 250 мм / с. Это скорость ленты, которая на CoreXY или дельта-принтере не равна скорости головки.

На практике крутящий момент будет падать раньше, чем это из-за обратной эдс, вызванной движением, и потому что вышеупомянутое не учитывает сопротивление обмотки. Моторы с низкой индуктивностью также имеют низкую ЭДС из-за вращения.

Это означает, что если мы хотим достичь высоких скоростей, нам нужны двигатели с низкой индуктивностью и высоким напряжением питания. Максимальное рекомендуемое напряжение питания для Duet 2 WiFi / Ethernet составляет 25 В, для Duet 2 Maestro - 28 В, а для Duet 3 - 32 В.

Это просто сопротивление на фазу и падение напряжения на каждой фазе, когда двигатель находится в неподвижном состоянии, и фаза передает свой номинальный ток (который является результатом сопротивления и номинального тока). Это неважно, за исключением того, что номинальное напряжение должно быть значительно ниже напряжения питания для шаговых драйверов.

Когда шаговый двигатель вращается, он создает обратную эдс. При идеальном нулевом угле запаздывания он на 90 градусов не в фазе с напряжением возбуждения, а в фазе с обратной ЭДС из-за индуктивности. Когда двигатель создает максимальный крутящий момент и находится на грани пропуска шага, он находится в фазе с током.

Обратный ЭДС из-за поворота обычно не указывается в спецификации, но мы можем оценить его по следующей формуле:

ок.

В формуле предполагается, что удерживающий момент указан для обеих фаз, находящихся под напряжением при номинальном токе.Если это указано только с одной фазой под напряжением, замените sqrt (2) на 2.

Пример: рассмотрим 200-шаговый двигатель, приводящий каретку через 20 зубчатый шкив и ремень GT2. Это движение 40 мм на оборот. Для достижения скорости 200 мм / сек нам нужно 5 об / сек. Если мы используем двигатель с удерживающим моментом 0,55 Нм, когда обе фазы работают при 1,68 А, пиковая обратная эдс из-за вращения составляет 1,414 * 3,142 * 0,55 * 5 / 1,68 = 7,3 В.

Насколько точна эта формула? dc42 измерил, а затем рассчитал обратную эдс для двух типов двигателей:

  • 17HS19-1684S: измерено 24 В, рассчитано 24.24 В при условии, что удерживающий момент указан для обеих фаз, находящихся под напряжением при номинальном токе.
  • JK42HS34-1334A: измерено 22 В, рассчитано 15,93 В с учетом удерживающего момента 0,22 Нм при подаче напряжения на обе фазы при номинальном токе. Возможно, удерживающий момент для этого двигателя указан только с одной фазой под напряжением, и в этом случае расчетное значение становится 22,53 В. Я также видел удерживающий момент для этого двигателя, приведенный в другой спецификации как 0,26 Нм, что увеличивает расчетное значение до 18,05 В.

Если у вас есть целевая скорость движения для вашего принтера, вы можете определить, по крайней мере, приблизительно, какое напряжение питания вам потребуется для драйверов двигателя. Вот как с примером расчета:

  1. Определите свою целевую скорость движения. Для этого примера я буду использовать 200 мм / сек.
  2. Исходя из целевой скорости движения, определите максимальную скорость ремня в худшем случае. Для декартовых принтеров наихудшим случаем является движение X или Y, поэтому наихудшая скорость ленты равна скорости движения.Для принтера CoreXY худший случай - это диагональное движение, и соответствующая скорость ленты в 2 раза превышает скорость движения. Для дельта-принтера наихудший случай - это радиальное перемещение около края кровати, а наихудший случай - скорость движения, деленная на tan (theta), где theta - наименьший угол диагонального стержня к горизонтали. На практике мы не можем использовать целевую скорость перемещения для радиальных перемещений прямо до края слоя из-за расстояния, необходимого для ускорения или замедления, поэтому примите значение тета в качестве угла, когда насадка находится на расстоянии около 10 мм от края слоя напротив башни.Для моей дельты это 30 градусов, поэтому максимальная скорость ленты составляет 200 / загар (30 градусов) = 346 мм / сек.
  3. Отрегулируйте обороты двигателя в секунду на максимальной скорости ремня, разделив скорость ремня на шаг зубьев ремня (2 мм для ремней GT2) и количество зубьев на шкиве. Моя дельта использует шкивы с 20 зубцами, поэтому максимальное число оборотов в секунду составляет 346 / (2 * 20) = 8,7.
  4. Отработать пиковую ЭДС за счет индуктивности. Это revs_per_second * pi * motor_current * motor_inductance * N / 2, где N - число полных шагов за оборот (так 200 для 1.8-градусные двигатели или 400 для 0,9-градусных двигателей). Мои двигатели имеют 0,9 градуса с индуктивностью 4,1 мГн, и я обычно использую их при 1А. Таким образом, обратная эдс из-за индуктивности составляет 8,7 * 3,142 * 1,0 * 4,1e-3 * 400/2 = 22,4 В.
  5. Вычислить примерную обратную ЭДС из-за вращения. Из приведенной ранее формулы это sqrt (2) * pi * Rating_holding_torque * Revs_per_second / Rating_Current. Мои двигатели имеют номинальный ток 1,68 А и момент удержания 0,44 Нм, поэтому результат равен 1,414 * 3,142 * 0,44 * 8,7 / 1,68 = 10,1 В
  6. Предпочтительно, чтобы напряжение питания драйвера было не меньше суммы этих двух обратных эдс , плюс еще несколько вольт.Если у вас есть два двигателя последовательно, требуемое напряжение удваивается.

В моем примере это дает 32,5 В, что выше рекомендованного входного напряжения 25 В для Duet 2. Но, по крайней мере, мы знаем, что для дельта-движения в худшем случае скорость движения 200 мм / с, если я использую 24 В тогда подача составляет более 2/3 от теоретического значения, поэтому крутящий момент, доступный для этого перемещения, не должен уменьшаться более чем на 1/3 от обычного доступного крутящего момента. С другой стороны, подача 12 В явно была бы недостаточной - это объясняет, почему я смог достичь только 150 мм / с, прежде чем обновил принтер до 24 В.

Существует онлайн-калькулятор, который делает это наоборот (то есть определяет скорость, с которой крутящий момент начинает падать) на https://www.reprapfirmware.org/.

  • Если только вы не будете использовать внешние драйверы шаговых двигателей, выбирайте двигатели с номинальным током не менее 1,2 А и не более 2,0 А для Duet 0,6 и Duet 0,8,5, 3 А для Duet 2, 7 А для основного и второго типа Duet 3. платы расширения и 1,7 А для панелей инструментов Duet 3 или Duet 2 Maestro.
  • Запланируйте работу каждого шагового двигателя при 50–85% его номинального тока.
  • Размер: Nema 17 - самый популярный размер, используемый в 3D-принтерах. Nema 14 является альтернативой в экструдере с высокой редуктором. Используйте двигатели Nema 23, если вы не можете получить достаточный крутящий момент от длинных двигателей Nema 17. Duet 3 также может управлять двигателями Nema 34.
  • Избегайте двигателей с номинальным напряжением (или произведением номинального тока и фазового сопротивления)> 4 В или индуктивности> 4 мГн.
  • Выберите 0,9 град / шаг двигателя, где вы хотите дополнительную точность позиционирования, например, для башенных моторов дельта-принтера.В противном случае выберите двигатели 1,8 град / шаг.
  • Если вы используете какие-либо 0,9 град / шаговые двигатели или двигатели с высоким крутящим моментом, используйте мощность 24 В, чтобы вы могли поддерживать крутящий момент на более высоких скоростях.
  • При использовании экструдера с высокой редуктором (например, экструдера, в котором используется гибкий кабель привода для передачи крутящего момента от двигателя к червячному редуктору), используйте короткий 1,8-градусный двигатель с малой индуктивностью для его привода.

Номера дисков, используемые в G-коде, соответствуют следующим меткам драйверов на плате (ах):

Drive номер Duet 3
доска этикетки
Duet 2 WiFi / Ethernet
плата этикетка
Duet 2 Maestro
доска этикетки
0 DRIVER_0 X
1 DRIVER_1 Да
2 DRIVER_2 З.А. ZB (Два заголовки, подключенными последовательно)
3 DRIVER_3 Е0
4 DRIVER_4 Е1
5 DRIVER_5 E2 (On Duex 2/5) E2 (контакты для внешнего драйвера)
6 E3 (On Duex 2/5) E3 (контакты для внешнего драйвера)
7 E4 (On Duex 5)
8 E5 (On Duex 5)
9 E6 (On Duex 5)
10 На заголовке LCD_CONN
11 На заголовке LCD_CONN

Чтобы увидеть точное расположение выводов, проверьте схемы соединений здесь:

Электрическая схема Duet 3

Схема подключения Duet 2 WiFi / Ethernet

Электрическая схема Duet 2 Maestro

Duet 3 имеет 6 встроенных шаговых драйверов.Duet 2 WiFi, Ethernet и Maestro имеют 5 встроенных шаговых драйверов.

Для подключения шаговых двигателей к внутренним драйверам см. Схему подключения Duet 3, схему подключения Duet 2 WiFi / Ethernet или схему подключения Duet 2 Maestro. Схема контактов каждого разъема шагового двигателя такая же, как и у других популярных 3D-принтеров.

Для ВСЕХ ДУЭТОВ необходимо подключить два провода для одной фазы шагового двигателя к двум контактам на одном конце разъема, а провода для другой фазы к двум контактам на другом конце. См. Следующий раздел, чтобы определить фазы вашего двигателя.

Каждый разъем шагового двигателя имеет четыре контакта. На Duet 2 WiFi / Ethernet они обозначены «2B 2A 1A 1B» на задней панели и на электрической схеме. «1» и «2» относятся к катушке или фазе, «A» и «B» относятся к положительному и отрицательному.

На Duet 2 Maestro и Duet 3 четыре контакта разъема двигателя имеют маркировку «B1 B2 A1 A2» ​​на задней стороне платы и на электрической схеме.«A» и «B» относятся к катушке или фазе, «1» и «2» относятся к положительному и отрицательному. Это соглашение об именах, используемое большинством производителей шаговых двигателей.

Осторожно! Перепутывание фаз на 4-контактном разъеме может и часто приводит к повреждению шагового привода. Итак, убедитесь, что вы знаете, какие пары проводов принадлежат к одной фазе. Неважно, к какой фазе вы подключаетесь, к какой паре выводов или в какую сторону вы подключаете каждую фазу: переключение двух фаз или переключение пары проводов в фазе просто заставляет двигатель вращаться в другую сторону, которую вы можно исправить в конфиге.г файл.

Будьте особенно осторожны при использовании шаговых двигателей со съемными кабелями! Двигатель Nema 17 с отсоединяемым кабелем обычно имеет 6-контактный разъем JST, но разные производители используют разные выводы на этом разъеме. Всегда проверяйте фазы шагового двигателя (см. Следующий раздел) при использовании двигателей со съемными кабелями.

Настоятельно рекомендуется заземлить корпуса шагового двигателя , особенно в принтерах с ременным приводом.В противном случае движение ремней вызывает накопление статического заряда, который в конечном итоге изгибается в обмотках. Движение нити в экструдерах может также вызвать накопление статического заряда на приводном двигателе экструдера. Если двигатели прикручены к металлической раме, заземления рамы достаточно.

Вот два способа соединить провода шагового двигателя в фазы:

  1. Используйте мультиметр. Между двумя проводами, принадлежащими к одной фазе, должно быть сопротивление в несколько Ом, а между проводами, принадлежащими к разным фазам, не должно быть неразрывности.
  2. Если провода двигателя ни к чему не подключены, вращайте шпиндель между пальцами. Замкните два провода вместе, затем снова раскрутите шпиндель. Если вращение намного сложнее, чем раньше, эти два провода принадлежат одной и той же фазе. В противном случае попробуйте еще раз с другой парой проводов, замкнутых вместе.

Если у вас два шаговых двигателя Z, подключите их к разъемам ZA и ZB. Эти разъемы соединены последовательно, что лучше, чем их параллельное соединение для большинства типов шаговых двигателей, используемых в 3D-принтерах.

Если у вас только один шаговый двигатель Z, подключите его к разъему ZA и вставьте две перемычки в разъем ZB. Платы Duet 2 обычно поставляются с уже установленными перемычками.

Если у вас два шаговых двигателя Z, то для типов двигателей, обычно используемых в RepRaps (то есть с номинальным током в диапазоне от 1,2 до 2,0 А), лучше соединять их последовательно, чем параллельно. Google "проводные шаговые двигатели в серии" для инструкций, как это сделать, например:

http: // www.instructables.com/id/Wiring-Y ...]

Некоторые недавние китайские комплекты 3D-принтеров имеют слаботочные Z-шаговые двигатели, которые предназначены для параллельного подключения. Если двигатели имеют номинальный ток 1,0 А или ниже, подключите их параллельно.

Используйте команду M584 (см. Http: //reprap.org/wiki/G-code#M584: _Set _...), чтобы указать, какие драйверы используются для соответствующей оси. Вы должны использовать RepRapFirmware 1.14 или более позднюю версию.

См. Страницу использования внешних драйверов для более подробной информации.

Если ваши двигатели имеют рейтинг выше 2.8А, и вы используете Duet 2 (Wi-Fi или Ethernet), или выше примерно 2А, и вы используете Duet 2 Maestro, или устаревший Duet 0.6 или 0.8.5, или если им нужно более высокое напряжение, чем может обеспечить Duet, то вы нужны внешние драйверы шагового двигателя. Они обычно имеют оптически изолированные входы step / dir / enable. Например, драйверы шаговых двигателей с номиналом до 5 А, использующие чип шагового драйвера TB6600, широко доступны на eBay.

Если драйверам требуется не более примерно 2 мА при напряжении 3 В на входе ступени, направления и разрешения, вы можете подключить их непосредственно от разъема расширения Duet.См. Схемы подключения Duet 2 WiFi / Ethernet для разводки разъемов расширения. В противном случае вам следует использовать интегральные схемы с переключением уровня от 3,3 до 5 В, например 74HCT04, чтобы повысить уровень сигнала до 5 В и управлять им. Для этой цели вы можете использовать разделительную доску расширения Duet.

Чтобы переназначить двигатели X, Y или Z на внешние драйверы в RepRapFirmware 1.14 или более поздней версии, используйте команду M584 (см. M-код G584). Сигналы включения на разъеме расширения по умолчанию активны, но вы можете изменить это с помощью команды M569 (см. M569 Gcode).Вы также можете установить минимальную ширину шага в команде M569 (попробуйте 1us или 2us при использовании внешних драйверов) и настроить направление.

Перед выполнением этого шага временно разрешите перемещение оси без возврата в исходное положение, перейдя к консоли G-кода и введя: M564 S0 H0

Вернитесь на страницу управления машиной. В это время мы проверим работу наших шаговых двигателей.

Переместите каждый шаговый двигатель по отдельности на 1 мм в каждом направлении.

Обратите внимание, что шагер не может быть перемещен до возврата в исходное положение, если только команда M564 не используется для отмены этого значения безопасности по умолчанию.


Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.