Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как провести раскоксовку двигателя


Лучшая раскоксовка двигателя. Раскоксовка поршневых колец авто.

 Раскоксовка двигателя — очистка нагара с поршневых колец и канавок поршня, чтобы кольца обрели «подвижность» и двигатель перестал «есть» масло. Обычно она нужна когда замечают ускоряющуюся убыль масла на «угар» в процессе эксплуатации автомобиля. Причем это не зависит от пробега двигателя. Раскоксовка  может заливаться в масло, топливо и свечные отверстия для попадания на закоксованные кольца. Все эти способы отличаются по эффективности очистки от нагара и трудоемкости и зависят от качества применяемых препаратов. 
Эта статья описывает разные способы эффективной борьбы с нагаром в двигателе,  плюсы и минусы этих вариантов раскоксовки двигателя, а также причины и зоны нагарообразования. 

Причины попадания масла в камеру сгорания

В камеру сгорания  масло попадает двумя путями:
1. Со стенок гильзы, потому-что маслосъёмные кольца не могут его снять идеально чисто.
2. Со стержней впускных клапанов масло смывается засасываемым в цилиндры потоком топливной смеси.
Это только  основные пути попадания масла в цилиндры на «здоровых» и новых моторах. А когда пробег автомобиля перевалит за 100 000 км и вы заметите, что доливки масла до нужного уровня участились, а из глушителя стал появляться дымок со специфическим запахом, значит к добавлению масла в камеры сгорания подключились и другие элементы.

Опытный моторист по выхлопу и по состоянию свечей  точно определит из-за чего такой дым и расход масла. Основных виновников два:
Iмасло отражательные колпачки клапанов. Тут поможет только их замена, других вариантов нет!!!
Признаки «течи» масло отражательных  колпачков:
1. Дым из выхлопной трубы при перегазовке.
2. Наличие масла на резьбовой части свечей («мокрая» резьба на свечах).

II — цилиндропоршневая группа (кольца, поршни, цилиндры). Тут уже возможны варианты решения проблемы. И если вам предложат перебрать двигатель и заменить кольца, спешить не стоит. В большинстве случаев помогает раскоксовка двигателя и ресурс до «капиталки» увеличивается на 50-100 тысяч км, а то и больше. 

Виды закоксовок поршневых колец

При закоксовке кольца могут находиться в разном состоянии: быть утопленными в поршневые канавки (зацементированы в нагаре) или быть выдавленными из поршневых канавок нагаром попавшим между поршнем и кольцом. Первый вариант закоксовки самый простой и раскоксовка удаляя нагар позволяет кольцам обрести подвижность и они начинают снимать масло со стенок гильзы.
Во втором случае нагар накапливается между кольцом и стенкой поршневой канавки и выдавливает кольца из поршневых канавок, что усиливает их трение об стенки гильзы и кольца быстро стираются. В результате раскоксовки очищаются поршневые канавки от нагара и кольца «садятся»на место. Зазор между кольцом и стенкой гильзы увеличивается в результате чего «масложор» вырастает, а владелец авто «попадает» на «капиталку».

Поэтому-то и необходимо проводить раскоксовку как заметили расход масла на угар, а еще лучше делать ее периодически как профилактику двигателя. Это как гигиена полости рта у человека. Зубы вы чистите постоянно, убираете «зубной налет». Так и за двигателем необходимо ухаживать, не только менять масла и фильтры, но и убирать нагар. Как только появился «масложор» — делайте раскоксовку, чтобы не стерлись кольца (особенно маслосъемные). Не доводите коксование двигателя до критического состояния, когда «реанимировать» двигатель сможет только замена колец. 

По нашему опыту в 95% случаев раскоксовка помогает избежать «капиталки», но иногда она наоборот приводит к ремонту двигателя («жор масла» резко вырастает). Это может быть связано с большим износом деталей ЦПГ (тут уже ничего не изменишь),  или сама раскоксовка была проведена неправильно (тут все в ваших руках). Поэтому будьте внимательны при выборе средства и способа раскоксовки двигателя!!!

СПОСОБЫ РАСКОКСОВКИ ПОРШНЕВЫХ КОЛЕЦ

 Все способы раскоксовки поршневых колец двигателя можно разделить на 3 вида: «мягкая» раскоксовка, «жесткая» и в движении.

«Мягкая» раскоксовка двигателя

Мягкая раскоксовка поршневых колец — очистка поршневой группы от нагара через масляную систему двигателя. Раскоксовывающий препарат ( обычно это «промывка масляной системы с эффектом раскоксовки колец») заливается в моторное масло за 100-200 км до его замены, и до самой смены масла двигатель нужно эксплуатировать в щадящем режиме, избегая эксплуатации на максимальных оборотах. Состав «мягкого» раскоксователя должен размывать нагар с маслосъемных колец (которые чаще всего подвержены «залеганию» или коксованию) и поршневых канавок. Обычно для этого применяют промывочное масло, а также  5- или 7-минутки.

Основной минус обычных «мягких» раскоксовок: с их помощью не получается очистить от нагара ни камеру сгорания, ни клапана двигателя. В основном это — традиционные промывочные жидкости масляной системы двигателя, с добавлением чистящих компонентов для удаления нагара. Такой метод  можно применять не в клинических случаях загрязнения двигателя, а как профилактику, при каждой замене масла.

Раскоксовка димексидом

В последнее время популярна раскоксовка двигателя димексидом. В основном за счет дешевизны и доступности препарата (в аптеке он стоит 50-70 руб за флакон) и качества растворения нагара в масляной системе двигателя. В масляную горловину заливают димексид из расчета 100 мл на 1 литр масла в двигателе. Минусов у этого способа раскоксовки три: обязательно нужно очистить поддон от краски, чтобы не забило сетку маслозаборника (т.к. краска отслаивается с поверхности поддона и может забить сетку маслозаборника, перекрыв подачу масла в насос).  Требуется хорошо промыть маслосистему (обычно 2 раза промывочным маслом) после слива димескида со старым маслом. Димексид хорошо очищает кольца, но нагар не полностью растворяется в масле, а кусочками отслаивается от стенок деталей двигателя и может забить маслоканалы в коленвале и шатунах. 

К «мягкой» очистке колец от нагара можно отнести и нашу присадку в масло АКТИВНУЮ ЗАЩИТУ ЭДИАЛ. Ее добавление в масло двигателя позволяет хорошо очистить кольца и канавки поршня от нагара и лаков (не хуже ДИМЕКСИДА), обычно изменения, от применения присадки, становятся заметны через 10-15 минут на холостом ходу и проезде до 50 км. Основное отличие ее от других «мягких» конкурентов: НЕ НАДО МЕНЯТЬ МАСЛО после применения (замена масла в двигателе производится планово). Наша присадка заливается как в «свежее» так и в «старое» масло и на ней катаются до конца срока службы масла. Желательно, чтобы автомобиль еще проехал на этом масле хотя бы 300 км, чтобы присадка сработала в полную силу. Ее дополнительным плюсом служит последующая защита пар трения от износа и усиление сопротивляемости масла на истирание.

«Жесткая» раскоксовка двигателя

Жесткая раскоксовка колец (старый «дедовский метод») более распространена. Суть этого способа раскоксовки довольно проста: в камеру сгорания через форсуночные или свечные отверстия заливается агрессивная жидкость которая размягчает и растворяет нагар в канавках и на днище поршня.

СПОСОБ ПРИМЕНЕНИЯ: автомобиль ставится горизонтально, двигатель прогревается до рабочей температуры, после чего отключают зажигание и выкручивают свечи или снимают форсунки. Поворачивая коленчатый вал, с помощью проволоки или отвертки выставляют поршни в положение близкое к среднему. В каждый цилиндр заливается антикокс (ЛАВР, МИЦУБИСИ ШУМА, ГРИНОЛ,  ДИМЕКСИД, ХАДО или ВАЛЕРА) и оставляется там на определенное время – от 20 минут до 12 часов для размягчения нагара (в зависимости от производителя таких препаратов). Прогреть двигатель нужно для усиления процедуры, создается эффект «паровой бани»,  так нагар лучше «откисает» и размягчается.

Свечные колодцы при такой раскоксовке закрывают, слегка наживив свечи, чтобы двигатель быстро не остыл, и отключают зажигание. После прохождения определенного времени выкручиваются наживленные свечи зажигания, и путем прокрутки коленвала стартером из камеры сгорания удаляется вся очищающая жидкость, часто применяя для этого шприц с трубочкой. Это та, что не просочилась через поршневые колечки в картер. Свечные отверстия накрывают ветошью, чтобы грязь сильно не разлеталась из отверстий и не заляпала все подкапотное пространство. Затем закручивают свечи, заводят двигатель и дают ему поработать на переменных оборотах или проезжают около 50 км. Далее самое главное: требуется ОБЯЗАТЕЛЬНО сменить масло и свечи.

Данная методика сегодня довольно активно применяется как на СТО, так и автовладельцами самостоятельно.

Минусы «жесткой» раскоксовки

Эффективность этого способа зависит от качества используемого антикокса (в советское время обычно применялся ацетон или смесь керосина с ацетоном в одинаковых пропорциях), а также от типа обслуживаемого двигателя. Часто удается убрать только нагар на который попала жижа чистящего сольвента (т.е. верх поршня и кольца), а стенки камеры сгорания и клапана почти не очищаются. В последнее время популярна МИЦУБИСИ ШУМА, т.к. она не опускается вниз при впрыскивании в камеру сгорания, а пенясь заполняет весь ее объем и чистит всю камеру сгорания, включая верхнюю ее часть и клапана.

Такая химия довольно токсична и применяя ее в гараже можно отравиться ядовитыми парами. В зимнее время, на качество растворения нагара сильно влияет быстрое остывание двигателя, да и на морозе выкручивать свечи или снимать форсунки занятие не из приятных.

Непонятно сколько надо заливать по количеству сольвента в каждый цилиндр для наибольшего достижения результата, т.к. двигатели разные, разные объемы камеры сгорания и диаметры поршней, а инструкция по применению для всех двигателей одинакова (у 2,5л двигателя и у двигателя объемом 1,3л одинаковое количество поршней). Нальешь много, есть вероятность, что в масло просочится большое количество препарата и разрушит резиновые уплотнения, нальешь мало, можно толком ничего не почистить.

Особенности раскоксовки ГРИНОЛ

Особенно разрушительное действие у раскоксовки ГРИНОЛ. Уже через час после заливки в камеру сгорания она просачивается через колечки в картер и начинает отслаивать краску с поддона. Поэтому эту раскоксовку лучше всего применять для очистки деталей от нагара уже разобранного двигателя, опуская детали в ванну с ГРИНОЛОМ, тут ей нет конкуренции. К стати, сами разработчики этой раскоксовки показывают ролики именно с очисткой поршней со снятием с двигателя.

Часто после заливки в камеру сгорания раскоксовка быстро просачивается в картер двигателя (через замки колец) и не выполняет своих функций по очистке поршневых канавок и дренажных отверстий, не говоря уже о стенках камеры сгорания.

Довольно тяжело самостоятельно выставить поршни в среднее положение, для этой операции потребуется как минимум один помощник. Если автомобиль с АКПП (его взад-вперед не по толкаешь), значит для проведения раскоксовки потребуется подъемник или домкрат, чтобы поднять ведущие колеса.

Раскоксовка оппозитного двигателя

Конструкция двигателя сильно влияет на проведение очистки от нагара. Допустим надо раскоксовать автомобиль SUBARU с оппозитным двигателем: подняв капот, непонятно где вообще там находятся свечи зажигания, а надо еще добраться до них, выкрутить и попытаться залить антикокс в камеру сгорания. Оппозитные двигатели располагаются горизонтально и антикокс вытечет из камеры сгорания, пока будете вворачивать свечи на место. Выставить поршни в среднее положение на оппозитном двигателе вовсе проблематично, плюс раскоксовка будет очищать только нижнюю половинку камеры сгорания, и соответственно нижний сегмент колец. Хоть и создается эффект «паровой бани», но лучше все же когда нагар полностью залит реагентом, чем разложение его под паром.

Раскоксовка V-образного двигателя

Тоже самое можно сказать про V-образные двигатели, где доступ к свечам или форсункам затрудняют еще и навесные агрегаты. Плюс поршни под наклоном, раскоксовка будет неравномерно воздействовать на нагар, значит потребуется больше препарата для растворения нагара. Очистка колец таким методом дизелей вообще штука проблематичная. Сначала нужно добраться до форсунок (те же навесные агрегаты), потом снять их, а это зачастую требует специальных съемников или форсуночных ключей. После снятия форсунок следует поменять медные уплотнительные шайбы (для повторного использования они уже не подходят), которые надо предварительно купить, а это поездка в специализированный магазин, где они не всегда есть в наличии.

Еще одна проблема: образование задиров на гильзе. При «жесткой» раскоксовке двигателя от нагара происходит вымывание масла со стенки цилиндра чистящим реагентом и первый запуск двигателя осуществляется «по сухому» т.е. кольца трутся по гильзе без масла, что приводит к дополнительным задирам на гильзе и резкому износу поршневых колец.

Обязательно потребуется замена масла в двигателе, т.к. часть препарата через кольца проникает в картер и смешивается с маслом, что меняет его свойства и будет отрицательно воздействовать на резиновые уплотнения и сальники. Обычно подлежат замене и свечи зажигания.

Раскоксовка колец в движении через топливо

Раскоксовка двигателя через топливо — выжигание нагара в процессе движения. Это самый простой по проведению, но не менее эффективный способ борьбы с нагаром. Суть метода — применение специальных присадок в топливо для борьбы с нагаром в камере сгорания. Тут пока наш РАСКОКСОВАТЕЛЬ  ЭДИАЛ . Почистить двигатель используя нашу присадку это самый простой, не трудоемкий и бюджетный способ. Для его осуществления НЕ ТРЕБУЮТСЯ специальные навыки, инструмент и куча времени для снятия и установки свеч или форсунок. По времени введения препарата вы потратите не больше минуты.

Раскоксовка ЭДИАЛ заливается в бак автомобиля и вместе с топливом попадает в камеру сгорания. На работающем двигателе частицы присадки (попадая с топливом в камеру сгорания) проникают в толщу нагара и лаковых отложений и полностью выжигают их, а остатки удаляются через выхлопную систему. Существенное отличие нашего метода очистки двигателя от других,  также и в том, что выжигание нагара происходит быстрее при повышенной нагрузке и скоростях. Т.е. эксплуатация автомобиля осуществляется без ограничений по нагрузке, в привычной манере езды, а езда по трассе значительно помогает очистке от нагара.

Раскоксовка маслосъемных колец

Самая проблемная зона в поршневых кольцах — маслосъемные кольца. Единственный эффективный  способ их очистить это увеличение времени воздействия на нагар. Тут эффективнее всего одновременно применить 2 присадки: АКТИВНУЮ ЗАЩИТУ в масло двигателя и РАСКОКСОВКУ ЭДИАЛ в топливо автомобиля. Наши препараты будут мягко очищать поршневые канавки от нагара, освобождая кольца. Если кольца не «оживут»сразу, то на протяжении пробега до 300 км «жор» масла резко упадет или совсем прекратится.

Если расход масла на угар составлял около 1 литра на 1000 км пробега, то 100% достижения результата может не получиться, т.к. (по статистике) маслосъемные кольца могут быть просто стерты. Так же VAG-овские двигатели TSI тяжелее поддаются раскоксовке (плохо очищаются дренажные отверстия для слива масла с канавки поршня в картер. Особенно турбовые Фольсвагены (1,8л) этим страдают. Тут можно посоветовать несколько раз применить комплекс или после нашего комплекса в масло и топливо применить «жесткую» раскоксовку (ШУМУ) и заменить масло в двигателе. Это должно помочь. 

Раскоксовка клапанов

Если авто эксплуатируется в основном в городских условиях (низкие обороты и частая работа на холостом ходу), то клапана довольно быстро обрастают нагаром. Наша раскоксовка в топливо ЭДИАЛ хорошо очищает нагар на впускных клапанах, обеспечивая герметичность в паре «клапан-седло». Что устраняет пропуски зажигания и улучшает динамику и экономичность двигателя.

 ЛУЧШАЯ РАСКОКСОВКА КОЛЕЦ

Если решили сами делать раскоксовку и нет желания выкручивать свечи или снимать форсунки, то вот наши рекомендации. При «жоре» масла двигателем более 0,5 л на 1000 км очень эффективно в комплексе (одновременно) применить РАСКОКСОВКУ ЭДИАЛ (залив ее в бак автомобиля) и АКТИВНУЮ ЗАЩИТУ двигателя ЭДИАЛ (залив ее в масло двигателя). Так лучше всего можно убрать нагар с колец двигателя и почистить камеру сгорания и клапана. На V-образном двигателе эффективно заливать 2 флакона АКТИВНОЙ ЗАЩИТЫ  в маслосистему двигателя.

АКТИВНАЯ ЗАЩИТА, залитая в масло за 15-20 минут работы двигателя очистит и «оживит» колечки двигателя, а раскоксователь залитый в бак авто аккуратно будет выжигать весь нагар в камере сгорания. Особенно этот комплексный подход рекомендуем автомобилистам, кто передвигается только по городу.

Особенности комплексной раскоксовки ЭДИАЛ

Комплексный подход раскоксовки двигателя ЭДИАЛ обладает перед другими конкурентами, представленными на рынке, целым рядом существенных преимуществ:

  • Быстрота внесения препарата (залил в бак автомобиля и масло двигателя — и готово!!!).

  • После очистки двигателя от нагара не требуется менять моторное масло, так как продукты разложения и сгорания нагара и лаковых отложений удаляются через выхлопную систему автомобиля, соответственно не просачиваются в картер и не влияют на сальники. Нашу автохимию можно применять в любое удобное для автовладельца время.

  • Хорошо очищаются поршневые кольца двигателя.

  • Отлично очищается нагар с  деталей камеры сгорания, в том числе впускные и выпускные клапана, их посадочные седла и свечи зажигания, увеличивая срок их службы.

  • Благодаря эффективному восстановлению компрессии снижает расход топлива и масла на угар, увеличивает мощность и приемистость двигателя.

  • На поверхностях деталей камеры сгорания и парах трения в двигателе, создаются защитные пленки препятствующие появлению нагара. Эти пленки уменьшают последующее коксование колец благодаря уменьшению контактных температур в камере сгорания и, следовательно, уменьшению деструкции молекул масла.

  • Присадки ЭДИАЛ (комплексное применение в масло и топливо) сочетают в себе способность аккуратно воздействовать на закоксованные поршневые кольца как «мягкий» способ раскоксовки и полное очищение деталей камеры сгорания от нагара, который не всегда достижим при «жестком» методе раскоксовки двигателя.

 Причины  образования нагара в двигателе

Работа двигателя на некачественных топливе или масле приводит к усиленному образованию нагара в камере сгорания. Днище и стенки поршня, а также и стенки камеры сгорания обрастают нагаром и углеродистыми отложениями от не сгоревшего топлива. Клапана зарастают нагаром, а в отдельных случаях просто прогорают. Поршневые кольца коксуются и теряют подвижность, стенки камеры сгорания обрастают нагаром, ухудшая теплоотвод. Также образованию нагара способствуют наличие присадок в топливе, разложение и окисление масла попадающего в камеру сгорания. Частая езда на не прогретом двигателе с небольшой нагрузкой, езда на малых оборотах, стояние в «пробках», зимняя езда — все это способствует интенсивному образованию нагара на поверхностях деталей камеры сгорания.

Большое количество нагара (уменьшение объема камеры сгорания) ведет к детонации. Детонация уменьшает мощность двигателя, увеличивает потери на трение и износ деталей двигателя. Кроме этого, уменьшаются проходные сечения впускных и выпускных клапанов (ухудшение смесеобразования и рост потребления топлива). Нагар, попавший под клапан, ведет к его неплотной посадке в седло, отчего клапан со временем прогорает. Неплотное закрытие клапанов приводит также к значительному падению компрессии, соответственно — потере мощности двигателем.

В последнее время очень внимательно приобретайте масло для двигателя. Часто в современные моторы ЕВРО5 и 4 заливают масла разработанные для двигателей класса ЕВРО3 по токсичности. Несоответствие применяемых масел ведет к выгоранию масла в камере сгорания и закоксовке колец, т.к. моторные масла для двигателей ЕВРО5 выдерживают температуру до +110-115 градусов, а моторные масла класса ЕВРО3 только 90 градусов. Поэтому если зальете такое масло в современный двигатель то оно будет выгорать.

Зоны образования нагара

Толстый слой нагара на клапанах существенно ухудшает работу двигателя. Особенно опасны отложения на обратной стороне тарелки впускного клапана: они действуют как губка и впитывают в себя топливо. Двигатель вынужден работать на обедненной смеси. Результат – возможное детонационное сгорание топливной смеси и повреждения двигателя.

нагар на кольцах двигателя

В канавках поршневых колец, на боковой поверхности поршня и стенках цилиндров образуются среднетемпературные отложения — лаки. Нагар и лак на верхней кромке поршня ускоряют износ цилиндра. Лак в поршневых канавках и попавший туда выкрошившийся нагар лишают подвижности поршневые кольца, уменьшая компрессию; начинает увеличиваться расход масла «на угар». Когда отложения полностью заполняют зазор между поршневой канавкой и кольцом, то кольцо распирает, выдавливая его наружу. Давление на стенки цилиндра резко возрастает, износ гильзы и колец ускоряется, даже могут возникнуть задиры на стенках гильзы. Через «залегшие» кольца увеличивается прорыв газов в картер, а масла — в камеру сгорания. Это еще более увеличивает образование лаков и нагара.

Все это приводит к падению компрессии в цилиндрах, снижению мощности двигателя, плохому запуску, перерасходу топлива и масла, увеличению токсичности отработавших газов. При сильном нагаре возможен «автозапуск» двигателя после остановки. Т.к. объем камеры сгорания заметно уменьшается и частицы нагара продолжая тлеть воспламеняют топливо и двигатель продолжает работать.

  Все наши присадки для раскоксовки двигателя и поршневых колец можно приобрести у наших партнеров (их контакты указаны на странице ГДЕ КУПИТЬ. Если в месте Вашего проживания нет нашего партнера, то можем отправить нашу автохимию из Москвы по почте (только предоплата) или СДЭК (оплата при получении в пункте выдачи). По почте наложенным платежом отправляют наши партнеры, их контакты указаны на нашем сайте.

Раскисление

- Википедия

Раскисление - это метод, используемый в металлургии для удаления содержания кислорода во время производства стали. Напротив, антиоксиданты используются для стабилизации, например, при хранении пищи. Раскисление важно в процессе производства стали, так как кислород часто наносит ущерб качеству производимой стали. Раскисление в основном достигается путем добавления отдельных химических веществ для нейтрализации воздействия кислорода или путем непосредственного удаления кислорода.

Окисление [править]

Окисление - это процесс потери элемента электронами. Например, железо перенесет два своих электрона в кислород, образуя оксид. Это происходит повсюду как непреднамеренная часть процесса производства стали.

Продувка кислородом - это метод производства стали, при котором кислород выдувается через чугун для снижения содержания углерода. Кислород образует оксиды с нежелательными элементами, такими как углерод, кремний, фосфор и марганец, которые появляются в различных состояниях производственного процесса.Эти оксиды всплывают на верхнюю часть стальной ванны и удаляются из чугуна. Однако часть кислорода также будет реагировать с самим железом.

Из-за высоких температур, при которых происходит плавление, кислород воздуха может растворяться в расплавленном железе во время его заливки. Шлак, побочный продукт, остающийся после процесса плавки, используется для дальнейшего поглощения примесей, таких как сера или оксиды, и защиты стали от дальнейшего окисления. Тем не менее, он все еще может быть ответственным за некоторое окисление.

Некоторые процессы, хотя и могут приводить к окислению, не имеют отношения к содержанию кислорода в стали при ее изготовлении. Например, ржавчина - это красный оксид железа, который образуется, когда железо в стали реагирует с кислородом или водой в воздухе. Обычно это происходит только после того, как сталь используется в течение разных периодов времени. Некоторые физические компоненты самого процесса выплавки стали, такие как электродуговая печь, также могут изнашиваться и окисляться. Эта проблема обычно решается с использованием тугоплавких металлов, которые устойчивы к изменениям. [1]

Если сталь не раскислена должным образом, она будет иметь различные свойства, такие как прочность на растяжение, пластичность, вязкость, свариваемость, полируемость и обрабатываемость. Это связано с образованием неметаллических включений и газовых пор, пузырьков газа, которые захватываются в процессе затвердевания стали. [2]

Типы раскислителей [править]

Металлические раскислители [править]

Этот метод раскисления включает добавление определенных металлов в сталь.Эти металлы будут реагировать с нежелательным кислородом, образуя сильный оксид, который по сравнению с чистым кислородом уменьшит прочность и свойства стали в меньшей степени.

Химическое уравнение для раскисления представлено:

nD + mO⟶DnOm {\ displaystyle nD + mO \ longrightarrow D_ {n} O_ {m}}

, где n и m - коэффициенты, D - раскислитель, а O - кислород.

Таким образом, уравнение химического равновесия имеет вид:

Keq = aox / (aDn ∗ aOm) {\ displaystyle K_ {eq} = a_ {ox} / (a_ {D} ^ {n} * a_ {O} ^ {m})}

, где ox - активность или концентрация оксида в стали, D - активность раскислителя, и O - активность кислорода.

Увеличение константы равновесия K экв вызовет увеличение вол и, следовательно, большее количество продукта оксида.

K eq может управляться температурой стали с помощью следующего уравнения:

logKeq = AD / T-BD {\ displaystyle logK_ {eq} = A_ {D} / T-B_ {D}}

, где A D и B D - параметры, специфичные для различных раскислителей, а T - температура в K °. Ниже приведены значения для определенных раскислителей при температуре 1873 К °. [1] [3]

Раскислитель A B К экв
Марганец 12,440 5,33 1,318
Кремний 30000 11,5 4,518
Алюминий 62 780 20,5 13.018

Ниже приведен список наиболее часто используемых металлических раскислителей:

Вакуумное раскисление [править]

Вакуумное раскисление представляет собой метод, который включает использование вакуума для удаления примесей.Часть углерода и кислорода в стали будут реагировать, образуя окись углерода. Газ CO будет всплывать до верха жидкой стали и удаляться вакуумной системой.

В качестве химической реакции, участвующей в раскислении в вакууме, является:

C + O⟶CO {\ displaystyle C + O \ longrightarrow CO}

реакция между углеродом и кислородом представлена ​​следующим уравнением химического равновесия:

KCO = PCO / (aC ∗ aO) {\ displaystyle K_ {CO} = P_ {CO} / (a_ {C} * a_ {O})}

, где P CO - парциальное давление образующегося оксида углерода.

Снижение активности кислорода ( O ) приведет к более высокой константе равновесия, а значит, и к большему количеству продукта, CO. Чтобы достичь этого, обработка пула стали вакуумной обработкой уменьшает значение P CO , что позволяет более Газ CO, который будет произведен. [1] [4]

Диффузионное раскисление [править]

Этот метод основан на идее, что раскисление шлака приведет к раскислению стали.

Уравнение химического равновесия, используемое для этого процесса:

KFeO = a [O] / a (O) {\ displaystyle K_ {FeO} = a _ {[O]} / a _ {(O)}}

, где [O] - это активность кислорода в шлаке, а (O) - это активность кислорода в стали.

Снижение активности в шлаке ( [O] ) приведет к снижению уровня кислорода в шлаке. После этого кислород будет диффундировать из стали в менее концентрированный шлак. Этот метод осуществляется с помощью раскислителей на шлаке, таких как кокс или кремний. Поскольку эти агенты не вступают в прямой контакт со сталью, неметаллические включения не будут образовываться в самой стали. [1]

Список литературы [править]

См. Также [править]

,

Как работают игровые движки?

Компании постоянно хвастаются своим новейшим игровым движком. Напрашивается вопрос: что именно является игровым движком?

Игровой движок закладывает программную основу для создания и создания видеоигр. Они предоставляют функции от анимации до искусственного интеллекта. Игровые движки отвечают за визуализацию графики, обнаружение столкновений, управление памятью и многие другие параметры.

Игровые движки предоставляют разработчикам инструменты для создания многочисленных игровых приложений.Дизайнеры часто используют эти движки для создания других игр, что делает их ценными инвестициями.

Игровой движок состоит из пяти компонентов: основная игровая программа, которая содержит игровую логику; механизм рендеринга, который можно использовать для создания трехмерной анимированной графики; звуковой движок, который состоит из алгоритмов, связанных со звуками; физический движок для реализации «физических» законов в системе; и Искусственный интеллект, модуль, предназначенный для использования программистами со специальным назначением.

Современные инструменты и программы позволили начать разработку игр проще, чем когда-либо.

С многочисленными игровыми движками может быть сложно выбрать правильный для вашего проекта.

Ниже представлен список игровых движков, доступных в настоящее время для всех, кто интересуется разработкой игр.

Unity

Пользователи считают Unity одним из самых простых игровых движков благодаря простому интерфейсу. Одной из основных функций, которые он содержит, является то, что он позволяет разрабатывать игры для нескольких платформ.Используя движок Unity, можно создавать игры для Android, iOS и других операционных систем телефона, включая ОС ПК.

Помимо кроссплатформенных возможностей, платформа имеет активное сообщество разработчиков плагинов, которые предлагают много бесплатного и недорогого контента для использования в игровом движке. Некоторые примеры игр, созданных на движке, включают Temple Run, Rust и Deus Ex: The Fall. Примечательно, что их личный пакет совершенно бесплатный и включает в себя множество инструментов для начинающих и любителей.Вы можете посмотреть на различные планы Unity здесь.

Unreal Game Engine

Unreal Engine - один из лучших игровых движков для рендеринга детальной графики. Некоторые известные игры, созданные с помощью Unreal Engine, включают Borderlands 2, Dishonored, Mass Effect 3 и Street Fighter V. Сторонники Unreal Game Engine говорят, что он может создавать одни из лучших пейзажей в играх.

Модель ценообразования этого движка включает в себя бесплатную версию с полным доступом. Тем не менее, Unreal Engine берет 5% роялти за любые игры, сделанные из него.

Вы можете подписаться на Unreal Engine здесь.

GameMaker: Студия

Хотя некоторые утверждают, что GameMaker не является настоящим игровым движком, он все еще широко используется и используется многими разработчиками игр. Вместо обычного программирования пользователи могут буквально «перетаскивать» элементы, чтобы создавать игры намного быстрее и с большей легкостью.

СМОТРИТЕ ТАКЖЕ: ВЫ НЕ МОЖЕТЕ ДОЛЖНО СКАЗАТЬ РАЗНИЦУ МЕЖДУ РЕАЛЬНОЙ ЖИЗНЬЮ И ВИДЕО ИГРОМ

Одна из примечательных игр, созданных с помощью GameMaker, - это Hotline Miami.Однако из-за природы «перетаскивания» разработчики имеют ограничения в создании расширений и дополнений с помощью альтернативного кода.

Как и другие движки, Studio включает в себя бесплатную версию с ограниченным доступом. Вы можете зарегистрироваться в студии GameMaker здесь.

Автор Maverick Бейкер

,Двигатель

- Википедия

Анимация, демонстрирующая четыре стадии цикла четырехтактного бензинового двигателя внутреннего сгорания:
  1. Индукция (Топливо входит в состав)
  2. Компрессия
  3. Зажигание (Топливо сожжено)
  4. Эмиссия (выхлопной газ)

машина, которая преобразует одну форму энергии в механическую энергию

Двигатель , или , двигатель - это машина, предназначенная для преобразования одной формы энергии в механическую. [1] [2] Тепловые двигатели, как и двигатель внутреннего сгорания, сжигают топливо для создания тепла, которое затем используется для работы. Электродвигатели преобразуют электрическую энергию в механическое движение, пневматические моторы используют сжатый воздух, а заводные моторы в игрушечных игрушках используют упругую энергию. В биологических системах молекулярные двигатели, такие как миозины в мышцах, используют химическую энергию для создания сил и, в конечном итоге, движения.

Терминология [править]

Слово двигатель происходит от древнеанглийского двигателя , от латинского ingenium - корень слова гениального .Доиндустриальное оружие войны, такое как катапульты, требучеты и тараны, называлось осадных орудий , и знание того, как их создавать, часто считалось военной тайной. Слово джин , как в хлопок джин , является сокращением от двигатель . Большинство механических устройств, изобретенных во время промышленной революции, были описаны как двигатели - паровой двигатель является ярким примером. Однако оригинальные паровые двигатели, такие как Томас Савери, были не механическими, а насосами.Таким образом, пожарная машина в своем первоначальном виде была просто водяным насосом, при этом двигатель доставлялся в огонь лошадьми. [3]

В современном использовании термин «двигатель » обычно описывает устройства, такие как паровые двигатели и двигатели внутреннего сгорания, которые сжигают или иным образом потребляют топливо для выполнения механической работы, прикладывая крутящий момент или линейную силу (обычно в форме тяги). Устройства, преобразующие тепловую энергию в движение, обычно называют просто двигателями . [4] Примеры двигателей, которые создают крутящий момент, включают известные автомобильные бензиновые и дизельные двигатели, а также турбовалы. Примеры двигателей, которые производят тягу, включают турбовентиляторы и ракеты.

Когда был изобретен двигатель внутреннего сгорания, термин «двигатель » первоначально использовался для отличия его от парового двигателя, который в то время широко использовался для питания локомотивов и других транспортных средств, таких как паровые катки. Термин двигателя происходит от латинского глагола moto , который означает приводить в движение или поддерживать движение.Таким образом, мотор - это устройство, которое передает движение.

Двигатель и двигатель являются взаимозаменяемыми на стандартном английском языке. [5] В некоторых технических жаргонах два слова имеют разные значения, в которых двигатель - это устройство, которое сжигает или иным образом потребляет топливо, изменяя свой химический состав, а двигатель - это устройство, приводимое в действие электричеством, воздухом или гидравлическое давление, которое не меняет химический состав своего источника энергии. [6] [7] Однако в ракетостроении используется термин ракетный двигатель, хотя они потребляют топливо.

Тепловой двигатель также может служить первичным двигателем - компонентом, который преобразует поток или изменения давления жидкости в механическую энергию. [8] Автомобиль, приводимый в действие двигателем внутреннего сгорания, может использовать различные двигатели и насосы, но в конечном итоге все такие устройства получают свою мощность от двигателя. Другой способ взглянуть на это состоит в том, что двигатель получает энергию от внешнего источника, а затем преобразует ее в механическую энергию, в то время как двигатель создает энергию от давления (получаемого непосредственно от взрывной силы сгорания или другой химической реакции, или вторично от действие некоторой такой силы на другие вещества, такие как воздух, вода или пар). [9]

История [править]

Античность [править]

Простые машины, такие как дубинка и весло (примеры рычага), являются доисторическими. Более сложные двигатели, использующие энергию человека, животных, воду, ветер и даже энергию пара, уходят в глубь древности. Человеческая сила была сосредоточена на использовании простых двигателей, таких как лебедка-кабестан, лебедка или беговая дорожка, а также на веревках, шкивах и механизмах блокировки и захвата; эта сила передавалась обычно с умноженными силами и уменьшенной скоростью.Они использовались в кранах и на кораблях в Древней Греции, а также в шахтах, водяных насосах и осадных машинах в Древнем Риме. Авторы тех времен, включая Витрувия, Фронтина и Плиния Старшего, рассматривают эти двигатели как обычное дело, поэтому их изобретение может быть более древним. К 1-му веку нашей эры крупный рогатый скот и лошади использовались на мельницах, приводя в движение машины, подобные тем, которые приводились в действие людьми в более ранние времена.

По словам Страбона, водная мельница была построена в Каберии, в королевстве Митридата, в 1 веке до нашей эры.Использование водяных колес в мельницах распространилось по всей Римской империи в течение следующих нескольких веков. Некоторые были довольно сложными, с акведуками, дамбами и шлюзами для поддержания и направления воды, а также с системами зубчатых колес или зубчатых колес из дерева и металла для регулирования скорости вращения. Более сложные небольшие устройства, такие как механизм Antikythera, использовали сложные цепочки передач и циферблатов, чтобы действовать как календари или предсказывать астрономические события. В стихотворении Авсония в 4 веке нашей эры он упоминает о камнерезной пиле, приводимой в движение водой.Героя Александрии приписывают многим таким ветряным и паровым машинам в 1-м веке нашей эры, включая Aeolipile и торговый автомат, часто эти машины ассоциировались с поклонением, такие как анимированные алтари и автоматизированные двери храма.

Средневековье [править]

Средневековые мусульманские инженеры использовали шестерни в мельницах и водоподъемных машинах и использовали плотины в качестве источника воды, чтобы обеспечить дополнительную мощность для водяных мельниц и водоподъемных машин. [10] В средневековом исламском мире такие достижения позволили механизировать многие производственные задачи, ранее выполнявшиеся с помощью ручного труда.

В 1206 году аль-Джазари использовал систему шатунов для двух своих водоподъемных машин. Зачаточное паротурбинное устройство было описано Таки ад-Дином [11] в 1551 году и Джованни Бранкой [12] в 1629 году. [13]

В 13 веке твердотопливный ракетный двигатель был изобретен в Китай. Управляемый порохом, этот простейший двигатель внутреннего сгорания был неспособен обеспечить устойчивую мощность, но был полезен для приведения оружия в действие на высоких скоростях в направлении врагов в бою и для фейерверков.После изобретения это новшество распространилось по всей Европе.

Промышленная революция [править]

Двигатель Boulton & Watt 1788 г.

Паровая машина Watt была первым паровым двигателем, который использовал пар при давлении чуть выше атмосферного для привода поршня, чему способствовал частичный вакуум. Совершенствование конструкции парового двигателя Newcomen 1712 года, парового двигателя Watt, которое спорадически разрабатывалось с 1763 по 1775 год, стало большим шагом в развитии парового двигателя. Предлагая резкое повышение эффективности использования топлива, дизайн Джеймса Уотта стал синонимом паровых двигателей, во многом благодаря его деловому партнеру Мэтью Боултону.Это позволило быстро создать эффективные полуавтоматические заводы в ранее невообразимых масштабах в местах, где гидроэнергетика была недоступна. Дальнейшее развитие привело к появлению паровозов и значительному расширению железнодорожного транспорта.

Что касается поршневых двигателей внутреннего сгорания, они были испытаны во Франции в 1807 году де Ривазом и независимо друг от друга братьями Ниепсе. Теоретически они были разработаны Карно в 1824 году. [ требуется цитирование ] В 1853–57 годах Эудженио Барсанти и Феличе Маттеуччи изобрели и запатентовали двигатель, использующий принцип свободного поршня, который, возможно, был первым четырехтактным двигателем. [14]

Изобретение двигателя внутреннего сгорания, которое впоследствии было коммерчески успешным, было сделано в 1860 году Этьеном Ленуаром. [15]

В 1877 году цикл Отто был в состоянии дать намного более высокое отношение мощности к весу, чем паровые двигатели, и работал намного лучше для многих транспортных применений, таких как автомобили и самолеты.

Автомобили [править]

Первый коммерчески успешный автомобиль, созданный Карлом Бенцем, добавил интерес к легким и мощным двигателям.Легкий бензиновый двигатель внутреннего сгорания, работающий по четырехтактному циклу Отто, был наиболее успешным для легких автомобилей, в то время как более эффективный дизельный двигатель используется для грузовых автомобилей и автобусов. Однако в последние годы турбодизельные двигатели становятся все более популярными, особенно за пределами США, даже для довольно небольших автомобилей.

Горизонтально противоположные поршни [править]

В 1896 году Карлу Бенцу был выдан патент на конструкцию первого двигателя с горизонтально расположенными поршнями.Его конструкция создала двигатель, в котором соответствующие поршни движутся в горизонтальных цилиндрах и одновременно достигают верхней мертвой точки, таким образом автоматически балансируя друг друга в отношении их индивидуального импульса. Двигатели этой конструкции часто называют плоскими двигателями из-за их формы и низкого профиля. Они использовались в Volkswagen Beetle, Citroën 2CV, некоторых автомобилях Porsche и Subaru, многих мотоциклах BMW и Honda, а также двигателях воздушных винтов.

Продвижение [править]

Продолжение использования двигателя внутреннего сгорания для автомобилей отчасти связано с совершенствованием систем управления двигателем (бортовые компьютеры, обеспечивающие процессы управления двигателем и впрыск топлива с электронным управлением).Принудительная подача воздуха за счет турбонаддува и наддува повышает выходную мощность и эффективность двигателя. Подобные изменения были применены к меньшим дизельным двигателям, давая им почти такие же характеристики мощности, что и бензиновые двигатели. Это особенно очевидно в связи с популярностью автомобилей с меньшим двигателем с дизельным двигателем в Европе. Большие дизельные двигатели все еще часто используются в грузовиках и тяжелой технике, хотя они требуют специальной обработки, недоступной на большинстве заводов. Дизельные двигатели производят более низкие выбросы углеводородов и CO
2, но с более высоким уровнем твердых частиц и NO
x , чем бензиновые двигатели. [16] Дизельные двигатели также на 40% более экономичны, чем сопоставимые бензиновые двигатели. [16]

Увеличение мощности [править]

В первой половине 20-го века наблюдалась тенденция увеличения мощности двигателя, особенно в моделях США. [требуется уточнение ] Изменения конструкции включали в себя все известные методы увеличения мощности двигателя, включая увеличение давления в цилиндрах для повышения эффективности, увеличение размеров двигателя и увеличение скорости, с которой двигатель производит работу.Более высокие силы и давления, создаваемые этими изменениями, создавали проблемы с вибрацией и размерами двигателя, что приводило к более жестким, более компактным двигателям с V-образным расположением цилиндров и противостоянием, заменяющим более длинные прямолинейные устройства.

Эффективность сгорания [править]

Принципы проектирования, которым отдают предпочтение в Европе, из-за экономических и других ограничений, таких как более мелкие и крутые дороги, ориентированы на автомобили меньшего размера и соответствуют принципам проектирования, сосредоточенным на повышении эффективности сгорания небольших двигателей.Это позволило получить более экономичные двигатели с более ранними четырехцилиндровыми двигателями мощностью 40 лошадиных сил (30 кВт) и шестицилиндровыми двигателями мощностью до 80 лошадиных сил (60 кВт) по сравнению с американскими двигателями V-8 большого объема с номинальной мощностью в диапазон от 250 до 350 л.с., некоторые даже более 400 л.с. (от 190 до 260 кВт). [требуется уточнение ] [необходимо цитирование ]

Конфигурация двигателя [править]

Раньше при разработке автомобильных двигателей производился гораздо больший ассортимент двигателей, чем обычно используется сегодня.Двигатели варьировались от 1 до 16 цилиндров с соответствующими различиями в общем размере, весе, объеме двигателя и отверстиях цилиндров. В большинстве моделей использовались четыре цилиндра и номинальная мощность от 19 до 120 л.с. (от 14 до 90 кВт). Было построено несколько трехцилиндровых двухтактных моделей, в то время как большинство двигателей имели прямые или рядные цилиндры. Было несколько моделей V-типа и горизонтально противоположных двух- и четырехцилиндровых моделей. Верхние распредвалы часто использовались.Меньшие двигатели обычно имели воздушное охлаждение и располагались в задней части автомобиля; коэффициенты сжатия были относительно низкими. В 1970-х и 1980-х годах возрос интерес к улучшению экономии топлива, что привело к возврату к меньшим размерам V-6 и четырехцилиндровым двигателям с пятью клапанами на цилиндр для повышения эффективности. Bugatti Veyron 16.4 работает с двигателем W16, что означает, что два расположения цилиндров V8 расположены рядом друг с другом, чтобы создать форму W, разделяющую один и тот же коленчатый вал.

Самый большой из когда-либо созданных двигателей внутреннего сгорания - это 14-цилиндровый 2-тактный дизельный двигатель с турбонаддувом Wärtsilä-Sulzer RTA96-C, который был спроектирован для оснащения Emma Mærsk , самого большого контейнеровоза в мире, когда его запускали в 2006.Этот двигатель имеет массу 2300 тонн, а при работе на скорости 102 об / мин (1,7 Гц) вырабатывает более 80 МВт и может использовать до 250 тонн топлива в день.

Двигатель можно отнести к категории в соответствии с двумя критериями: форма энергии, которую он принимает для создания движения, и тип движения, которое он выводит.

Тепловой двигатель [править]

Двигатель внутреннего сгорания [править]

Двигатели внутреннего сгорания - это тепловые двигатели, приводимые в движение теплом процесса сгорания.

Двигатель внутреннего сгорания [править]
Трехтактный двигатель внутреннего сгорания, работающий на угольном газе

Двигатель внутреннего сгорания представляет собой двигатель, в котором сгорание топлива (обычно ископаемого топлива) происходит с окислителем (обычно воздухом) в камере сгорания.В двигателе внутреннего сгорания расширение газов высокой температуры и высокого давления, которые образуются в результате сгорания, непосредственно прикладывает усилие к компонентам двигателя, таким как поршни или лопатки турбины или сопло, и перемещая его на расстояние , генерирует механическую работу. [17] [18] [19] [20]

Двигатель внешнего сгорания [править]

Двигатель внешнего сгорания (двигатель ЕС) представляет собой тепловой двигатель, в котором внутренняя рабочая жидкость нагревается путем сгорания внешнего источника через стенку двигателя или теплообменник.Затем жидкость, расширяясь и воздействуя на механизм двигателя, производит движение и полезную работу. [21] Затем жидкость охлаждается, сжимается и используется повторно (замкнутый цикл) или (реже) сбрасывается, а холодная жидкость втягивается (воздушный двигатель открытого цикла).

«Сжигание» относится к сжиганию топлива с окислителем, для подачи тепла. Двигатели с аналогичной (или даже идентичной) конфигурацией и работой могут использовать подачу тепла из других источников, таких как ядерные, солнечные, геотермальные или экзотермические реакции, не связанные с горением; но тогда они строго не классифицируются как двигатели внешнего сгорания, а как внешние тепловые двигатели.

Рабочая жидкость может быть газом, как в двигателе Стирлинга, или паром, как в паровом двигателе, или органической жидкостью, такой как н-пентан, в цикле органического Ренкина. Жидкость может быть любого состава; газ является наиболее распространенным, хотя иногда используется даже однофазная жидкость. В случае парового двигателя жидкость меняет фазы между жидкостью и газом.

Воздухопроницаемые двигатели внутреннего сгорания [править]

Воздушно-реактивные двигатели внутреннего сгорания - это двигатели внутреннего сгорания, которые используют кислород в атмосферном воздухе для окисления («сжигания») топлива, а не для переноса окислителя, как в ракете.Теоретически, это должно привести к лучшему удельному импульсу, чем для ракетных двигателей.

Непрерывный поток воздуха проходит через дыхательный двигатель. Этот воздух сжимается, смешивается с топливом, воспламеняется и удаляется в качестве выхлопного газа.

Примеры

Типичные воздушно-реактивные двигатели включают в себя:

реактивный реактивный двигатель
Турбовинтовой двигатель
Воздействие на окружающую среду [редактировать]

Работа двигателей обычно оказывает негативное влияние на качество воздуха и уровень окружающего звука.Все больше внимания уделяется характеристикам автомобильных систем, способствующих загрязнению. Это создало новый интерес к альтернативным источникам энергии и усовершенствованиям двигателя внутреннего сгорания. Хотя появилось несколько электромобилей с ограниченным производством на батарейках, они не оказались конкурентоспособными из-за затрат и эксплуатационных характеристик. [ цитирование необходимо ] В 21-м веке дизельный двигатель становится все более популярным среди автовладельцев.Тем не менее, бензиновый двигатель и дизельный двигатель с их новыми устройствами контроля выбросов для улучшения характеристик выбросов еще не испытывали значительных проблем. [ цитирование необходимо ] Ряд производителей представили гибридные двигатели, в основном с небольшим бензиновым двигателем в сочетании с электродвигателем и большим аккумуляторным блоком, но они также еще не достигли значительных успехов на рынке. бензиновых и дизельных двигателей.

Качество воздуха [редактировать]

Выхлопные газы из двигателя с искровым зажиганием состоят из следующего: азот от 70 до 75% (по объему), водяной пар от 10 до 12%, диоксид углерода от 10 до 13.5%, водород от 0,5 до 2%, кислород от 0,2 до 2%, монооксид углерода: от 0,1 до 6%, несгоревшие углеводороды и продукты частичного окисления (например, альдегиды) от 0,5 до 1%, монооксид азота от 0,01 до 0,4%, закись азота <100 ч / млн. диоксид серы от 15 до 60 частей на миллион, следы других соединений, таких как присадки к топливу и смазочные материалы, а также соединения галогенов и металлов и другие частицы. [22] Окись углерода очень токсична и может вызвать отравление угарным газом, поэтому важно избегать скопления газа в замкнутом пространстве.Каталитические нейтрализаторы могут уменьшить токсичные выбросы, но не полностью устранить их. Кроме того, выбросы парниковых газов, главным образом углекислого газа, в результате широко распространенного использования двигателей в современном промышленно развитом мире способствуют глобальному парниковому эффекту - главной проблеме глобального потепления.

Негорючие тепловые двигатели [править]

Некоторые двигатели преобразуют тепло от не горючих процессов в механическую работу, например, атомная электростанция использует тепло от ядерной реакции для производства пара и приводит в движение паровой двигатель, или газовая турбина в ракетном двигателе может приводиться в действие путем разложения перекиси водорода.Помимо другого источника энергии, двигатель часто проектируется так же, как двигатель внутреннего или внешнего сгорания. Другая группа не горючих двигателей включает термоакустические тепловые двигатели (иногда называемые «двигателями ТА»), которые представляют собой термоакустические устройства, которые используют звуковые волны высокой амплитуды для накачки тепла из одного места в другое или, наоборот, используют разность тепла для создания звуковых волн высокой амплитуды. , В целом, термоакустические двигатели можно разделить на устройства со стоячей и бегущей волной. [23]

Нетепловой двигатель с химическим приводом [править]

Нетепловые двигатели обычно приводятся в действие химической реакцией, но не являются тепловыми двигателями. Примеры включают в себя:

Электродвигатель [править]

Электродвигатель использует электрическую энергию для производства механической энергии, обычно через взаимодействие магнитных полей и проводников с током. Обратный процесс, производящий электрическую энергию из механической энергии, осуществляется с помощью генератора или динамо.Тяговые двигатели, используемые на транспортных средствах, часто выполняют обе задачи. Электродвигатели могут работать как генераторы и наоборот, хотя это не всегда практично. Электродвигатели распространены повсеместно, и их можно найти в таких разнообразных применениях, как промышленные вентиляторы, воздуходувки и насосы, станки, бытовая техника, электроинструменты и дисководы. Они могут получать питание от постоянного тока (например, от портативного устройства с питанием от батареи или транспортного средства) или от переменного тока от центральной электрической распределительной сети.Самые маленькие моторы можно найти в электрических наручных часах. Средние двигатели с высокими стандартизированными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для приведения в движение больших судов и для таких целей, как трубопроводные компрессоры, с номинальной мощностью в тысячи киловатт. Электродвигатели могут быть классифицированы по источнику электроэнергии, по их внутренней конструкции и по их применению.

Физический принцип производства механической силы при взаимодействии электрического тока и магнитного поля был известен еще в 1821 году.Электродвигатели с возрастающей эффективностью были построены в течение 19-го века, но коммерческая эксплуатация электродвигателей в больших масштабах требовала эффективных электрических генераторов и электрических распределительных сетей.

Для сокращения потребления электроэнергии двигателями и связанными с ними углеродными следами различные регулирующие органы во многих странах ввели и внедрили законодательство, поощряющее производство и использование более эффективных электродвигателей.Хорошо сконструированный двигатель может преобразовывать более 90% входной энергии в полезную мощность в течение десятилетий. [24] Когда эффективность двигателя повышается даже на несколько процентных пунктов, экономия в киловатт-часах (и, следовательно, в стоимости) огромна. Эффективность электрической энергии типичного промышленного асинхронного двигателя может быть улучшена путем: 1) уменьшения электрических потерь в обмотках статора (например, путем увеличения площади поперечного сечения проводника, улучшения техники обмотки и использования материалов с более высоким электрическим напряжением). проводимости, такие как медь), 2) снижение электрических потерь в катушке ротора или отливки (например,Например, используя материалы с более высокой электропроводностью, такие как медь, 3) уменьшая магнитные потери, используя магнитную сталь более высокого качества, 4) улучшая аэродинамику двигателей, чтобы уменьшить механические потери в обмотке, 5) улучшая подшипники, чтобы уменьшить потери на трение, и 6) минимизация производственных допусков. Для дальнейшего обсуждения этой темы см. Премиум эффективность.)

По соглашению, электрический двигатель относится к железнодорожному электровозу, а не к электрическому двигателю.

Двигатель с физическим питанием [править]

Некоторые двигатели приводятся в действие потенциальной или кинетической энергией, например, некоторые фуникулеры, гравитационные плоскости и конвейеры канатных дорог использовали энергию от движущейся воды или камней, а некоторые часы имеют вес, который падает под действием силы тяжести. Другие формы потенциальной энергии включают сжатые газы (например, пневматические моторы), пружины (заводные моторы) и резинки.

Исторические военные осадные машины включали в себя большие катапульты, требучеты и (в некоторой степени) тараны с питанием от потенциальной энергии.

Пневматический двигатель [править]

Пневматический двигатель - это машина, которая преобразует потенциальную энергию в виде сжатого воздуха в механическую работу. Пневматические двигатели обычно преобразуют сжатый воздух в механическую работу с помощью линейного или вращательного движения. Линейное движение может исходить либо от диафрагмы, либо от поршневого привода, тогда как вращательное движение обеспечивается либо лопастным пневмодвигателем, либо поршневым пневмодвигателем. Пневматические двигатели нашли широкое распространение в индустрии ручных инструментов, и постоянно предпринимаются попытки расширить их использование в транспортной отрасли.Однако пневматические двигатели должны преодолевать недостатки эффективности, прежде чем их можно будет рассматривать в качестве жизнеспособного варианта в транспортной отрасли.

Гидравлический мотор [править]

Гидравлический двигатель получает мощность от жидкости под давлением. Этот тип двигателя используется для перемещения тяжелых грузов и привода машин. [25]

Производительность [править]

Следующие используются при оценке производительности двигателя.

Скорость [править]

Скорость относится к вращению коленчатого вала в поршневых двигателях и скорости вращения роторов компрессора / турбины и роторов электродвигателя.Измеряется в оборотах в минуту (об / мин).

Тяга [править]

Тяга - это сила, действующая на двигатель самолета или его пропеллер после того, как он ускорил проходящий через него воздух.

Крутящий момент [править]

Крутящий момент - это крутящий момент на валу, который рассчитывается путем умножения силы, вызвавшей момент, на расстояние от вала.

Мощность [править]

Мощность - это показатель того, как быстро выполняется работа.

Эффективность [править]

Эффективность - это показатель того, сколько топлива расходуется на производство электроэнергии.

Уровни звука [править]

Шум транспортного средства в основном из-за двигателя на низких скоростях, а также из-за шин и воздуха, проходящего мимо автомобиля на более высоких скоростях. [26] Электродвигатели тише, чем двигатели внутреннего сгорания. Тяговые двигатели, такие как турбовентиляторы, турбореактивные двигатели и ракеты, издают наибольшее количество шума благодаря тому, как их высокоскоростные выхлопные потоки, создающие тягу, взаимодействуют с окружающим неподвижным воздухом. Технология шумоподавления включает в себя глушители системы впуска и выпуска (глушители) на бензиновых и дизельных двигателях и вкладыши шумоподавления на входах в турбовентилятор. Hogan, C. Michael (сентябрь 1973). «Анализ дорожного шума». Журнал воды, воздуха и загрязнения почвы . 2 (3): 387–92. Bibcode: 1973WASP .... 2..387H. DOI: 10.1007 / BF00159677. ISSN 0049-6979.

Список литературы [править]

Внешние ссылки [редактировать]

Wikimedia Commons имеет СМИ, связанные с Двигатели .
Посмотрите двигатель в Викисловарь, бесплатный словарь.
Посмотрите motor в Викисловарь, бесплатный словарь.
,

Смотрите также


avtovalik.ru © 2013-2020