Как подобрать регулятор оборотов для бесколлекторного двигателя
Регуляторы хода для бесколлекторных моторов
Автор - Сергей Потупчик (serj)Вступление
Данная статья посвящена практическим аспектам применения регуляторов хода (далее - контроллеров) для бесколлекторных моторов, и особенностям их эксплуатации.
Бесколлекторные моторы, и соответственно регуляторы хода для них можно разделить на 2 основных класса - с датчиками положения ротора и без них. Бездатчиковые проще в изготовлении, поэтому большинство моторов и контроллеров в настоящее время именно такие (кроме специальных автомодельных). Далее речь пойдет именно о бездатчиковых регуляторах хода.
Большинство применяемых в моделизме бесколлекторных моторов построены по принципу "вывернутого наизнанку" коллекторного двигателя: статор с обмотками неподвижен, а ротор с постоянными магнитами вращается. Количество обмоток – всегда три.
Среди бесколлекторных моторов для моделизма можно выделить две основные группы - с внутренним ротором, где постоянный магнит вращается внутри обмоток, и с внешним ротором (outrunner). Последние имеют, как правило, большее количество магнитных полюсов, и больший крутящий момент по сравнению с моторами с внутренним ротором, что позволяет применять их на авиамоделях без использования редуктора - они могут «напрямую» крутить винты большого диаметра.
Основные характеристики контроллеров
Максимальный постоянный (сontinius) ток – указывает, какой ток контроллер способен держать продолжительное время. Как правило, этот параметр входит в обозначение контроллера (например Jes -18, Phoenix -10). Иногда указывают величину "кратковременного" тока, допустимого в течении нескольких секунд.
"Кратковременный" ток способны держать выходные транзисторы контроллера, но рассеивать выделяемое при этом токе количество тепла контроллер не в состоянии.
Максимальное рабочее напряжение - указывается, с каким количеством NiCd или литий-полимерных банок можно использовать контроллер. Для контроллеров с ВЕС-ом, эта величина может быть разная, в зависимости от количества сервомашинок. Это связано с рассеиванием тепла стабилизатором схемы ВЕС - при большем числе банок максимальный ток нагрузки BEC и, следовательно, количество сервомашинок меньше. Как правило, если используется ВЕС, количество банок не превышает 12. Если вы хотите работать с большим количеством банок, то придется ставить или отдельную батарею питания приемника, или использовать внешний ВЕС. Но в любом случае нельзя превышать максимальное напряжение, допустимое для контроллера.
Максимальные обороты (maximum rpm) - программное ограничение максимальных оборотов. Всегда указывается для двухполюсного двигателя. Для многополюсных моторов это число надо разделить на количество пар полюсов. Например, если указано 63000 rpm, то для мотора с 12-ю магнитами максимальные обороты будут 63000/6=10500 rpm, а это уже не так много... Данная функция не дает мотору набрать большее, чем указано количество оборотов, некоторые контроллеры при превышении этого значения на холостом ходу начинают сбоить, вызывая значительные броски тока - мотор начинает резко дергаться. Этот эффект не является признаком неисправности мотора ли контроллера.
Внутреннее сопротивление – полное сопротивление силовых ключей контроллера, без учета проводов. Чем мощнее контроллер, тем меньше его внутреннее сопротивление. Как правило, сопротивление проводов сравнимо с внутренним сопротивлением контроллера и вносит до 30% потерь. Для примера, внутреннее сопротивление контроллера Castle Creations Phoenix-25 13 mOhm, а сопротивление 30 см провода сечением 1кв.мм – 6 mOhm, то есть почти треть потерь приходится на провода.
Частота импульсов контроллера (PWM Frequency) - как правило, составляет 7-8 Кгц. У "продвинутых" контроллеров частоту регулирования можно программировать на другие значения- 16 и 32 Кгц. Эти значения применяется в основном для высокооборотных 3-4-х витковых моторов с малой индуктивностью, при этом улучшается линейность регулирования частоты вращения.
Особенности подключения
Провода - не такое простое дело, как может показаться на первый взгляд. Есть несколько важных аспектов.
Самое главное - нельзя делать провода от контроллера до аккумулятора большой длины! Дело в том, что стартовые токи беколлекторных моторов намного больше, чем аналогичных коллекторных, и при работе моторов возникают большие броски тока. Конденсаторы, всегда стоящие на входе контроллера, должны быть специального типа, но многие производители ставят обычные.
При удлинении проводов от контроллера до батареи начинает сказываться их индуктивность, и может возникнуть ситуация, когда уровень помех по напряжению питания на входе контроллера станет настолько высок, что контроллер не сможет правильно определить положение ротора мотора (иногда при этом еще и "повисает" процессор контроллера). Известно несколько случаев полного "выгорания в дым" контроллеров, при удлинении проводов со стороны аккумулятора до 30см. Если необходимо увеличить длину проводов (например, двигатель стоит в хвосте модели), то надо увеличивать длину проводов от мотора до контроллера. Как правило, контроллеры поставляются с проводами до батареи длиной 13-16см. Такая длина вполне достаточна для надежной работы контроллера, и не следует ее увеличивать более чем на 5см.
Кроме того, длинные провода до батареи могут вызывать проблемы при резком старте мотора - контроллер может не перейти от режима старта к рабочему режиму при слишком резком прибавлении “газа”. Для предотвращения этого эффекта во многих контроллерах есть специальные настройки.
Настройки
Практически все современные контроллеры имеют множество программных настроек. От них зависит режим работы, надежность, а иногда и работоспособность контроллера в паре с тем или иным мотором. Здесь мы попробуем перечислить основные настройки, и объяснить, как и на что они влияют.
Напряжение выключения мотора (cut-off voltage) – при каком минимальном напряжении на батарее мотор будет выключен. Эта функция предназначена для сохранения работоспособности аппаратуры при разряде батареи и для защиты самой батареи от переразряда (последнее особенно важно для литий- полимерных аккумуляторов). На некоторых контроллерах (например, Jeti серии “ Advansed ”) нет установки напряжения на конкретное число банок в случае использования литиевых батарей, количество банок при этом определяется автоматически.
Тип выключения мотора (cut-off voltage) – как правило имеет 2 значения - плавный (soft cut-off) и жесткий (hard cut-off).
При плавном выключении мотора контроллер сбрасывает обороты постепенно, не позволяя напряжению на батарее упасть ниже заданного, при этом контроль над моделью сохраняется до последнего.
При жестком - мотор немедленно останавливается если зафиксированно падение напряжения ниже заданного. Жесткое отключение может доставить некоторые неудобства при разряженном аккумуляторе: манипулируя газом, вместо небольшой прибавки оборотов иногда получается полный останов мотора.
Тормоз (brake) – торможение мотора после установки газа в "ноль". Может иметь значения включен/выключен, на некоторых контроллерах есть еще программируемая величина тормоза 50-100% и задержка включения тормоза после полного сброса газа. Это необходимо для защиты шестеренок редуктора в случае использования больших и тяжелых пропеллеров. В некоторых контроллерах, например том же Jeti серии "Advanced" тормоз и плавное выключения мотора – установки взаимоисключающие – для включения плавного отключения мотора надо выключить тормоз и наоборот... Намудрили чехи, однако.
Опережение (Timing) – параметр, от которого зависит мощность и КПД двигателя. Может находится в пределах от 0° до 30°. Физически это электрический угол опережения коммутации обмоток.
Для двухполюсных моторов при увеличении опережения обороты и мощность на максимальных оборотах растут, а общий КПД падает. Для двух и 4-х полюсных моторов с внутренним ротором рекомендуют значения от 5 до 15 градусов. При больших значениях опережения мощность практически не растет, а КПД падает на 3-5% - это важно для соревнований, где счет идет именно на эти проценты.
Для многополюсных моторов с внешним ротором ситуация иная - для них оптимальным по КПД и мощности является опережение 25-30°. При изменении угла опережения от 5 до 25° растут и КПД и выходная мощность. Однако прирост этот невелик - около 3%. Как говорится - в полете не заметно, но осознавать приятно...
Режим старта (start mode) - не имеет как правило каких-то числовых значений, описывается только как мягкий, (soft) жесткий (hard), быстрый (fast) и пр. Быстрый старт рекомендуется для моторов без редукторов и для использования в соревнованиях. При использовании быстрого старта в моторах с редукторами возможно повреждение шестерен. Плавный старт обеспечивает меньшие пусковые токи в момент старта и позволяет избежать возможных перегрузок по току контроллера, но время раскрутки мотора до полных оборотов увеличивается.
Время акселерации или задержка акселерации (acseleleration time или acseleration delay) – устанавливает время набора оборотов после старта до максимума. Устанавливается меньше для моторов с легкими пропеллерами без редукторов и больше для моторов с редукторами и в случае срабатывания защиты по току при резком прибавлении газа.
Ограничение тока (Curent limiting) – уровень срабатывания защиты по току. Устанавливается более чувствительным в случае применения моторов с большим стартовым током и батарей с высоким внутренним сопротивлением. При этом желательно установить плавное отключение мотора, в противном случае при резких манипуляциях газом мотор будет останавливаться. Не рекомендуется отключать защиту по току, если вы не уверены ,что ток мотора не может превысить максимально допустимое значение для контроллера. Это может привести к повреждению контроллера большими стартовыми токами.
Режим газа (throttle type или throttle mode) – устанавливает зависимость оборотов мотора от ручки газа. Может иметь значения автокалибровки ( auto calibrating ) – при этом контроллер самостоятельно определяет положение малого и полного газа, а также фиксированный ( fixed ) - когда характеристика задана производителем.
Также в некоторых контроллерах присутствует режим "гувернер" (governor), он предназначен для вертолетов, когда положению ручки газа соответствуют определенные обороты, а не мощность двигателя, контроллер в данном режиме работает как автоматическая система поддержания оборотов, прибавляя мощность при увеличении нагрузки на двигатель.
Реверс (reverse) - смена направления вращения. Обычно для изменения направления вращения двигателя надо поменять местами любые два провода от мотора. Но в продвинутых контроллерах, возможно изменить направление вращения мотора программно.
В некоторых контроллерах, например в Kontronik серии "Beat", нет отдельных настроек параметров, но есть выбор комплексных режимов – планер, самолет, корабль, вертолет и даже автомобиль с задним ходом!
Программирование
Тут совет один - читайте внимательно инструкцию. Как правило, вход в режим программирования делается таким образом, что при нормальном использовании включить его очень затруднительно. В некоторых контроллерах для программирования есть специальные перемычки (джамперы), а создатели Castle Creations предусмотрели кроме обычного (с передатчика), программирование через компьютер, с помощью специального USB адаптера, подключаемого к контроллеру через разъем для приемника - просто и гораздо удобней, чем считать вспышки светодиода или писки мотора...
Из нюансов следует отметить, что у некоторых контроллеров, например ТММ, процедуру программирования следует провести до конца - все параметры записываются в конце цикла программирования, а у других - например Castle Creations - программирование можно закончить в любой момент.
Возможные проблемы
Как показывает практика - 70% проблем при использовании контроллеров связано со стартом двигателей. Если мотор у вас плохо стартует, то есть начинает вращаться, а потом останавливается - большинство причин кроется в больших бросках тока и как следствие, провалах питающего напряжения. В первую очередь проверьте провода до батареи. Пробную проверку лучше производить на той длине проводов, которые даны изготовителем, или короче.
Далее - попробуйте снять нагрузку с мотора и проверить его на холостом ходу. Если на хостом ходу все в порядке, а при установке пропеллера мотор упорно не желает крутится, только дергается в одном направлении, попробуйте поставить мягкий старт или увеличить время акселерации. Также здесь поможет установка плавного выключения мотора. Контроллеры, у которых есть ограничение тока, всегда имеют индикацию этого режима - опять же читайте инструкцию, чтобы установить, произошло срабатывание токовой защиты или нет...
Старые "золотые" Jeti серия Jes 18, отличаются, например одной особенностью - у них нет плавного выключения, и при попытке работы мотора с большими пусковыми токами от старых аккумуляторов, при резком движении ручкой газа мотор останавливается, если напряжение упало до 5.2 вольта. Это не неисправность контроллеров, это у них такой алгоритм выключения мотора: напряжение упало - мотор остановился...
Иногда бывает, что мотор стартует в другую сторону, набирает примерно 20-30% оборотов, потом "одумывается", и резко начинает крутится в нужном направлении. Останов и реверс сопровождаются резким броском тока, иногда срабатывает токовая защита. Данная ситуация происходит только с 2-3х витковыми двухполюсными спортивными моторами при наличии резкого старта. Причем мотор ведет так себя не всегда, примерно в 10% случаев. Выход из этой ситуации - опять же использование плавного старта.
О выключателях
Наличие выключателя в контроллере - это дополнительное удобство, позволяющее не залезать каждый раз вовнутрь модели, чтобы включить или выключить аппаратуру. Некоторые производители контроллеров не ставят выключателей на контроллеры предназначенные для токов ниже 40А, таковы например Castle Creations и Astro Flight.
Привлекает решение проблемы выключателей у контроллеров ТММ. У них каждая модель имеет версию с выключателем и без. Причем выключатель электронный, работает на размыкание, и если он в полете случайно оторвется (что вообще-то трудно себе представить) то контроллер и аппаратура останется включенной. Если контроллер ТММ забыть выключить, он при отсутствии сигнала с приемника начнет попискивать мотором. Подобная функция есть и у Astro Flight.
Про "выключатель" у контроллеров Jeti уже упоминалось в статье про литий- полимерные аккумуляторы, он выключает лишь питание приемника, контроллер при этом всегда включен. И не подает никаких сигналов об этом постепенно разряжая "в ноль" батарею, что для литиевых аккумуляторов заканчивается фатально.
Производители контроллеров
Лидером в производстве профессиональных контроллеров для спортсменов является, конечно же Schulze Electronik – на этих контроллерах летает, плавает и ездит большинство спортсменов. Однако это и самые дорогие контроллеры.
Далее в списке популярности стоит Castle Creations – сравнительно молодая фирма (основана в 1997г), специализирующаяся исключительно на выпуске регуляторов хода. В Америке она является лидером по количеству продаж.
Также профессиональные, но опять-таки довольно дорогие контроллеры для спортсменов делает немецкая фирма Kontronik.
Продукция чешских фирм MGM Compro (это их контроллеры называются TMM) и Jeti Models (они же делают контроллеры для фирмы Hacker motors) ориентирована в основном на рынок хобби.
Американская фирма Astro Flight, специализирующаяся на выпуске электромоторов для моделизма, также делает контроллеры к своим моторам, однако отдельно от моторов найти их в продаже проблемматично...
При выборе контроллера главный совет - внимательно изучите все характеристики приглянувшейся вам модели. У некоторых фирм, например Jeti models и MGM Compro (TMM), контроллеры на один и тот же ток и напряжение могут быть с разными версиями программного обеспечения и иметь разное число настроек. Если вы планируете использовать литий-полимерные аккумуляторы - контроллер должен иметь соответствующие настройки. При больших токах 60-80А контроллер лучше выбирать с запасом на 10-15А больше.
Заключение
Цена любой вещи зависит от масштабов ее производства. Производители бесколлекторных моторов множатся, как грибы после дождя. Поэтому хочется верить, что в скором будущем цена на контроллеры и бесколлекторные двигатели упадет, как упала она на аппаратуру радиоуправления... Возможности микроэлектроники с каждым днем все расширяются, размеры и вес контроллеров постепенно уменьшаются. Можно предположить, что в скором будущем контроллеры начнут встраивать прямо в двигатели! Может, мы доживем до этого дня...
Обсудить на форумеКак выбрать идеальный бесщеточный мотор
Выбор бесщеточного двигателя для самолета RC или квадроцикла - довольно сложный процесс для новых пилотов. Вот в чем различия.
Если вы хотите обновить бесщеточный мотор (ы) на вашей любимой модели или квадрокоптере или вам нужен один для вашей последней сборки, вы можете узнать, в чем различия между различными вариантами. Вот что означают цифры, чтобы вы могли выбирать с умом.
Блоки питания
Если вы новичок в хобби RC, вы можете не знать, что у нас в наличии есть полные «блоки питания» без проблем, предназначенные для ряда моделей и квадроциклов.К ним относится вся электроника вашего самолета, кроме приемника и аккумулятора. Вы можете просмотреть наш полный ассортимент в магазине FT. Есть также специальные статьи, в которых описываются детали четырех наших самых популярных комплектов, которые вы можете прочитать здесь:
Power Pack A - для Mighty Mini Airplane
Power Pack B - Для легких самолетов
Power Пакет C - для мощных самолетов
Power Pack F - для мощных мини-самолетов
Бегущие и выносные
Стоит отметить, что вы можете получить два совершенно разных типа двигателей, которые вы можете получить в свои руки на.Один - опережающий, а другой - опережающий.
Inrunners = двигатели, в которых вал вращается внутри внешнего корпуса двигателя. Обычно используется в вертолетах RC.
Outrunners = двигатели, в которых весь наружный корпус (прикрепленный к валу, винту или обоим) вращается вокруг центра.
Скорость
Как и следовало ожидать, скорость двигателя связана с тем, насколько быстро вы хотите / нуждаетесь в движении вашего самолета. Чтобы сравнить скорости, вам нужно поискать номер KV. кВ = оборотов на вольт . Для каждого вольта, который подается на двигатель, в состоянии холостого хода число показывает, сколько раз двигатель будет вращаться. Это также означает, что увеличение напряжения ускорит вращение двигателя. Мотор, изображенный ниже, 1200KV.
Размер
Физический размер определенного бесщеточного двигателя обычно обозначается числом, которое выглядит следующим образом - « 22-05» . Первое число 22 указывает, насколько широк двигатель, в то время как второе число 05 указывает высоту.Обычно они написаны на корпусе двигателя, чтобы показать вам, насколько они широкие и высокие. Вообще говоря, более широкие двигатели создают больший крутящий момент, поскольку они имеют больше рычагов.
Мощность
Общая мощность двигателя обычно указывается в ваттах. Это напряжение х Ампер. Чем выше число, тем мощнее оно будет. Вам также необходимо убедиться, что вы специально проверили, сколько ампер тянет двигатель, чтобы найти правильный электронный регулятор скорости (ESC).Используйте ESC, который по крайней мере на 20% больше, чем это число. Если у вас есть двигатель, который тянет 20А, регулятор скорости 30А будет работать нормально.
Тяга
Большую часть времени вы можете определить, сколько тяги производит определенный двигатель с различными комбинациями гребного винта и аккумулятора. Эта информация может быть использована для поиска двигателя идеального размера для вашей модели. Если вы хотите пойти по вертикали с моделью, которая весит 2 фунта, убедитесь, что у вас есть двигатель, который производит более 2 фунтов тяги.
Поначалу выбор двигателей может быть немного сложным и запутанным, но знание того, что на самом деле означают эти цифры и статистика, может помочь.
Если вы узнали что-то из этой статьи, не забудьте дать ей «большие пальцы», чтобы другие тоже ее нашли!
Статья Джеймса Уомсли
Редактор FliteTest.com
Контакт: [email protected]
Канал YouTube: www.youtube.com/projectairaviation
.Как работают бесщеточный двигатель и ESC
В этом уроке мы узнаем, как работают бесщеточный двигатель и ESC. Эта статья является первой частью следующего видео, где мы изучим принцип работы бесщеточного двигателя постоянного тока и ESC (Electronic Speed Controller), а во второй части мы узнаем, как управлять двигателем BLDC с помощью Arduino.
Принцип работы
Двигатель BLDC состоит из двух основных частей: статора и ротора.Для этой иллюстрации ротор представляет собой постоянный магнит с двумя полюсами, а статор состоит из катушек, расположенных, как показано на рисунке ниже.
Мы все знаем, что если мы подадим ток через катушку, он создаст магнитное поле, а линии магнитного поля или полюса зависят от направления тока.
Таким образом, если мы подадим соответствующий ток, катушка создаст магнитное поле, которое привлечет постоянный магнит ротора.Теперь, если мы активируем каждую катушку одну за другой, ротор будет продолжать вращаться из-за силового взаимодействия между перманентом и электромагнитом.
Чтобы повысить эффективность двигателя, мы можем намотать две противоположные катушки как одну катушку таким образом, чтобы генерировать противоположные полюса к полюсам роторов, таким образом, мы получим двойную силу притяжения.
С помощью этой конфигурации мы можем генерировать шесть полюсов на статоре всего с тремя катушками или фазой.Мы можем еще больше повысить эффективность, запитав две катушки одновременно. Таким образом, одна катушка будет притягивать, а другая катушка будет отталкивать ротор.
Чтобы ротор совершил полный 360-градусный цикл, ему необходимо шесть шагов или интервалов.
Если мы посмотрим на форму волны тока, мы можем заметить, что в каждом интервале есть одна фаза с положительным током, одна фаза с отрицательным током и третья фаза выключена. Это дает представление о том, что мы можем соединить свободные конечные точки каждой из трех фаз вместе, и поэтому мы можем разделить ток между ними или использовать один ток для одновременного возбуждения двух фаз.
Вот пример. Если мы поднимаем фазу A High или подключаем его к положительному напряжению постоянного тока, с помощью какого-то переключателя, например, MOSFET, а с другой стороны, подключаем фазу B к земле, то ток будет течь от VCC через фаза А, нейтральная точка и фаза В, на землю. Таким образом, с помощью всего лишь одного потока тока мы создали четыре разных полюса, которые приводят ротор в движение.
В этой конфигурации мы фактически имеем соединение звездой фаз двигателя, где нейтральная точка соединена внутри, а остальные три конца фаз выходят из двигателя, и поэтому у бесщеточного двигателя есть три провода, выходящие из Это.
Итак, чтобы ротор совершил полный цикл, нам просто нужно активировать два правильных МОП-транзистора в каждом из 6 интервалов, и это то, чем на самом деле являются ESC.
Как работает шаговый двигатель
В этом руководстве вы узнаете, как работает шаговый двигатель. Мы рассмотрим основные принципы работы шаговых двигателей, их режимов движения и…
ESC или электронный регулятор скорости контролируют движение или скорость бесщеточного двигателя, активируя соответствующие полевые МОП-транзисторы для создания вращающегося магнитного поля, так что двигатель вращается.Чем выше частота или чем быстрее ESC пройдет через 6 интервалов, тем выше будет скорость двигателя.
Однако здесь возникает важный вопрос, и вот как мы узнаем, когда активировать какую фазу. Ответ заключается в том, что нам нужно знать положение ротора, и для определения положения ротора используются два распространенных метода.
Первый распространенный метод заключается в использовании встроенных в статор датчиков Холла, расположенных на 120 или 60 градусов друг от друга.
По мере вращения постоянных магнитов роторов датчики Холла обнаруживают магнитное поле и генерируют логическую «высокую» для одного магнитного полюса или логическую «низкую» для противоположного полюса. Согласно этой информации ESC знает, когда активировать следующую последовательность коммутации или интервал.
Второй общий метод, используемый для определения положения ротора, заключается в измерении обратной электродвижущей силы или обратной ЭДС. Обратная ЭДС возникает в результате совершенно противоположного процесса генерации магнитного поля или когда движущееся или изменяющееся магнитное поле проходит через катушку, оно индуцирует ток в катушке.
Таким образом, когда движущееся магнитное поле ротора проходит через свободную катушку или неактивное, оно будет вызывать протекание тока в катушке и, как следствие, падение напряжения в этой катушке. ESC фиксирует эти падения напряжения по мере их возникновения и на основании них предсказывает или рассчитывает, когда должен произойти следующий интервал.
Так что это основной принцип работы бесщеточных двигателей постоянного тока и ESC, и он одинаков, даже если мы увеличим количество полюсов как ротора, так и статора.У нас все еще будет трехфазный двигатель, только количество интервалов увеличится, чтобы завершить полный цикл.
Здесь мы также можем упомянуть, что двигатели BLDC могут быть как опережающими, так и опережающими. Бесщеточный двигатель внутреннего хода имеет постоянные магниты внутри электромагнитов, и наоборот, двигатель внешнего запуска имеет постоянные магниты вне электромагнитов. Опять же, они используют один и тот же принцип работы, и у каждого из них есть свои сильные и слабые стороны.
Хорошо, хватит теории, так что теперь давайте продемонстрируем и посмотрим в реальной жизни то, что мы объяснили выше.Для этого мы подключим три фазы бесщеточного двигателя к осциллографу. Я подключил 3 резистора в одну точку, чтобы создать виртуальную нейтральную точку, а с другой стороны я подключил их к трем фазам двигателя BLDC.
Первое, что мы можем здесь заметить, - это три синусоиды. Эти синусоидальные волны на самом деле являются обратной EFM, генерируемой в фазах, когда они не активны.
Мы можем видеть, что при изменении частоты вращения двигателя частота синусоидальных колебаний изменяется, а также их амплитуда.Чем выше число оборотов в минуту, тем выше частота и амплитуда синусоидальных волн обратной ЭДС. Тем не менее, двигателем являются именно эти пики, которые являются активными фазами, которые генерируют изменяющееся магнитное поле.
Мы можем заметить, что на каждом интервале присутствуют две активные и одна неактивная фаза. Например, здесь у нас активны фазы A и B, а фаза C неактивна. Тогда у нас активны фазы A и C, а фаза B неактивна и так далее.
Здесь я хотел бы дать привет Banggood.ком за предоставление мне этого осциллографа. Это Rigol DS1054Z, и это один из лучших осциллографов начального уровня по своей цене. Он имеет четыре входных канала, полосу пропускания 50 МГц, которая может быть взломана до 100 МГц, имеет частоту дискретизации 1 ГГц / с и относительно большую глубину памяти 24 Мбит / с.
Дисплей 7 дюймов, и он действительно красивый и яркий. Он имеет различные математические функции, фильтры низких и высоких частот, декодирование SPI и I2C и многое другое. Итак, еще раз, большое спасибо Banggood.com и убедитесь, что вы проверите этот осциллограф в их магазине.
Тем не менее, это основной принцип работы бесщеточного двигателя. Если вам нужны более реальные примеры из жизни и вы научитесь управлять моторами с помощью Arduino, вы должны проверить вторую часть этого урока.
Я надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любые вопросы в разделе комментариев ниже и не забудьте проверить мою коллекцию проектов Arduino.
Как создать ШИМ-регулятор скорости двигателя постоянного тока с использованием таймера 555 IC
В этом руководстве мы узнаем, как создать ШИМ-регулятор скорости двигателя постоянного тока с использованием таймера 555 IC. Мы подробно рассмотрим, как работает схема генератора ШИМ с таймером 555, как ее использовать для управления скоростью двигателя постоянного тока и как изготовить для нее специальную плату.
Обзор
Мы можем контролировать скорость двигателя постоянного тока, контролируя входное напряжение двигателя. Для этой цели мы можем использовать ШИМ или широтно-импульсную модуляцию.
ШИМ - это метод, с помощью которого мы можем генерировать переменное напряжение путем включения и выключения питания, которое поступает на электронное устройство с высокой скоростью. Среднее напряжение зависит от рабочего цикла сигнала или количества времени, в течение которого сигнал включен, и количества времени, в течение которого сигнал выключается в течение одного периода времени.
Таймер 555 способен генерировать ШИМ-сигнал при установке в нестабильном режиме. Если вы не знакомы с таймером 555, вы можете проверить мой предыдущий учебник, в котором я подробно объяснил, что внутри и как работает 555 таймер IC.
Вот базовая схема таймера 555, работающего в нестабильном режиме, и мы можем заметить, что выходной сигнал ВЫСОКИЙ, когда конденсатор С1 заряжается через резисторы R1 и R2.
С другой стороны, выход IC низок, когда конденсатор C1 разряжается, но только через резистор R2. Таким образом, мы можем заметить, что если мы изменим значения любого из этих трех компонентов, мы получим разные времена включения и выключения, или другой рабочий цикл прямоугольного выходного сигнала.Простой и быстрый способ сделать это - заменить резистор R2 потенциометром и дополнительно добавить в схему два диода.
В этой конфигурации время включения будет зависеть от резистора R1, левой стороны потенциометра и конденсатора C1, а время выключения будет зависеть от конденсатора C1 и правой стороны потенциометра. Также можно заметить, что в этой конфигурации период одного цикла, то есть частоты, всегда будет одинаковым, потому что полное сопротивление при зарядке и разрядке будет оставаться одинаковым.
Обычно сопротивление R1 намного меньше, чем сопротивление потенциометра, например, 1 кОм по сравнению с 100 кОм потенциометра. Таким образом, мы имеем 99% контроль над сопротивлением зарядки и разрядки в цепи. Управляющий вывод таймера 555 не используется, но он подключен к конденсатору 100 нФ, чтобы исключить любые внешние помехи от этой клеммы. Сброс, вывод 4, активен на низком уровне, поэтому он подключен к VCC, чтобы предотвратить любой нежелательный сброс выхода.
Выход таймера 555 может понижать или подавать ток 200 мА на нагрузку. Так что, если двигатель, которым мы хотим управлять, превышает этот рейтинг, нам нужно использовать транзистор или полевой МОП-транзистор для управления двигателем. В этом примере я использовал (TIP122) транзистор Дарлингтона, который может выдерживать ток до 5А.
Выход IC должен быть подключен к базе транзистора через резистор, и в моем случае я использовал резистор 1 кОм. Для предотвращения скачков напряжения, создаваемых двигателем, нам необходимо использовать обратный диод, который подключен параллельно с двигателем.
Теперь мы можем перейти к разработке печатной платы для этой схемы. Для этой цели я буду использовать бесплатное онлайн-программное обеспечение EasyEDA. Здесь мы можем начать с поиска и размещения компонентов на пустом холсте. Библиотека содержит сотни тысяч компонентов, поэтому у меня не было проблем с поиском всех необходимых компонентов для этой схемы ШИМ-контроллера скорости двигателя постоянного тока.
После вставки компонентов нам нужно создать схему платы и начать расстановку компонентов.Два конденсатора должны быть расположены как можно ближе к таймеру 555, в то время как другие компоненты могут быть размещены, где мы хотим, но все же в логическом расположении в соответствии с принципиальной схемой.
Используя инструмент отслеживания, нам нужно соединить все компоненты. Инструмент отслеживания довольно интуитивен и с ним легко работать. Мы можем использовать как верхний, так и нижний слой, чтобы избежать пересечений и сделать дорожки короче.
Пэды компонентов, которые необходимо подключить к заземлению, устанавливаются на «Заземление» на вкладке «Свойства пэда», где нам нужно ввести GND в метку «Net» при выборе пэда.
Мы можем использовать слой Silk для добавления текста на доску. Также мы можем вставить файл изображения, поэтому я добавляю изображение логотипа моего сайта для печати на доске. В конце, используя инструмент «Площадь меди», нам нужно создать площадь поверхности платы.
Вы можете найти файлы проекта EasyEDA этого проекта здесь.
Как только мы закончили с дизайном, нам просто нужно нажать кнопку «Вывод Gerber», сохранить проект, и мы сможем загрузить файлы Gerber, которые используются для изготовления печатной платы.Мы можем заказать печатную плату у JLCPCB, которая является службой изготовления печатных плат EasyEDA, а также они являются спонсорами этого видео.
Здесь мы можем просто перетащить загруженный zip-файл файлов gerber. После загрузки мы можем еще раз просмотреть PCB в программе просмотра Gerber. Если все в порядке, мы можем выбрать до 10 печатных плат и получить их всего за 2 доллара.
Тем не менее, через неделю появились печатные платы, и я должен признать, что довольно приятно изготавливать ваши собственные печатные платы.Качество печатных плат отличное, все точно так же, как и в дизайне.
Хорошо, теперь мы можем перейти к вставке компонентов на печатную плату.
Компоненты, необходимые для этого примера, можно получить по ссылкам ниже:
Раскрытие информации: это партнерские ссылки. Как партнер Amazon я зарабатываю на соответствующих покупках.
Сначала я вставил меньшие компоненты, резисторы, диоды и конденсаторы.
Я согнул их провода с другой стороны, чтобы они оставались на месте, когда я переворачиваю плату для пайки.Что касается более крупных компонентов, я использовал клейкую ленту, чтобы удерживать их на месте при переворачивании платы.
Вот последний вид платы, и теперь осталось подключить двигатель постоянного тока и подходящий для него источник питания.
Я использовал 12В постоянного тока с высоким крутящим моментом, который я приводил в действие, используя 3,7В литий-ионные батареи, соединенные последовательно, которые дают около 12В. Теперь, используя потенциометр, мы можем контролировать скорость двигателя постоянного тока или сигнал ШИМ, генерируемый 555 таймером IC.
Я надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любые вопросы в разделе комментариев ниже.