Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как подключить конденсатор к асинхронному двигателю


Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Конденсаторный пусковой асинхронный двигатель - его схема Phasor Характеристика и применение

Конденсаторные пусковые двигатели - это однофазный асинхронный двигатель, в котором используется конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Название конденсатора пуска само по себе показывает, что двигатель использует конденсатор с целью запуска. На рисунке ниже показана схема подключения двигателя запуска конденсатора.

Содержание:

Пусковой двигатель конденсатора имеет клеточный ротор и две обмотки на статоре. Они известны как основная и вспомогательная или пусковая обмотка. Две обмотки расположены на 90 градусов друг от друга. Конденсатор C S соединен последовательно с пусковой обмоткой. Центробежный выключатель S C также включен в цепь.


Фазовая диаграмма двигателя запуска конденсатора показана ниже.

I M - это ток в главной обмотке, который отстает от вспомогательного тока I A на 90 градусов, как показано на диаграмме фаз выше. Таким образом, однофазный ток питания разделяется на две фазы. Две обмотки смещены на 90 градусов друг от друга, а их ММФ одинаковы по величине, но на 90 градусов разнесены по временной фазе.

Двигатель работает как сбалансированный двухфазный двигатель. Когда двигатель приближается к номинальной скорости, вспомогательная обмотка и пусковой конденсатор автоматически отключаются центробежным выключателем, установленным на валу двигателя.

Характеристики конденсаторного запуска двигателя

Конденсатор запускает двигатель развивает гораздо более высокий пусковой момент, примерно в 3 - 4,5 раза превышающий момент полной нагрузки. Для получения высокого пускового момента необходимы два условия. Они заключаются в следующем: -

  • Значение пускового конденсатора должно быть большим.
  • Клапан пускового сопротивления обмотки должен быть низким.

Электролитические конденсаторы порядка 250 мкФ используются из-за высокого значения Var требуемого конденсатора.

Характеристика скорости вращения двигателя показана ниже.

Характеристика показывает, что пусковой крутящий момент высокий. Стоимость этого двигателя больше по сравнению с двигателем с разделенной фазой из-за дополнительных затрат на конденсатор. Пусковой двигатель конденсатора можно изменить, сначала приведя двигатель в состояние покоя, а затем поменяв местами соединения одной из обмоток.

Применение конденсаторного пускового двигателя

Различные применения двигателя: -

  • Эти двигатели используются для нагрузок с более высокой инерцией, где требуется частый пуск.
  • Используется в насосах и компрессорах
  • Используется в холодильниках и компрессорах кондиционеров.
  • Они также используются для конвейеров и станков.
,

Однофазный асинхронный двигатель с запуском конденсатора

Однофазный асинхронный двигатель с запуском конденсатора представляет собой тип двухфазного асинхронного двигателя. Конденсаторы используются для улучшения пусковых и рабочих характеристик однофазных асинхронных двигателей.

Пусковой двигатель конденсатора идентичен двухфазному двигателю, за исключением того, что пусковая обмотка имеет столько же витков, сколько и основная обмотка.

Почему однофазный асинхронный двигатель не запускается самостоятельно?

Работа пускового двигателя конденсатора

Конденсатор С соединен последовательно с пусковой обмоткой через центробежный выключатель, как показано на рисунке.

Значение конденсатора выбрано таким образом, чтобы ток Is во вспомогательной катушке приводил ток Im в главной катушке примерно на 80 ° (то есть α ~ 80 °), что значительно больше, чем 25 °, как в двухфазном двигателе , Это становится сбалансированным 2-фазным двигателем, если величины Is и Im равны и смещены во временной фазе на 90 ° электрических градусов.

Конденсатор запуска однофазного асинхронного двигателя

Следовательно, пусковой момент (Ts = kImIssinα) намного больше, чем у двухфазного двигателя.Пусковая обмотка открывается центробежным выключателем, когда двигатель достигает около 75% синхронной скорости.

Затем двигатель работает как однофазный асинхронный двигатель и продолжает ускоряться, пока не достигнет нормальной скорости.

Двигатель запустится без гудения. Однако после отключения вспомогательной обмотки будет слышен гудящий шум.

Поскольку вспомогательная обмотка и конденсатор должны использоваться периодически, они могут быть спроектированы с минимальными затратами.Однако установлено, что наилучший компромисс между факторами пускового крутящего момента, пускового тока и затрат достигается с фазовым углом, немного меньшим 90 °, между Im и Is.

Прочитано: Электродвигатель с экранированным полюсом

Характеристики запуска конденсатора 1ϕ Асинхронный двигатель

Некоторые характеристики однофазного асинхронного двигателя запуска конденсатора приведены ниже.

Хотя пусковые характеристики пускового двигателя с конденсатором лучше, чем у двухфазного двигателя, обе машины обладают одинаковыми рабочими характеристиками, потому что главные обмотки идентичны.

Фазовый угол между двумя токами составляет около 80 ° по сравнению с около 25 ° в двухфазном двигателе. Следовательно, при одинаковом пусковом моменте ток в пусковой обмотке составляет лишь половину тока в двухфазном двигателе.

Таким образом, пусковая обмотка конденсаторного пускового двигателя нагревается менее быстро и хорошо подходит для применений, включающих частые или длительные пусковые периоды.

Конденсаторные пусковые двигатели используются там, где требуется высокий пусковой момент и где пусковой период может принадлежать e ,Например, для привода: (a) компрессоров (b) больших вентиляторов (c) насосов (d) нагрузок с высокой инерцией

Характеристики запуска конденсатора 1ϕ Асинхронный двигатель

Номинальная мощность таких двигателей составляет от 120 Вт до 7-5 кВт.

Применение конденсаторного пускового двигателя

Конденсаторы в асинхронных электродвигателях позволяют им выдерживать более высокие пусковые нагрузки путем усиления магнитного поля пусковых обмоток. Эти нагрузки могут включать в себя холодильники, компрессоры, лифты и шнеки.

Размер конденсаторов, используемых в этих типах приложений, варьируется от 1/6 до 10 лошадиных сил.Конструкции с высоким пусковым крутящим моментом также требуют высоких пусковых токов и высокого крутящего момента пробоя.

Что такое двигатель запуска конденсатора? - его векторная диаграмма и характеристики

Двигатель пускового конденсатора запускает конденсаторный двигатель с ротором в клетке, а его статор имеет две обмотки, известные как основная и вспомогательная обмотки. Две обмотки смещены на 90 градусов в пространстве. В этом методе есть два конденсатора, один из которых используется во время запуска и известен как пусковой конденсатор. Другой используется для непрерывной работы двигателя и известен как конденсатор RUN.

Таким образом, этот двигатель называется двигателем запуска конденсатора. Этот двигатель также известен как двухконтурный конденсаторный двигатель. Схема подключения конденсаторного двигателя с двумя клапанами показана ниже

В этом двигателе есть два конденсатора, представленных C S и C R . При запуске два конденсатора соединены параллельно. Конденсатор Cs является пусковым конденсатором, рассчитанным на короткое время. Это почти электролитически. Для получения пускового момента необходим большой ток.Следовательно, значение емкостного сопротивления X должно быть низким в пусковой обмотке. Поскольку X A = 1 / 2πfC A , значение пускового конденсатора должно быть большим.

Номинальный ток в линии меньше пускового тока при нормальных условиях работы двигателя. Следовательно, значение емкостного сопротивления должно быть большим. Поскольку X R = 1 / 2πfC R, значение рабочего конденсатора должно быть небольшим

Когда двигатель достигает синхронной скорости, пусковой конденсатор Cs отключается от цепи центробежным переключателем Sc.Конденсатор C R постоянно включен в цепь и, таким образом, он известен как конденсатор RUN. Рабочий конденсатор рассчитан на длительное время и изготовлен из заполненной маслом бумаги.

На рисунке ниже показана -фазорная диаграмма двигателя запуска конденсатора.

Рис. (А) показывает векторную диаграмму, когда при запуске оба конденсатора находятся в цепи и ϕ> 90⁰. На рис. (Б) показан вектор, когда пусковой конденсатор отключен, и ϕ становится равным 90⁰.

Характеристика скорости вращения двухконтурного конденсаторного двигателя показана ниже.

Этот тип двигателя работает тихо и плавно. Они имеют более высокую эффективность, чем двигатели, которые работают только на главных обмотках. Они используются для нагрузок с более высокой инерцией, требующих частых запусков, где максимальный крутящий момент и КПД выше. Двигатели с двумя конденсаторами используются в насосном оборудовании, холодильной технике, воздушных компрессорах и т. Д.

,

Смотрите также


avtovalik.ru © 2013-2020