Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как подобрать рабочий конденсатор для асинхронного двигателя


Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Как работают асинхронные двигатели переменного тока

Ранее я рассмотрел, как работают двигатели постоянного тока, но переменного тока асинхронные двигатели на самом деле гораздо полезнее для самодельных машин такие как ленточные пилы. Асинхронные двигатели более сложны для понимания. Это был злой и Безумный гений Никола Тесла, который их изобрел. Есть обширная википедия статья об асинхронных двигателях, поэтому я постараюсь сделать эту страницу простой.

Здесь я просто вытащил ротор из маленького асинхронного двигателя с заштрихованным полюсом (тип, который будет использоваться для питания вентилятора внутри морозильной части холодильник).Нет электрических соединений с ротором. Ротор также не является магнитом, хотя он притягивается магнитом.

Обратите внимание на наклонные линии на роторе. Это на самом деле своего рода обмотки короткого замыкания из алюминия, отлитого в место (светлые диски на обоих концах образуют часть этого короткого обмотка). Эта обмотка короткого замыкания является ключом к тому, что делает моторная работа.

Если ротор подвергается изменению магнитного поля, небольшое напряжение индуцируется в обмотках.Поскольку обмотки являются коротким замыканием, это вызывает ток, который в свою очередь создает магнитное поле что против изменения магнитного поля. Обмотки эффективно сделать для ротора, который, хотя магнитно проницаемый, сопротивляется быстро меняет свое магнитное поле.

Подобный эффект может быть продемонстрирован вращением алюминиевого диска и подвергая часть этого магнитному полю через диск. Как вращающийся диск удерживается между магнитами, прикрепленными к металлическому кронштейну на этой фотографии он замедляется.Как в роторе асинхронного двигателя, изменяющееся магнитное поле вызывает протекание тока в алюминии, что в свою очередь противодействует изменению. Магнитное поле через диск вращается позади вращения, вытягивая его назад и останавливая вращение в коротком порядке (фактически, в течение четверти оборота диска). Я рекомендую посмотреть видео в верхней части этой статьи, это делает это гораздо понятнее.

Тот факт, что ротор не любит изменения в магнитном поле, делает асинхронный двигатель работает как электрический тормоз, когда к его обмотки.

Здесь у меня есть 10-фунтовый груз, прикрепленный к шкиву на двигателе. Применяя несколько ампер к обмоткам этой печи на половину лошадиных сил Двигателя достаточно, чтобы заставить вес снижаться очень медленно. Тем не менее, нет независимо от того, какой ток подается, вес все равно будет медленно падать, потому что ротор сопротивляется только изменению в магнитном поле, поэтому Эффект разрушения происходит только при вращении ротора.

До сих пор мы установили, что асинхронные двигатели хороши на , а не на . превращение.Но если магнитное поле движется, ротор хочет вращаться вместе с ним. Возвращаясь к примеру с металлическим диском, если переместить магниты быстро проходит диск, диск начинает вращаться, следуя за магнитами.

Если бы мы вращали статор вокруг ротора, это заставило бы вращаться ротор также. Но это было бы бесполезно как двигатель.

В трехфазном асинхронном двигателе переменного тока мы создаем вращающееся магнитное поле путем подачи электрического тока на разные обмотки в разное время.

Представьте, что ток проходит через синие обмотки, так что полюс 1 Север и полюс 4 - это юг. Далее мы пропускаем ток через красный обмотки так, что 2 север и 5 юг, затем через зеленый, делая 3 севера, а затем снова через синий, но в противоположном направление, как и раньше, так что 4 - это север, а 1 - юг. Это будет создать вращающееся магнитное поле.

В настоящем трехфазном двигателе мы применяем синусоидальные волны ко всем трем обмотки одновременно. Все синусоидальные волны 60 градусов (или один шестой цикл) не в фазе друг от друга, так что север плавно переходы с 1 на 2, с 2 на 3 и т. д.

Статор создает вращающееся магнитное поле. Ротор станет пассивно намагничен этим полем. Но ротор обмотки короткого замыкания заставляют его сопротивляться изменениям магнитного поля, поэтому вращение поля в статоре будет отставать от этого в ротор. С отставанием угла поля в статоре, магнитное притяжение заставит вращаться сам ротор, в конце концов со скоростью, близкой к скорости вращающегося поля, но не совсем в статоре.

Я должен добавить, что в фактической трехфазной передаче фазы 120 ° (одна треть периода цикла) не в фазе друг от друга, а не 60 °.Но мы можем получить 60 °, взяв третью фазу, которая составляет 240 ° градусов не в фазе от первого и меняет провода, что меняет его или меняет это фаза на 180 °. 240 - 180 = 60. Фазы 120 ° градусов не в фазе друг с другом, так что сумма токов через все три фазы всегда складываются в ноль. Таким образом, ток не должен течь через нейтральный (заземляющий) проводник.

Работу трехфазных асинхронных двигателей легче понять, но большинство домов имеют только однофазный переменный ток.Однако в Северной Америке 120-вольтные системы, однофазные мощности часто называют двухфазными мощность, потому что есть две противоположные фазы 120 вольт. Но эти 180 градусов не в фазе. Это составляет для 240 вольт между ними, но не приближает нас к вращающемуся полю.

С однофазным мы можем только сделать поле, которое идет туда-сюда. Однако, если мы подвергаем ротор асинхронного двигателя вперед и назад поле, и оно уже вращается, оно будет следовать вперед и назад, так же, как вы можете держать маховик и вращать кривошип, просто нажав и тянет на рукоятку.Но переменного поля будет недостаточно чтобы мотор вращался с места стоя.

В однофазных двигателях вращение двигателя обычно включает в себя начало намотки, которая, хотя и не совсем поле, по крайней мере, создает переменное поле, которое имеет некоторое вращательное компонент для запуска ротора. Например, в затененном шесте двигатель, у нас есть медная обмотка короткого замыкания на одной стороне каждого столб. Обмотка короткого замыкания сопротивляется изменениям в магнитном поле, вызывая изменение магнитного поля через обмотку короткого замыкания всегда отставать от основного полюса.

Это заставляет ротор поворачиваться от основного полюса к короткозамкнутая часть при изменении магнитного поля, потому что затененная часть будет отставать от основного полюса. С сопротивлением ротора изменения в поле, поле в роторе, хотя и выровнено с главный столб находится сзади, поэтому он притягивается к затененной части столб.

Этот эффект работает, даже если в двигатель посылаются только импульсы постоянного тока. При условии, что двигатель вращается легко, каждый импульс вызывает ротор повернуться на несколько градусов.

При подаче переменного тока двигатель работает непрерывно.

Но затененные полюса не обеспечивают большого пускового момента. По факту, крутящий момент, создаваемый остановленным двигателем с заштрихованными полюсами, значительно меньше, чем когда он работает на полной скорости. Но этого достаточно, чтобы получить мотор работает.

Затененные полюса являются обмотками короткого замыкания, поэтому они потребляют много силы. Это делает двигатели с заштрихованными полюсами очень неэффективными.

В более крупных однофазных двигателях мощностью 1/4 лошадиных силы и выше, запуск обычно выполняется вспомогательной обмоткой.Вспомогательная обмотка либо один с меньшим количеством витков и большим сопротивлением, или последовательно с конденсатором. Любой метод приводит к тому, что магнитное поле слегка не в фазе с основное поле, таким образом добавляя вращательный компонент к полю, которое достаточно, чтобы запустить двигатель.

Но обмотка стартера обычно неэффективна, поэтому большинство однофазные двигатели имеют центробежный выключатель, который отключает обмотка стартера, когда двигатель набирает обороты. Этот выключатель замыкания (повторное подключение) - вот что вызывает "щелчок", который вы слышите от многих двигатели, как они успокаиваются, через секунду или два после выключения.

Существует множество способов, которыми обмотка стартера на однофазных двигателях может работать. К ним относятся:

  • Пусковые двигатели конденсатора
  • Двигатели пускового сопротивления
  • Двигатель с расщепленной фазой (также известный как двигатели с конденсаторным питанием)
Я мог бы написать намного больше о методах запуска однофазных двигателей, но это довольно сложная тема, поэтому я не буду вдаваться в подробности здесь. тем не мение статья Википедии На асинхронных двигателях есть намного больше деталей.

Двухполюсный и четырехполюсный
Большинство асинхронных двигателей бывают двухполюсными или четырехполюсными. В двухполюсном моторе Статор имеет один северный и один южный полюс в любое время, и ротор нуждается повернуть один полный оборот (или близко к этому) для каждого цикла. Для систем 60 Гц, двухполюсный индукционный ротор будет работать в диапазоне от 3500 до 3600 об / мин (или около 58-60 оборотов в секунду). Для систем с частотой 50 Гц двухполюсный двигатель будет работать от 2900 до 3000 об / мин.

В четырехполюсном двигателе статор в любой момент имеет два северных и два южных полюса, север и юг всегда разнесены на 90 градусов (таким образом, два северных и два южных полюса всегда друг напротив друга).Ротор становится намагниченным по этой схеме. Для каждого цикла требуется только половина оборота, и будет работать четырехполюсный двигатель при 1725–1800 об / мин для систем с частотой 60 Гц и 1425–1500 об / мин для систем с частотой 50 Гц.

Моторы с более чем четырьмя полюсами встречаются гораздо реже и используются только для специальные приложения. Типичный мотор с коробчатым вентилятором будет иметь шесть полюсов, и двигатель потолочного вентилятора будет иметь восемь или более полюсов.

Различные скорости
Основным недостатком асинхронных двигателей является то, что они непрактичны для работа с переменной скоростью.С полем, вращающимся с фиксированной скоростью (определяется источник переменного тока), двигатель работает эффективно только тогда, когда он работает близко на эту скорость. Для небольших бытовых вентиляторов более низкая скорость работы достигается за счет большого количества «проскальзывания», то есть ротор может вращаться так медленно, как половина скорости поле, но это делает для очень неэффективного двигателя, и скорость вращения сильно зависит от нагрузки, поэтому такой подход не подходит для вождения машин.

Тем не менее, электронные преобразователи частоты (VFD) иногда используются с асинхронными двигателями.VFD повторно синтезирует Переменного тока на разных частотах и ​​подает его в двигатель, чтобы двигатель Сам по-прежнему работает на скорости, близкой к скорости магнитного поля. Много новых (после 2000) токарных станков с электронно-регулируемыми скоростями используют преобразователи частоты.

См. Также:


Вернуться на мой сайт Деревообработка ,

Однофазный асинхронный двигатель с запуском конденсатора

Однофазный асинхронный двигатель с запуском конденсатора представляет собой тип двухфазного асинхронного двигателя. Конденсаторы используются для улучшения пусковых и рабочих характеристик однофазных асинхронных двигателей.

Пусковой двигатель конденсатора идентичен двухфазному двигателю, за исключением того, что пусковая обмотка имеет столько же витков, сколько и основная обмотка.

Почему однофазный асинхронный двигатель не запускается самостоятельно?

Работа пускового двигателя конденсатора

Конденсатор С подключен последовательно с пусковой обмоткой через центробежный выключатель, как показано на рисунке.

Значение конденсатора выбрано таким образом, чтобы ток Is во вспомогательной катушке приводил ток Im в главной катушке примерно на 80 ° (то есть, α ~ 80 °), что значительно больше, чем 25 °, как в двухфазном двигателе. , Это становится сбалансированным 2-фазным двигателем, если величины Is и Im равны и смещены во временной фазе на 90 ° электрических градусов.

Конденсатор запуска однофазного асинхронного двигателя

Следовательно, пусковой момент (Ts = kImIssinα) намного больше, чем у двухфазного двигателя.Пусковая обмотка открывается центробежным выключателем, когда двигатель достигает около 75% синхронной скорости.

Затем двигатель работает как однофазный асинхронный двигатель и продолжает ускоряться, пока не достигнет нормальной скорости.

Двигатель запустится без гудения. Однако после отключения вспомогательной обмотки будет слышен гудящий шум.

Поскольку вспомогательная обмотка и конденсатор должны использоваться периодически, они могут быть спроектированы с минимальными затратами.Однако установлено, что наилучший компромисс между факторами пускового крутящего момента, пусковым током и затратами достигается при фазовом угле, составляющем несколько менее 90 ° между Im и Is.

Читать: Затененный полюсный двигатель

Характеристики запуска конденсатора 1ϕ Асинхронный двигатель

Некоторые характеристики однофазного асинхронного двигателя запуска конденсатора приведены ниже.

Хотя пусковые характеристики пускового двигателя с конденсатором лучше, чем у двухфазного двигателя, обе машины обладают одинаковыми рабочими характеристиками, потому что главные обмотки идентичны.

Фазовый угол между двумя токами составляет около 80 ° по сравнению с около 25 ° в двухфазном двигателе. Следовательно, при одинаковом пусковом моменте ток в пусковой обмотке составляет лишь половину тока в двухфазном двигателе.

Таким образом, пусковая обмотка конденсаторного пускового двигателя нагревается менее быстро и хорошо подходит для применений, включающих частые или длительные пусковые периоды.

Конденсаторные пусковые двигатели используются там, где требуется высокий пусковой момент и где пусковой период может принадлежать e ,Например, для привода: (a) компрессоров (b) больших вентиляторов (c) насосов (d) нагрузок с высокой инерцией

Характеристики запуска конденсатора 1ϕ Асинхронный двигатель

Номинальная мощность таких двигателей составляет от 120 Вт до 7-5 кВт.

Применение конденсаторного пускового двигателя

Конденсаторы в асинхронных электродвигателях позволяют им выдерживать более высокие пусковые нагрузки за счет усиления магнитного поля пусковых обмоток. Эти нагрузки могут включать в себя холодильники, компрессоры, лифты и шнеки.

Размер конденсаторов, используемых в этих типах приложений, варьируется от 1/6 до 10 лошадиных сил.Конструкции с высоким пусковым крутящим моментом также требуют высоких пусковых токов и высокого крутящего момента пробоя.

асинхронные двигатели переменного тока | Как работают двигатели переменного тока

Реклама

Крис Вудфорд. Последнее обновление: 21 апреля 2020 г.

Знаете ли вы, как работают электродвигатели? Ответ, вероятно, да и нет! Хотя многие из нас узнали, как основные моторные работы, от простых научных книг и веб-страниц, таких как это, многие из двигатели, которые мы используем каждый день - во всем, от заводских машин до электрички - вообще-то не работают.Какие книги научите нас о простых двигателях постоянного тока, которые имеют петля проволоки вращается между полюсами постоянного магнита; в реальной жизни, большинство мощных двигателей используют переменный ток (AC) и работать совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте внимательнее посмотрим!

Фото: повседневный асинхронный двигатель переменного тока со снятым корпусом и ротором, на котором показаны медные обмотки катушек, составляющих статор (статическая неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (движущуюся часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено US DOE / NREL.

Как работает обычный двигатель постоянного тока?

Работа: Электродвигатель постоянного тока основан на петле проволоки, вращающейся внутри неподвижного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют электрический ток каждый раз, когда проволока переворачивается, что позволяет ему вращаться в одном направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки согнут в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током, сидящий в магнитном поле.) Когда Вы подключаете провод к батарее таким образом, чтобы через него протекал постоянный ток, создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, вызывая проволоку перевернуть.Обычно провод останавливается в этой точке, а затем снова переворачивается, но если мы используем гениальное вращающееся соединение называется коммутатором, мы можем сделать текущий обратный каждый раз, когда провод переворачивается, и это означает, что провод будет вращаться в в том же направлении, пока ток течет. Это Суть простого электродвигателя постоянного тока, который был задуман в 1820-е годы Майкл Фарадей и превратился в практическое изобретение о десятилетие спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро Подводя итог, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю, статическую часть двигатель (статор), в то время как катушка провода, несущего электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который является постоянный магнит, в то время как вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянным магнитом поле статора и временное магнитное поле, создаваемое ротором, составляет что заставляет мотор вращаться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, в большинстве домов, офисов, заводы и другие здания не питаются от маленьких батарей: они не снабжаются постоянным током, а переменным током (AC), который меняет свое направление примерно 50 раз в секунду (с частотой 50 Гц). Если вы хотите запустить двигатель от электросети переменного тока вашей семьи, вместо батареи постоянного тока вам нужен другой дизайн двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляют статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора есть цельнометаллическая ось, петля из проволоки, катушка, короткозамкнутый каркас из металлических стержней и соединений (подобно вращающимся клеткам, люди иногда забавляют домашних мышей), или какая-то другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию на внутренний ротора, в двигателе переменного тока вы посылаете питание на внешние катушки, которые составляют статор. Катушки подаются в пары, последовательно, создавая магнитное поле, которое вращается вокруг двигателя.

Фото: статор создает магнитное поле, используя плотно намотанные витки медного провода, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим двигателем. Иногда проще заменить обмотки двигателя новым проводом - квалифицированная работа, которая называется перемоткой, что и происходит здесь. Фото Сет Скарлетт любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри Магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него в виде петли. Если проводник представляет собой просто твердый кусок металла, то вокруг него циркулируют вихревые токи. В любом случае, индуцированный ток производит его собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращением.(Вы можете думать о роторе отчаянно пытаясь «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция является ключом к тому, почему такой двигатель вращается, и именно поэтому он называется асинхронным двигателем.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары электромагнитных катушек, показанные здесь красным и синим, поочередно запитываются от источника переменного тока (не показан, но подключается к выводам справа).Две красные катушки соединены последовательно и под напряжением вместе, а две синие Катушки подключены одинаково. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как показывает эта анимация), но плавно поднимается и опускается в форме синусоиды: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (смещение по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между собой, вызывает электрический ток в роторе.Этот ток создает свое собственное магнитное поле, которое пытается противостоять тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями вызывает вращение ротора.
  3. Поскольку магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (в теории) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером того, что называется асинхронным двигателем переменного тока.Теоретическая скорость вращения ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, что он ведет) также играет свою роль - имеет тенденцию замедлять ротор. Чем больше нагрузка, тем больше «скольжение» между скоростью вращающегося магнитного поля и фактической скоростью вращения ротора. Чтобы контролировать скорость двигателя переменного тока (заставить его двигаться быстрее или медленнее), вы должны увеличить или уменьшить частоту источника переменного тока, используя так называемую частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, работающей от асинхронного двигателя переменного тока, вы действительно контролируете цепь, которая поворачивает частоту тока, который приводит двигатель в движение вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить ротор с четырьмя катушками (две противоположные пары), как показано здесь. Можно построить асинхронные двигатели со всеми другими типами катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Число отдельных электрических токов, подающих питание на катушки независимо друг от друга, известно как фаза двигателя, поэтому показанная выше конструкция представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают ступенчато в двух парах). ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включаются и выключаются вместе тремя отдельными токами в противофазе.

Анимация

: трехфазный двигатель, питаемый от трех токов (обозначается красным, зеленым и синие пары катушек), 120 ° в противофазе.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ моторы, напротив, имеют коммутатор и угольные щетки, которые изнашиваются и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Artwork: Электродвигатели чрезвычайно эффективны, обычно преобразуя около 85 процентов поступающей электрической энергии в полезную, уходящую механическую работу. Несмотря на это, внутри обмоток все еще расходуется много энергии, поэтому двигатели могут сильно нагреваться. Большинство промышленных двигателей переменного тока имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который управляет машиной, к которой подключен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса мимо вентиляционных ребер. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), это причина: они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, который приводит его в движение, он вращается со постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного проще контролировать, просто увеличивая или уменьшая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за своей обмотки катушки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника питания постоянного тока (например, от солнечных батарей) без использования инвертора (устройства, которое превращает постоянный ток в переменный ток). Это потому, что им нужно изменение магнитного поля, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Работа: оригинальный дизайн Никола Тесла для асинхронного двигателя переменного тока.Он работает точно так же, как анимация выше, с двумя синими и двумя красными катушками, попеременно включаемыми генератором справа. Это произведение искусства получено из оригинального патента Tesla, депонированного в Бюро по патентам и товарным знакам США, которое вы можете прочитать сами в ссылках ниже.

Никола Тесла (1856–1943) был физиком и плодовитый изобретатель, чей удивительный вклад в науку и технику никогда не был полностью признан. После того, как он прибыл в Соединенные Штаты в возрасте 28 лет, он начал работает на знаменитого пионера электротехники Томаса Эдисона.Но двое мужчин выпали катастрофически и вскоре стали жестокими соперниками. Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал об обратном. Со своим партнером Джорджем Вестингауз, Тесла защищал AC, в то время как Эдисон был решил управлять миром на DC и придумал все виды рекламные трюки, чтобы доказать, что AC был слишком опасен для широкого использования (изобретая электрический стул, чтобы доказать, что переменный ток может быть смертельным, и даже электрический ток Топси слону с AC, чтобы показать, насколько смертельно и жестоко это было).Битва между этими двумя очень разные взгляды на электроэнергию иногда называют войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Тесла выиграл день, и теперь электричество переменного тока дает много сил мира. Именно поэтому многие из электродвигателей, которые водить технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Тесла разработан в 1880-х годах (его патент, показанный здесь, был выдан в мае 1888 года).Итальянский физик по имени Галилео Феррарис независимо придумал ту же идею примерно в то же время, но история относилась к нему еще более жестоко, чем Тесла и его имя теперь почти забыты.

Узнайте больше

На этом сайте

На других сайтах

книг

Для пожилых читателей
Для младших читателей
  • Электричество для молодых производителей: веселые и простые проекты «Сделай сам». Автор Mark deVinck.Maker Media / O'Reilly, 2017. Отличное практическое знакомство с электричеством, в том числе пара мероприятий, которые включают создание электродвигателей с нуля. Возраст 9–12.
  • Эксперименты с электродвигателем Эд Собей. Enslow, 2011. Это отличное общее введение в электродвигатели с широким научным и технологическим контекстом. Однако по очевидным практическим соображениям и соображениям безопасности он сфокусирован только на двигателях постоянного тока и подходит для возраста 11–14 лет.
  • Сила и Энергия Криса Вудфорда.Факты в архиве, 2004. Одна из моих книг, рассказывающая об истории человеческих усилий по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: Крис Вудфорд, разработчик электроэнергии, в книге «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткая биография Теслы, которую я написал несколько лет назад. На момент написания статьи все это было доступно через Интернет по этой ссылке в Google Книгах. Возраст 9–12.

Патенты

Патенты предлагают более глубокие технические детали - и собственные идеи изобретателя в своей работе.Вот очень маленький выбор из многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель, Никола Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели, Томас Х. Бартон и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 года. Асинхронный двигатель с улучшенным управлением скоростью.
  • Патент США 4311932: жидкостное охлаждение для асинхронных двигателей. Автор - Raymond N. Olson, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, Umesh C. Gupta, Vickers, Inc., 12 мая 1998 года. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Следуйте за нами

Поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать об этом друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (Введите дату здесь)]

Подробнее на нашем сайте...

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.