Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как проверить работоспособность трехфазного двигателя


5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

3-фазная схема регулятора скорости асинхронного двигателя

В этом посте мы обсудим создание простой 3-фазной схемы регулятора скорости асинхронного двигателя, которая также может применяться для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.

Когда речь идет об управлении скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных ступеней, таких как LC-фильтры, двунаправленные матрицы переключателей (с использованием IGBT) и т. Д.

Все это используется для достижения в конечном итоге прерывистый сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что в конечном итоге обеспечивает необходимый контроль скорости двигателя.

Однако мы можем поэкспериментировать и попытаться выполнить управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары с детектором пересечения нуля, силовой триак и схему ШИМ.

Использование детектора пересечения нулевого уровня Opto Coupler

Благодаря серии оптопар MOC, которые сделали цепи управления симистором чрезвычайно безопасными и простыми в настройке, а также обеспечивают беспроблемную интеграцию ШИМ для предполагаемых органов управления.

В одном из моих предыдущих постов я рассмотрел простую схему контроллера двигателя с плавным пуском ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска на подключенном двигателе.

Здесь мы также используем идентичный метод для применения предложенной схемы регулятора скорости 3-фазного асинхронного двигателя. На следующем рисунке показано, как это можно сделать:

На рисунке мы видим три идентичных ступени оптопары MOC, сконфигурированных в их стандартном триаке режим регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.

3 цепи MOC сконфигурированы для обработки 3-фазного входа переменного тока и подачи его на подключенный асинхронный двигатель.

ШИМ-вход на изолированной светодиодной стороне управления opto определяет коэффициент прерывания 3-фазного входа переменного тока, который обрабатывается MOC ICS.

Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)

Это означает, что, регулируя ШИМ-регулятор, связанный с ИС 555, можно эффективно контролировать скорость асинхронного двигателя.

Выход на своем выводе № 3 имеет изменяющийся рабочий цикл, который, в свою очередь, соответственно переключает выходные триаки, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.

Увеличение среднеквадратичного значения посредством более широких ШИМ позволяет получить более высокую скорость вращения двигателя, в то время как снижение среднеквадратичного значения переменного тока через более узкие ШИМ дает противоположный эффект, то есть пропорционально замедляет двигатель.

Вышеуказанные функции реализованы с большой точностью и безопасностью, поскольку микросхемы имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, твердотельные реле и т. Д.

Микросхема также обеспечивает идеально изолированную операцию для ступени постоянного тока, что позволяет пользователю выполнять регулировки без страха поражения электрическим током.

Этот принцип также может быть эффективно использован для управления скоростью однофазного двигателя путем использования одной микросхемы MOC вместо 3.

Конструкция фактически основана на теории пропорционального по времени привода симистора. Верхняя схема ШИМ IC555 может быть отрегулирована для создания рабочего цикла 50% при значительно более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировок соответствующего блока.

Рекомендуется, чтобы эта микросхема 555 имела относительно более низкую частоту, чем верхняя цепь микросхемы 555. Это можно сделать, увеличив конденсатор с выводом № 6/2 до 100 нФ.

ПРИМЕЧАНИЕ. ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ В СЕРИИ С ФАЗОВЫМИ ПРОВОДАМИ МОЖЕТ КРАТКО УЛУЧШИТЬ ЭФФЕКТИВНОСТЬ СИСТЕМЫ УПРАВЛЕНИЯ СКОРОСТЬЮ.

Лист данных для MOC3061

Предполагаемое управление осциллограммой и фазой с использованием вышеуказанной концепции:

Описанный выше метод управления 3-фазным асинхронным двигателем на самом деле довольно грубый, так как он не имеет управления В / Гц .

В нем просто используется включение / выключение сети с различной скоростью, чтобы вырабатывать среднюю мощность для двигателя и управлять скоростью, изменяя это среднее значение переменного тока для двигателя.

Представьте, если вы включаете / выключаете двигатель вручную 40 раз или 50 раз в минуту. Это может привести к замедлению вашего двигателя до некоторого относительного среднего значения, но при этом он будет непрерывно двигаться. Вышеуказанный принцип работает аналогичным образом.

Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В / Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.

Для этого мы в основном используем следующие этапы:

  1. Цепь драйвера IGBT H-моста или полного моста
  2. 3-фазная ступень генератора для питания полной мостовой цепи
  3. В / Гц ШИМ-процессор

с использованием полного моста Цепь управления IGBT

Если процедуры настройки вышеупомянутой конструкции на основе симистора выглядят утомительно, можно попробовать следующее полное управление скоростью асинхронного двигателя на основе ШИМ:

В схеме, показанной на рисунке выше, используется один чип драйвер полного моста IC IRS2330 (последняя версия 6EDL04I06NT), который имеет все встроенные функции для обеспечения безопасной и безупречной работы трехфазного двигателя.

Микросхеме требуется только синхронизированный 3-фазный логический вход на его выводах HIN / LIN для генерации требуемого 3-фазного осциллирующего выхода, который, в конечном итоге, используется для работы полной мостовой IGBT-сети и подключенного 3-фазного двигателя.

ШИМ-управление с регулировкой скорости осуществляется через 3 отдельных полумостовых драйвера NPN / PNP, управляемых SPWM-питанием от генератора ШИМ IC 555, как видно из наших предыдущих разработок. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.

Прежде чем мы изучим метод управления фактической скоростью для асинхронного двигателя, давайте сначала разберемся, как можно добиться автоматического управления частотой / Гц с помощью нескольких цепей IC 555, как описано ниже. (Замкнутый контур)

В приведенных выше разделах мы изучили конструкции, которые помогут асинхронному двигателю двигаться со скоростью, указанной изготовителем, но он не будет регулироваться в соответствии с постоянным отношением В / Гц, если только следующий ШИМ Процессор интегрирован с входной подачей ШИМ H-Bridge.

Приведенная выше схема представляет собой простой генератор ШИМ, использующий пару IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе № 6 IC2 с помощью R4 / C3.

Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе 5 IC2. Эти выборочные пульсации получают путем выпрямления 3-фазной сети переменного тока в пульсации 12 В переменного тока и подают на вывод № 5 IC2 для необходимой обработки.

Сравнивая форму волны, генерируется SPWM с соответствующими размерами на выводе 3 IC2, который становится ведущим ШИМ для сети H-моста.

Как работает схема В / Гц

При включении питания конденсатор на выводе № 5 начинается с подачи нулевого напряжения на вывод № 5, что вызывает наименьшее значение SPWM для цепи H-моста, что, в свою очередь, позволяет асинхронный двигатель для запуска с медленным постепенным плавным пуском.

Когда этот конденсатор заряжается, потенциал на выводе 5 увеличивается, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.

Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с выводом № 5 IC2.

Этот тахометр контролирует скорость вращения ротора или скольжения и генерирует дополнительное напряжение на выводе № 5 IC2.

Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора, и в процессе она начинает набирать скорость.

Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, приводит к тому, что IC2 увеличивает выход SPWM, что, в свою очередь, еще больше увеличивает скорость двигателя.

Приведенная выше настройка пытается поддерживать отношение В / Гц на достаточно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет увеличиваться дальше.

В этот момент скорость скольжения и скорость статора приобретают устойчивое состояние, и это поддерживается до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора V / Hz снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.

Тахометр

Схема тахометра также может быть дешево построена с использованием следующей простой схемы и интегрирована с описанными выше этапами схемы:

Как реализовать управление скоростью

В вышеприведенных параграфах мы понимали процесс автоматического регулирования, который Это может быть достигнуто путем интеграции обратной связи тахометра с цепью контроллера SPWM с автоматическим регулированием.

Теперь давайте узнаем, как можно управлять скоростью асинхронного двигателя, изменяя частоту, что в конечном итоге приведет к падению SPWM и поддержанию правильного соотношения В / Гц.

Следующая диаграмма поясняет стадию управления скоростью:

Здесь мы видим схему трехфазного генератора, использующую IC 4035, частоту фазового сдвига которой можно изменять, изменяя вход тактового сигнала на его выводе № 6.

3-фазные сигналы подаются через вентили 4049 IC для создания необходимых каналов HIN, LIN для сети драйверов полного моста.

Это означает, что, изменяя тактовую частоту IC 4035 соответствующим образом, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.

Это реализуется через простую нестабильную схему IC 555, которая подает регулируемую частоту на вывод № 6 IC 4035 и позволяет регулировать частоту с помощью прилагаемой емкости 100 КБ. Конденсатор С необходимо рассчитать так, чтобы диапазон регулируемой частоты соответствовал правильным характеристикам подключенного асинхронного двигателя.

Когда частота изменяется, эффективная частота асинхронного двигателя также изменяется, что соответственно изменяет скорость двигателя.

Например, когда частота снижается, вызывает уменьшение скорости двигателя, что, в свою очередь, заставляет выходной сигнал тахометра снижать напряжение p

.

Контроль скорости трехфазного асинхронного двигателя

Как контролировать скорость трехфазного асинхронного двигателя? Метод контроля скорости включает в себя: изменение числа полюсов, регулирование напряжения статора, преобразование частоты статора, каскадное управление скоростью, регулирование скорости двойной подачи, гидравлическое сцепное устройство, электромагнитную муфту скольжения и т. Д.
Приведена фактическая скорость трехфазного асинхронного двигателя. при n = n с (1-с) = 120f / p (1-с). Из формулы видно, что скорость 3-фазного асинхронного двигателя может быть изменена посредством изменения числа полюсов асинхронного двигателя "p", скольжения "s" и частоты источника питания "f".

Управление скоростью с изменением полюсов
Как показано в формуле n s = 120f / p, оно может изменять синхронную скорость двигателя, изменяя количество полюсов обмотки статора, тем самым изменяя скорость вращения. Регулирование скорости с изменением полюсов в основном используется в короткозамкнутом асинхронном двигателе. Регулятор скорости с переключением полюсов имеет следующие характеристики:

  • Тяжелее механические характеристики и хорошая стабильность
  • Без потерь скольжения и высокая эффективность
  • Простая проводка, удобное управление и низкая цена

Но этот метод не может обеспечить плавное регулирование скорости из-за большой разницы в уклонах.Поэтому его можно использовать с управлением скоростью напряжения и электромагнитной муфтой скольжения, чтобы получить более плавную характеристику плавного регулирования скорости.
Этот метод подходит для производственных машин без бесступенчатого регулирования скорости, таких как металлорежущие станки, подъемники, краны, вентиляторы, водяные насосы и так далее.

Регулируемая скорость скольжения
1. Изменение напряжения статора
Крутящий момент асинхронного двигателя пропорционален квадрату напряжения статора.То есть изменение напряжения статора может изменить механическую характеристику и крутящий момент двигателя.
Этот метод не подходит для обычного короткозамкнутого двигателя, потому что его сопротивление ротора очень мало и ток будет быстро расти на низкой скорости.
Но его можно использовать для индукционного асинхронного двигателя с последовательным сопротивлением или частым варистором в цепи ротора, чтобы уменьшить нагрев двигателя.
2. Изменение сопротивления ротора
Этот метод регулирования скорости применим только для обмоточного двигателя.В цепи ротора асинхронного двигателя последовательно с сопротивлением, когда нагрузка зафиксирована, чем больше сопротивление, тем ниже скорость двигателя. Чем меньше сопротивление, тем выше скорость.
Этот метод прост, легок в управлении и имеет низкие начальные инвестиции. Но сила скольжения расходуется на сопротивление при нагревании. Он также обладает мягкими механическими характеристиками.
3. Каскадное управление скоростью
В настоящее время каскадное управление скоростью использует схему каскадного управления инвертора SCR и имеет следующие преимущества: усиление механических характеристик, низкое падение напряжения в выпрямителе, малое пространство, отсутствие вращающейся части, низкий уровень шума, простота поддержание.Это один из методов контроля скорости вращения двигателя.
Это также имеет свой недостаток. То есть контур ротора снабжен реактором для фильтра, поэтому коэффициент мощности низкий.

Регулирование частоты вращения переменной частоты
В соответствии с формулой скорости асинхронного двигателя видно, что когда скольжение с остается постоянным, скорость двигателя n в основном пропорциональна рабочей частоте f . Следовательно, изменение частоты f позволяет плавно регулировать скорость асинхронного двигателя.Изменение частоты электропитания является экономичным методом регулирования скорости, а также одним из наиболее популярных способов управления скоростью асинхронного двигателя.
Регулирование скорости с переменной частотой - это способ изменения частоты питания статора двигателя, а затем изменения его синхронной скорости. Основным оборудованием системы управления частотой вращения является преобразователь частоты или преобразователь частоты (VFD), который обеспечивает преобразование частоты для источника питания. Преобразователи частоты могут быть разделены на две категории: частотно-регулируемые преобразователи переменного и постоянного тока и частотно-регулируемые преобразователи переменного тока.

В настоящее время широко используемые ЧРП используют цифровые технологии и имеют тенденцию к миниатюризации, высокой надежности и высокой точности. В приложениях, он не только имеет значительную производительность энергосбережения, но также имеет следующую производительность:

  • Высокая точность плавного регулирования скорости.
  • Полная функция защиты, способная отображать неисправность путем самодиагностики и простого обслуживания.
  • Запуск прямо на линии, с большим пусковым моментом и небольшим пусковым током, которые уменьшают воздействие на электрическую сеть и оборудование, а также имеют функцию подъема крутящего момента, тем самым экономя устройство плавного пуска.
  • Высокий коэффициент мощности, и сохранить устройство компенсации конденсатора.

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и простоте в эксплуатации. В 3-фазном двигателе переменного тока используется 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных применениях у нас есть только однофазные источники питания (1 р. .), особенно в бытовой технике. В случае запуска трехфазных машин на однофазных источниках питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить GoHz VFD
  3. Купить преобразователь частоты / фазы

I: перемотка двигателя
Необходимо выполнить некоторые работы для преобразования работы трехфазного двигателя на 1-фазный источник питания.Здесь вы узнаете, как преобразовать трехфазный электродвигатель на 380 В в однофазный источник питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла сбалансированного тока 120 ° через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, преобразованного для работы на однофазном источнике питания, мы должны объяснить проблему создания однофазного асинхронного двигателя с вращающимся магнитным полем, поскольку однофазный двигатель можно запустить только после создания вращающегося магнитного поля. ,Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, это фиксировано с точки зрения статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора, который не может генерировать крутящий момент, поскольку нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет различный угол наклона. Если он пытается произвести другой фазный ток, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвигать одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через различный ток, чтобы создать вращающееся магнитное поле для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель на 1-фазном источнике питания, мы можем подключить любые 2-фазные обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковые обмотки подключены к одному источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз.Для увеличения пускового момента на соединении можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.

Общие малые двигатели имеют Y-соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме запуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите увеличивать напряжение, блок питания 220 В также может использовать это.Поскольку для питания 220 В используется оригинальная трехфазная обмотка напряжения 380 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 Момент подключения слишком низкий. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На Рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой или рабочей обмотки. ,

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых - обратная нить), состоит из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем у 120 ° магнитного момента (показан на рисунке 6), поэтому пусковой крутящий момент на рисунке 5 больше, чем на рисунке 6.

Значение резистора доступа R (рис. 7) на обмотке стартера должно быть замкнуто относительно сопротивления фазы обмотки статора и должно выдерживать пусковой ток, который равен 0.1-0,12 раза от пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микро-закон), т. Е. Cosφ - исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используется конденсатор с микропроцессором от 4 до 6. Начальный конденсатор может быть выбран в соответствии с начальной нагрузкой, обычно от 1 до 4 раз от рабочего конденсатора.Когда двигатель достигает 75% ~ 80% от номинальной скорости, пусковой конденсатор должен быть отключен, в противном случае двигатель сгорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двухфазных обмоток были равны и равны номинальному току Ie, что означает 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Есть много преимуществ в использовании трехфазного двигателя на однофазном источнике питания, перемотка легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод может применяться только к двигателю мощностью 1 кВт или меньше.

II: Купите преобразователь частоты GoHz VFD
, сокращенное от частотно-регулируемого привода, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный 3-фазный ЧРП является наилучшим вариантом для 3-фазного двигателя, работающего от однофазного источника питания (1 час 220 В, 230 В, 240 В), он устраняет пусковой ток при запуске двигателя, заставляет двигатель работать с нулевой скорости до полной скорость плавная, плюс, цена абсолютно доступная.Частотные преобразователи GoHz доступны от 1/2 л.с. до 7,5 л.с., более мощные ЧРП могут быть настроены в соответствии с фактическими двигателями.

ГГц Подключение к однофазному трехфазному VFD-видео

Преимущества использования частотного преобразователя GoHz для трехфазного двигателя:

  1. Мягкий запуск может быть достигнут путем настройки параметров ЧРП, время запуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости, позволяющая двигателю работать в наилучшем состоянии.
  3. Переведите двигатель с индуктивной нагрузкой в ​​емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Может быть легко запрограммирован через клавиатуру для достижения автоматического управления.

III: Купить преобразователь частоты / фазы
А ГГц-преобразователь частоты или фазовый преобразователь также можно использовать для таких ситуаций, он может преобразовывать однофазные (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазные (0- Регулируемый 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем для ШИМ-сигнала VFD, они предназначены для лабораторных испытаний, самолетов, военных и других применений, которые требуют высококачественных источников питания, это чрезвычайно дорого.

Статья по теме: Воздействие двигателя 60 Гц (50 Гц), используемого на источнике питания 50 Гц (60 Гц)

,

Смотрите также


avtovalik.ru © 2013-2020