Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как проверить 3 фазный асинхронный двигатель


5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Трехфазный асинхронный двигатель

: принцип построения и работы

Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в отрасли. Они работают по принципу электромагнитной индукции.

Из-за сходства в принципе работы трансформатора, он также известен как вращающийся трансформатор .

Они работают с практически постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко адаптировать к управлению скоростью .

Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

Давайте разберемся в конструкции трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

Конструкция трехфазного асинхронного двигателя

Как и любой электродвигатель, трехфазный асинхронный двигатель имеет , статор и ротор . Статор имеет трехфазную обмотку (называемую обмоткой статора), а ротор имеет обмотку с короткозамкнутой обмоткой (называемую обмоткой ротора).

Только 3 обмотка статора питается от 3-фазного питания. Обмотка ротора получает свое напряжение и мощность от обмотки статора с внешним питанием посредством электромагнитной индукции и, следовательно, названия.

Трехфазный асинхронный двигатель состоит из двух основных частей

  1. Статор
  2. Ротор

Ротор отделен от статора небольшим воздушным зазором , который находится в диапазоне от 0,4 мм до 4 мм, в зависимости от мощности двигателя.

1. Статор 3-фазного асинхронного двигателя

Статор состоит из стальной рамы, которая содержит полый цилиндрический сердечник, состоящий из тонких пластин из кремнистой стали, для уменьшения гистерезиса и потерь на вихревые токи.

Ряд равномерно расположенных прорезей предусмотрен на внутренней периферии слоев. Изолированные проводники соединяются, образуя сбалансированную трехфазную звезду или треугольник.

Наружная рама и статор трехфазного асинхронного двигателя

3-фазная обмотка статора намотана на определенное количество полюсов в соответствии с требованием скорости.Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины. Это вращающееся поле индуцирует токи в роторе посредством электромагнитной индукции.

2. Ротор 3-фазного асинхронного двигателя

Ротор, установленный на валу, представляет собой полый многослойный сердечник с пазами на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

  1. Тип короткозамкнутого ротора
  2. Тип обмоточного ротора

Принцип работы Трехфазный асинхронный двигатель

Для объяснения принципа действия Трехфазный асинхронный двигатель, рассмотрим часть трехфазного асинхронного двигателя, как показано на рисунке.

Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

Когда на трехфазную обмотку статора асинхронного двигателя подается питание от 3-фазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N с ).

Часть вращающегося магнитного поля в трехфазном асинхронном двигателе

Синхронная скорость,

N с = 120 f / P

Где,

f = частота

P = Количество полюсов

(Подробнее о вращающемся магнитном поле читайте в разделе Производство вращающегося магнитного поля).

Это вращающееся поле проходит через воздушный зазор и обрезает неподвижные проводники ротора.

ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора короткозамкнута, в проводниках ротора начинают течь токи.

Токопроводящие проводники ротора размещены в магнитном поле, создаваемом статором. Следовательно, механическая сила действует на проводники ротора.Сумма механических сил на всех проводах ротора создает крутящий момент , который стремится перемещать ротор в том же направлении, что и вращающееся поле.

Тот факт, что ротор вынужден следовать полю статора (то есть ротор движется в направлении поля статора), может быть объяснен законом Ленца .

Согласно закону Ленца, направление токов ротора будет таким, что они будут противодействовать причине их возникновения.

Теперь причиной возникновения токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает вращаться в том же направлении, что и поле статора, и пытается его зафиксировать. Вот как начинает работать трехфазный асинхронный двигатель.

Скольжение в асинхронном двигателе

Мы видели выше, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

На практике ротор никогда не может достичь скорости потока статора. Если это произойдет, не будет относительной скорости между полем статора и проводниками ротора, не будет индуцированных токов ротора и, следовательно, не будет крутящего момента для привода ротора.

Трение и обмотка немедленно приведут к замедлению ротора. Следовательно, скорость вращения ротора (N) всегда меньше скорости вращения статора (N с ). Эта разница в скорости зависит от нагрузки на двигатель.

Разница между синхронной скоростью N с вращающегося поля статора и фактической частотой вращения ротора N в трехфазном асинхронном двигателе называется проскальзыванием .

Скольжение обычно выражается в процентах от синхронной скорости i.

скольжения, с = (N с - N) / N с × 100%

Величина N s - N иногда называется , скорость скольжения .

Когда ротор неподвижен (то есть N = 0), проскальзывание s = 1 или 100%.

В асинхронном двигателе изменение скольжения от холостого хода к полной нагрузке составляет едва ли от 0,1% до 3% , так что по сути это двигатель с постоянной скоростью .

Видео: работа трехфазного асинхронного двигателя

На видео с Learnengineering демонстрируется работа трехфазных асинхронных двигателей в анимационной форме.,

Трехфазные асинхронные двигатели - принцип действия

Каков принцип работы трехфазного асинхронного двигателя?

Электродвигатель преобразует электрическую энергию в механическую энергию, которая затем подается на различные типы нагрузок. Переменный ток двигатели работают на питания, и они подразделяются на синхронные, однофазные и трехфазные асинхронные и специальные двигатели. Из всех типов 3-фазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.

Рис. Создание вращающегося магнитного поля в трехфазном асинхронном двигателе

Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

Принцип действия 3-фазного асинхронного двигателя основан на производстве r.m.f.

Производство вращающегося магнитного поля

Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на угол в 120 °.Когда первичная обмотка или статор подключены к трехфазному источнику переменного тока, он создает вращающееся магнитное поле, которое вращается с синхронной скоростью.

Направление вращения двигателя зависит от последовательности фаз питающих линий и порядка, в котором эти линии подключены к статору. Таким образом, взаимное изменение подключения любых двух первичных клемм к источнику питания изменит направление вращения.

Количество полюсов и частота приложенного напряжения определяют синхронную скорость вращения в статоре двигателя.Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, обозначающая скорость, с которой будет вращаться поле, создаваемое первичными токами, определяется следующим выражением.

Синхронная скорость вращения = (120 * Частота питания) / Количество полюсов на статоре


Производство магнитного потока

Вращающееся магнитное поле в статоре является первой частью операции. Для создания крутящего момента и, следовательно, вращения, роторы должны нести некоторый ток.В асинхронных двигателях этот ток поступает из проводников ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает токопроводящие стержни ротора и вызывает электромагнитную индукцию.

Обмотки ротора в асинхронном двигателе либо закрыты через внешнее сопротивление, либо непосредственно закорочены. Следовательно, сила тока, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к вращающему движению или вращающему моменту в роторе.

Как следствие, частота вращения ротора не достигнет синхронной скорости r.m.f в статоре. Если скорости совпадают, не будет e.m.f. индуцированный в роторе, ток не будет течь, и, следовательно, крутящий момент не будет генерироваться. Разница между статором (синхронная скорость) и скоростью ротора называется скольжением.

Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

Каким результатом является двигатель:

  • Самозапуск
  • Взрывозащищенный (из-за отсутствия контактных колец или коммутаторов и щеток, которые могут вызвать искры)
  • Надежный в строительстве
  • Недорого
  • Легче поддерживать

Способы запуска трехфазного асинхронного двигателя

Методы запуска трехфазного асинхронного двигателя, как правило, включают прямой запуск, запуск с пониженным напряжением и плавный пуск.

Прямой пуск в режиме онлайн
Этот тип запуска является наиболее простым и простым при запуске двигателя. Способ характеризуется меньшими затратами, простым оборудованием и небольшим количеством. Хотя время запуска короткое, крутящий момент при запуске меньше, а ток большой, что подходит для запуска двигателей небольшой мощности.

Пуск при пониженном напряжении
Метод пуска при пониженном напряжении можно использовать в асинхронных двигателях среднего и большого размера для ограничения пускового тока. Когда двигатель завершает запуск, он возвращается к работе с полным давлением. Однако результат запуска с пониженным напряжением снизит пусковой момент. Поэтому запуск при пониженном напряжении подходит только для запуска двигателя в режиме холостого хода или при небольшой нагрузке. Ниже приведены некоторые распространенные методы пуска при пониженном напряжении.

  • Сопротивление последовательно включенной цепи статора
    Трехфазный электрический реактор вставлен в цепь обмоток статора двигателя. Электрический реактор можно просто рассматривать как катушку, которая может создавать индуцированную электродвижущую силу для снижения напряжения на частоте прямого источника питания.
  • Запуск по схеме звезда-треугольник
    При нормальной работе 3-фазный асинхронный двигатель, обмотка статора которого предназначена для соединения в треугольник-соединение, может быть запущен при пуске в звезду, чтобы снизить напряжение каждой фазы двигателя и затем уменьшить пусковой ток.После окончания пуска он соединяется в дельту.
    Star-delta start широко используется благодаря своим преимуществам, включая простое пусковое оборудование, низкую стоимость, более надежную эксплуатацию и простоту обслуживания.
  • Запуск автотрансформатора
    Запуск пониженного напряжения автотрансформатора означает, что пониженное напряжение сети подается на обмотки статора двигателя до тех пор, пока скорость не достигнет устойчивого значения, а затем двигатель подключится к электрической сети.
    При запуске переключатель переводится в положение «пуск», и автотрансформатор подключается к сети, а затем подключается к обмоткам статора двигателя для достижения пуска с пониженным напряжением.Когда скорость вращения приблизится к номинальному значению, переключатель будет переведен в положение «работа», и двигатель напрямую получит доступ к сети при работе под полным давлением через отключение автотрансформатора.

    Автотрансформаторный пуск с пониженным напряжением вводится в звездообразное соединение для двигателя большой мощности или нормальной работы с определенным запуском нагрузки. В зависимости от нагрузки, ответвление трансформатора выбирается в зависимости от требуемого пускового напряжения и пускового момента.В этот момент пусковой крутящий момент все еще ослаблен, но не уменьшен на треть (по сравнению с пусковым напряжением звездного треугольника). Тем не менее, автотрансформатор имеет большие габариты и легкий вес с высокой ценой и неудобствами в обслуживании, что не позволяет часто перемещаться.

Устройство плавного пуска
Устройство плавного пуска - это устройство управления нового типа, основными преимуществами которого являются плавный пуск, легкая нагрузка и энергосбережение, а также быстрота. Одной из наиболее важных особенностей является то, что электронная схема проводится в кремниевом управляемом выпрямителе двигателя при тандемном подключении источника питания.Использование устройства плавного пуска для подключения источника питания к двигателю и различных методов управления углом проводимости в кремниевом выпрямителе может постепенно увеличивать входное напряжение двигателя с нуля и передавать все напряжение на двигатель от начала до конца, что называется мягким запуском. При запуске таким образом, крутящий момент двигателя будет постепенно увеличиваться с увеличением скорости. Фактически, устройство плавного пуска - это регулятор напряжения, который только изменяет напряжение без изменения частоты при запуске.

,

Смотрите также


avtovalik.ru © 2013-2020