Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как проверить обмотку двигателя


5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Как проверить якорь двигателя на поврежденные обмотки

Иногда мы получаем вопрос от наших клиентов: «Как я могу быстро проверить свою арматуру, чтобы убедиться, что она в порядке?»

Если у вас есть доступ к вольтметру, вы можете выполнить три быстрых проверки, которые покажут вам, работает ли якорь двигателя должным образом. Но сначала мы должны понять некоторые основы проектирования арматуры.

Базовая конструкция арматуры

Якорь (на фото справа) имеет непрерывную серию обмоток от каждого стержня на коммутаторе, которые зацикливаются вокруг зубьев железного стека и соединяются со следующим стержнем на коммутаторе.Обмотка продолжает вращаться вокруг якоря одинаково. Петли являются либо одиночными, либо параллельными проводниками (проводами) и могут оборачиваться любое количество раз вокруг зубьев пакета (так называемые витки в катушке). Длина провода может варьироваться в зависимости от конструкции двигателя. Каждый провод изолирован эмалевым покрытием, изолирующим его от любого другого провода в контуре, и заканчивается только на шине коммутатора. Обороты в каждой катушке обертывают вокруг стека железа, чтобы создать электромагнит.При подаче напряжения в якоре двигателя создается электромагнитное поле. Это электромагнитное поле взаимодействует с магнитными полями постоянных магнитов в двигателе (в случае двигателя с постоянными магнитами) или с электромагнитным полем, создаваемым статором (в случае универсального двигателя). Эти магнитные силы работают, чтобы притягивать друг друга, вызывая крутящий момент на валу якоря, заставляя его вращаться.

Если двигатель приводится в действие слишком жестким для окружающей среды, и температура может превышать температурные пределы изоляции, возможно, что изоляция на проводах сломается и закоротится вместе, или закроется вместе со стеком якоря.Если обмотки замкнуты вместе, электромагнитные поля не могут быть созданы для этой катушки, из-за чего двигатель работает беспорядочно или выходит из строя все вместе.

Испытание якоря № 1

Чтобы проверить состояние обмоток якоря, якорь, вероятно, придется снять с двигателя. Однако, если конструкция двигателя имеет внешние держатели щеток, вы можете открутить колпачки щеток и снять их. В зависимости от размера щетки это может обеспечить доступ к коммутатору без снятия якоря с двигателя.

Первая проверка, чтобы убедиться, что ваши обмотки якоря закорочены, это тест «Сопротивление 180 °». Вольтметр может быть использован для проверки сопротивления последовательных обмоток, подключенных между двумя шинами коммутатора каждой катушки. Установите измеритель для измерения сопротивления (Ом), а затем измерьте сопротивление от двух распределительных шин на 180 ° друг от друга. Поверните якорь и проверьте сопротивление между каждой парой стержней на коммутаторе. На рисунке 3 изображен коммутатор из 32 столбцов, поэтому эту проверку необходимо выполнять между каждой из 16 пар.Сопротивление, которое вы будете измерять, зависит от количества витков в каждой катушке и размера используемого провода. Это также зависит от рабочего напряжения, на которое рассчитан двигатель. Например, двигатель постоянного тока на 90 В будет иметь меньшие проводники и больше витков на катушку для повышения сопротивления, тогда как двигатель на 12 В постоянного тока будет иметь проводники большего размера и меньше витков на катушку для уменьшения сопротивления. Хотя вы, вероятно, не будете знать предполагаемое значение сопротивления якоря, каждое измерение должно быть примерно одинаковым.Если сопротивление резко меняется, это может быть проблема с

обмоток. Падение сопротивления может указывать на короткое замыкание между проводами в катушке. Огромный скачок сопротивления может указывать на то, что провод прожжен или оборван, что нарушает цепь.

Испытание якоря № 2

Второй проверкой является тест «Сопротивление стержню к бару» (на фото справа). Это проверит каждую катушку в якоре двигателя. Опять же, конкретное значение основано на конструкции двигателя (количество проводов на петлю, количество витков на катушку и калибр провода).Как и в первом тесте, важно отметить, что каждое измерение должно быть примерно одинаковым. (Примечание: сопротивление, которое вы будете измерять в этом тесте, будет намного меньше, чем в первом тесте, потому что вы будете измерять только одну катушку. В первом тесте измеренное сопротивление - это сопротивление всех катушек, включенных последовательно между двумя бары.) Как и в тесте № 1, падение сопротивления будет указывать на короткое замыкание между проводами в этой катушке, а скачок сопротивления может указывать на обрыв или перегоревший провод в катушке.

Испытание якоря № 3

Третий и последний тест состоит в измерении сопротивления каждого коммутатора к стеку арматуры. Если пакет якоря двигателя непосредственно прижимается к валу якоря, вы можете использовать вал якоря для измерения. Однако в некоторых случаях даже вал якоря изолирован от пакета якоря. В этом случае вам придется проводить измерения непосредственно от каждого коммутатора до стека железной арматуры. В любом случае шины коммутатора никогда не должны иметь электрическую непрерывность с пакетом якоря и / или валом якоря.

Если какое-либо из этих измерений окажется неудачным, можно предположить, что якорь поврежден.

Не уверены, какой тип двигателя подходит для вашего применения? Попробуйте наш простой инструмент поиска двигателя. ,

Как проверить поврежденную арматуру

Вот три быстрых проверки, которые вы можете выполнить с помощью вольтметра, чтобы проверить обмотку якоря двигателя постоянного тока, чтобы определить, правильно ли работает якорь двигателя.

ВИДЕО ТРАНСКРИПТ: GROSCHOPP TECH TIPS - КАК ПРОВЕРИТЬ НА УЩЕРБ АРМАТУРУ

Привет, я Джим. Я инженер-конструктор в Groschopp, и я здесь с Техническим советом Groschopp. В сегодняшнем техническом совете мы расскажем о том, как измерить якорь для сломанных или поврежденных обмоток.На этой арматуре у нас есть вал и коммутатор, который имеет стержни. Штырьки коммутатора соединены с обмоткой якоря, а обмотка намотана вокруг зубьев на стойке ламинирования. Это создает электромагнитный эффект, который взаимодействует с постоянными магнитами в корпусе двигателя, заставляя двигатель вращаться. У нас также есть система изоляции, изолирующая все эти элементы от земли.

В Groschopp для проверки поврежденных или замкнутых обмоток у нас есть три метода измерения.Первый называется 180-градусным тестом, и, как видно из названия, мы собираемся измерить сопротивление обмоток на шинах коммутатора на расстоянии 180 градусов. И мы будем измерять все обмотки, которые соединены последовательно, полностью зациклены от противоположных друг другу стержней. Об этом конкретном измерении мы читаем около 0,6 Ом. Фактическая стоимость не важна. Важно то, что каждый раз, когда мы проводим это измерение, вращаемся вокруг нашей арматуры, чтобы она оставалась неизменной.Если оно радикально меняется, обнуляется или обрывается, это указывает на повреждение обмотки.

Следующий тест, который мы выполним, - это тест столбца, который измеряет каждый отдельный цикл. И снова, как следует из названия, столбцы, прилегающие друг к другу, мы измеряем 0,3 Ом, 0,4. Теперь вы можете не знать, что будет читать ваша конструкция арматуры. Опять же, просто важно, чтобы они не менялись радикально.

Последний тест - это тест на заземление. В этом тесте мы измеряем сопротивление каждого стержня к земле, в данном случае стержня якоря.И мы никогда не хотим иметь преемственность между любым из баров и земли. Это всегда должно быть разомкнутой цепью.

Если ваши измерения не соответствуют каким-либо из них, вполне возможно, что якорь сломался или повредил обмотки и не будет работать должным образом. Это был технический совет Groschopp. Если вам нужна дополнительная информация о двигателях с дробной мощностью, посетите Groschopp.com.

Прочтите сообщение в нашем блоге о том, как проверить арматуру на наличие поврежденных обмоток: https: //www.groschopp.com / Как проверить моторную арматуру /

Дополнительные видео

  • Основы мотор-редуктора | Тематические исследования

    Мы берем все, что обсуждали, и применяем его в трех сценариях. Любой редукторный двигатель будет работать для большинства применений, но обычно есть только один или два типа, которые являются лучшими.

  • Основы мотор-редуктора | Matching Gear Motors - Комплексные решения

    В этом видео мы обсудим, как выбрать редукторный двигатель в четыре простых шага, выбрав встроенный редукторный двигатель.

  • Основы мотор-редуктора | Подходящие мотор-редукторы - выбор двигателя

    Это видео продолжает наше обсуждение выбора редукторного двигателя путем сопряжения отдельных компонентов. Теперь мы рассмотрим, как выбрать двигатель на основе редуктора, выбранного для применения.

  • Основы мотор-редуктора | Подходящие мотор-редукторы - выбор редуктора

    В этом видео мы начнем наше глубокое погружение в выбор мотор-редуктора.Существует два способа соединения двигателей и редукторов для создания оптимального мотор-редуктора. Здесь мы начнем с первого метода, взглянув на выбор коробки передач.

  • Основы мотор-редуктора | Параметры применения

    В этом видео рассматриваются важные критерии применения, которые необходимо учитывать при выборе мотор-редуктора.

  • Основы мотор-редуктора | Прямоугольные редукторы
    Прямоугольные редукторы

    отлично подходят для приложений, где размер и пространство имеют первостепенное значение.С возможностью выхода повернуть угол на 90 градусов.

  • Основы мотор-редуктора | Планетарные редукторы
    Планетарные редукторы

    идеально подходят для применений, требующих высокого крутящего момента в небольшой упаковке и выходного вала с соосным выравниванием. Мы обсудим конструкцию, характеристики, преимущества и недостатки планетарных коробок передач.

  • Основы мотор-редуктора | Редукторы с параллельными валами

    Редукторы с параллельными валами являются идеальным решением для непрерывной работы; приложения, требующие низкого крутящего момента; приложения с более высокими температурами окружающей среды; или приложения, которые являются сознательными по стоимости.

  • Основы мотор-редуктора | Введение в Gear Motors

    В этом видео мы даем краткий обзор двигателей и объясняем обоснование использования редукторных двигателей - почему использование редуктора (коробки передач) с двигателем позволяет использовать меньший двигатель и повышенный крутящий момент и / или скорость.

  • Технический совет
    . Поиск и устранение неисправностей двигателя перегрева

    Даже когда двигатель соответствует приложению на бумаге, вы все равно можете столкнуться с новыми переменными во время тестирования.Вот шесть общих проверок, чтобы определить причину перегрева двигателя.

  • Технический совет
    . Планетарные редукторы

    В этом видео мы обсуждаем планетарные редукторы. Узнайте все о том, как работают эти редукторы, а также их преимущества и недостатки.

  • Как выбрать электродвигатель: Инженерные инструменты

    В завершение этой серии видеороликов мы поделимся несколькими формулами расчета двигателя и другими инструментами, которые помогут вам в процессе выбора.

  • Как выбрать электродвигатель: тематические исследования

    Мы берем все, что обсуждали, и применяем его в трех сценариях с различными уровнями настроенных двигателей. Любой двигатель будет работать для большинства применений, но обычно есть только один или два типа, которые являются лучшими.

  • Как выбрать электродвигатель: изготовленный на заказ электродвигатель

    В этом видео мы надеемся ослабить любые ваши опасения, связанные с настройкой двигателя для вашего приложения.Вам не нужно брать стандартный двигатель и пытаться сделать его «подходящим» для вашего приложения.

  • Как выбрать электродвигатель: бесщеточный двигатель постоянного тока

    В этом видео мы рассмотрим конструкцию, характеристики, преимущества и недостатки BLDC Motors. Мы также рассмотрим кривые производительности двигателя BLDC для скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: AC Motors

    В этом видео мы рассмотрим конструкцию, характеристики, преимущества и недостатки двигателей переменного тока.Мы также рассмотрим кривые производительности двигателя переменного тока для скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: DC Motors

    В этом видео мы обсудим конструкцию, характеристики, преимущества и недостатки двигателей постоянного тока. Мы также рассмотрим кривые производительности двигателя постоянного тока для скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: Universal Motors

    В этом видео мы расскажем о конструкции, характеристиках, преимуществах и недостатках Universal Motors.Мы также рассмотрим кривые производительности универсального двигателя для скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: критерии применения (часть 2)

    Это вторая часть нашего обсуждения критериев применения. Это кажется очевидным, но мы хотели бы напомнить нашим клиентам, чтобы они всегда учитывали максимальный размер и вес двигателя, который позволит их применение, и знали, какую продолжительность жизни двигатель должен будет иметь.

  • Как выбрать электродвигатель: критерии применения (часть 1)

    В этом видео (и следующем) рассматриваются важные критерии приложения. Сначала мы сосредоточимся на ограничениях приложения, которые необходимо учитывать в процессе проектирования.

  • Как выбрать электродвигатель: введение и основы

    Выбор правильного двигателя может быть сложным процессом.В этом первом видео мы представляем основные концепции электродвигателей.

  • Как переключать напряжение между 12 В и 24 В-48 В на Groschopp Brushless Control

    В этом видео показано краткое пошаговое руководство по переключению выходного напряжения на бесщеточном элементе управления Groschopp.

  • Как установить ограничение тока на Groschopp Brushless Control

    В этом коротком видео показано, как установить текущий предел для безщеточного элемента управления Groschopp.

  • Как настроить усиление безщеточного управления Groschopp

    Посмотрите это видео, чтобы узнать об усилении и о том, как настроить его на бесщеточном элементе управления Groschopp.

  • Groschopp Tech Tips: инструмент поиска двигателя

    Из этого туториала Вы узнаете, как использовать инструмент поиска двигателя Groschopp, чтобы найти свой идеальный двигатель.

  • Tech Tips: Основы безщеточного управления

    Посмотрев это видео, вы ознакомитесь с основами всех бесщеточных элементов управления Groschopp, их типами корпусов, а также с опциями низкого и высокого напряжения.

  • Tech Tips: масло против жира

    В этом видео мы объясним 7 факторов, которые следует учитывать при выборе между маслом и смазкой, чтобы определить, какой тип смазки лучше всего подходит для вашего редукторного двигателя.

  • Планетарные прямоугольные мотор-редукторы постоянного тока

    Groschopp предлагает линейку планетарных прямоугольных мотор-редукторов, которые обеспечивают преимущества стандартных прямоугольных мотор-редукторов без g

.

Как проверить подачу тока на электродвигателе переменного тока

от Стивена Бенхэма Мультиметр с изображением

от dinostock от Fotolia.com

Двигатель переменного тока использует для его питания переменный ток, и переменный ток изменяет направленный поток 50 раз в секунду. Три электрические обмотки на внешней части двигателя позволяют вращаться центральному ротору, иначе они просто вибрируют, двигаясь назад и вперед, когда ток меняет направление. Количество энергии, потребляемой для привода двигателя, измеряется в амперах и называется током.Чем больше ампер требуется для двигателя, тем мощнее двигатель. Не путайте ампер и напряжение, и не предполагайте, что низкое напряжение означает низкие амперы. Автомобильный стартер работает от 12 вольт, но ампер, необходимый для вращения стартера и двигателя автомобиля, часто превышает 50 ампер.

Шаг 1

Считайте рисунок силы тока, который требуется вашему двигателю переменного тока, если он работает в соответствии со спецификацией производителя. Амперы указаны на табличке на двигателе переменного тока.

Шаг 2

Настройте мультиметр для измерения ампер.Установите правильный диапазон ампер для проверяемого двигателя переменного тока. Например, если двигатель потребляет 20 ампер, установите мультиметр на значение от 10 до 30 ампер.

Шаг 3

Наденьте резиновые перчатки, чтобы защитить вас от случайного удара током. Запустите двигатель переменного тока, иначе вы не сможете проверить силу тока.

Шаг 4

Найдите клеммы на двигателе переменного тока. Положительный конец обозначен как «+», а отрицательный - «.» Провода, подключенные к двигателю переменного тока, окрашены в красный цвет для положительного и черный для отрицательного.

Шаг 5

Поместите металлический датчик на конце черного провода от мультиметра на отрицательную клемму двигателя переменного тока, не касаясь руками всех движущихся частей. Поместите металлический датчик на конец красного провода от мультиметра на положительную клемму мультиметра.

Считайте дисплей мультиметра, а затем немедленно снимите датчики с двигателя переменного тока. Выключить мотор Если показания ампер находятся в диапазоне, который вы установили на мультиметре, то двигатель переменного тока показывает правильную силу тока.Если он ниже допустимого диапазона, проверьте двигатель, так как он может потребовать технического обслуживания, например, новых щеток. Ампер не будет превышать верхнюю цифру в диапазоне, так как двигатель не может потреблять больше силы тока, чем установлено производителем.

Предметы, которые вам понадобятся
  • Защитные резиновые перчатки
  • Мультиметр
Еще статьи
.

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.