Как работает газотурбинный двигатель танка
На пути к Т-80: танковые газотурбинные двигатели
В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.Первые проекты
Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.
Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.
В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.
В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.
Челябинские двигатели
Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.
Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л.с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.
ГТД-3 для «Объекта 432»
Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.
В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.
В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».
Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.
Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.
Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л.с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.
Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.
ГТД из Ленинграда
Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.
На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».
В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.
Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.
Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.
Двигатель для Т-64А
Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.
Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.
Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.
По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.
Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.
Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.
За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.
На финишной прямой
Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».
Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.
Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.
В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.
По материалам сайтов:
журнал "«Техника и вооружение: вчера, сегодня, завтра…»"
http://armor.kiev.ua/
http://army-guide.com/
http://t80leningrad.narod.ru/
Двигатели
Что такое аэронавтика? | динамика полета | Самолеты | Двигатели | История полета | какой такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Ланс | Индекс сайта | Дом
Двигатели |
Как работает реактивный двигатель?
NEW! Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов поднимается с земли с такой легкостью. Как это случилось? Ответ прост. Это двигатели. Пусть Тереза Беньо из Исследовательского центра Гленна НАСА объяснит больше ... Как показано на НАСА Направление завтра. |
Реактивные двигатели с огромной силой двигают самолет вперед, создаваемый огромная тяга и заставляет самолет лететь очень быстро.
Все реактивные двигатели, которые также называются газовые турбины, работать по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор поднимает давление воздуха. Компрессор сделан со многими лезвиями, прикрепленными к валу. Лопасти вращаются с высокой скоростью и сжимают или сжимают воздух. Сжатый воздух тогда распыляется с топливом, и электрическая искра зажигает смесь. горючие газы расширяются и выдуваются через сопло в задней части двигателя.Когда струи газа стреляют назад, двигатель и самолет смещаются вперед. Когда горячий воздух идет к соплу, он проходит через другую группу лопастей. называется турбиной. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины приводит к вращению компрессора.
На рисунке ниже показано, как воздух проходит через двигатель. Воздух проходит через ядро двигателя, а также вокруг ядра.Это вызывает некоторое количество воздуха быть очень горячим, а некоторые - круче. Кулер воздух затем смешивается с горячим воздух на выходе из двигателя.
Это картина того, как воздух проходит через двигатель
Что такое тяга?
Тяга это передняя сила, которая толкает двигатель и, следовательно, самолет вперед. сэр Исаак Ньютон обнаружил, что для «каждого действия существует равное и противоположная реакция. "Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топливо, температура воздуха может достигать трех тысяч градусов. Мощность воздуха используется для вращения турбины. Наконец, когда воздух уходит, это выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.
Части реактивного двигателя
Поклонник - Вентилятор является первым компонентом в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий вентилятора сделаны из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть проходит через «ядро» или центр двигателя, где на него воздействуют другие компоненты двигателя.
Вторая часть «обходит» сердечник двигателя. Проходит через воздуховод который окружает ядро в задней части двигателя, где он производит большую часть сила, которая продвигает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.
Компрессор - Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает воздух, который поступает в него Постепенно меньшие площади, что приводит к увеличению давления воздуха. это приводит к увеличению энергетического потенциала воздуха. Раздавленный воздух нагнетается в камеру сгорания.
Combustor - В камере сгорания воздух смешан с топливом, а затем загорелся. Есть 20 форсунок для распыления топлива в воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Горючее с кислородом в сжатом топливе воздух, производящий горячие расширяющиеся газы. Внутренняя часть камеры сгорания часто производится из керамических материалов для обеспечения термостойкой камеры. Жара может достигать 2700 °.
Турбина - Высокоэнергетический поток воздуха из камеры сгорания уходит в турбину, вызывая вращение лопастей турбины. Турбины связаны валом, чтобы вращать лопасти в компрессоре и раскрутить впускной вентилятор спереди.Это вращение отнимает энергию у поток высокой энергии, который используется для привода вентилятора и компрессора. Газы Произведенные в камере сгорания движутся через турбину и вращают ее лопасти. Турбины реактивного двигателя вращаются вокруг тысячи раз. Они закреплены на валах которые имеют несколько наборов шарикоподшипников между ними.
Насадка - Сопло является вытяжным каналом двигатель. Это часть двигателя, которая на самом деле производит тягу для самолет.Истощенный энергией воздушный поток, который прошел турбину, в дополнение к более холодный воздух, который обошел ядро двигателя, создает силу при выходе из форсунка, которая движет вперед двигатель и, следовательно, самолет. Сочетание горячего воздуха и холодного воздуха выталкивается и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из активной зоны двигателя с воздух с более низкой температурой, который был обойден в поклоннике.Смеситель помогает сделать двигатель тише.
Первый реактивный двигатель - А Краткая история ранних двигателей
Сэр Исаак Ньютон в 18 веке был сначала предположить, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло в обратном направлении, самолет движется вперед.
Анри Жиффар построил дирижабль, который был приведен в действие первым двигателем самолета - паровой двигатель с тремя лошадьми. Это было очень тяжелый, слишком тяжелый, чтобы летать.
В 1874 году Феликс де Храм года построил моноплан который пролетел короткий прыжок вниз по склону с помощью угольного парового двигателя.
Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.
В 1894 году американец Хирам Максим пытался привести в действие свой трехместный биплан с двумя угольными паровыми двигателями.Это только пролетели на несколько секунд.
Ранние паровые двигатели работали на подогреве угля и, как правило, слишком тяжелый для полета.
американец Сэмюэль Лэнгли сделал модель самолета которые были приведены в действие паровыми двигателями. В 1896 году он успешно управлял Беспилотный самолет с паровым двигателем, названный Aerodrome . Он пролетел около 1 мили, прежде чем испарился. Затем он попытался построить полный размер самолета, Aerodrome A, с бензиновым двигателем.В 1903 году это разбился сразу же после спуска с домашнего катера.
В 1903 году братьев Райт полетел, Flyer , с 12-сильным газом двигатель.
С 1903 года, года первого полета братьев Райт, до конца 1930-х годов бензиновый поршневой двигатель внутреннего сгорания с пропеллером единственное средство, используемое для приведения в движение самолета.
Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттл впервые полетел успешно в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему сгорания. камера, одноступенчатая турбина и сопло.
В то же время, когда Уиттл работал в Англии, Ганс фон Охайн работал над аналогичным дизайном в Германии. Первый самолет успешно Использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель рейс.
General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Это был экспериментальный самолет XP-59A, который впервые полетел в октябре 1942 года.
Типы реактивных двигателей
Турбореактивные двигатели
Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается в 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания для поднять температуру жидкой смеси примерно до 1100 ° F до 1300 ° F. Полученный горячий воздух проходит через турбину, которая приводит в движение компрессор. Если турбина и компрессор работают, давление на выходе турбины будет почти вдвое больше атмосферного давления, и это избыточное давление отправляется к соплу, чтобы произвести высокоскоростной поток газа, который создает тягу.Значительное увеличение тяги может быть достигнуто с помощью форсаже. Это вторая камера сгорания, расположенная после турбины и перед сопло. Дожигатель повышает температуру газа перед соплом. Результатом этого повышения температуры является увеличение примерно на 40 процентов в тяге при взлете и гораздо больший процент на высоких скоростях, как только самолет в воздухе.
Турбореактивный двигатель - реактивный двигатель.В реакторе, расширяющемся газе давить сильно на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает это. Газы протекают через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопа, толкая самолет вперед.
Изображение турбореактивного двигателя
Турбропропы
А турбовинтовой двигатель реактивный двигатель, прикрепленный к винтуТурбина в задняя часть поворачивается горячими газами, и это поворачивает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты приводятся в действие турбовинтовыми двигателями.
Как турбореактивный, турбовинтовой двигатель состоит из компрессора, сгорания камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель обладает большей эффективностью при скорости полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены винтами, которые имеют меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособить более высокие скорости полета, лопасти имеют форму ятагана с опущенными передними кромками на концах лезвия. Двигатели с такими винтами называются пропфанов .
Изображение турбовинтового двигателя
Турбовентиляторы
А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха проходит вокруг двигателя, что делает его тише и дает больше тяги на низких скоростях. Большинство современных авиалайнеров имеют питание турбовентиляторы. В турбореактивном двигателе весь воздух, поступающий на впуск, проходит через газогенератор, который состоит из компрессора, камеры сгорания и турбины. В турбовентиляторном двигателе только часть поступающего воздуха поступает в камера сгорания. Остальная часть проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно как «холодная» струя или смешивается с выхлопом газогенератора производить "горячую" струю.Целью этого типа обходной системы является увеличение тяга без увеличения расхода топлива. Это достигается путем увеличения общий воздушно-массовый поток и снижение скорости в пределах того же общего источника энергии.
Изображение турбовентиляторный двигатель
Турбовальные валы
Это еще одна форма газотурбинного двигателя, которая работает во многом как турбовинтовой двигатель система.Это не водить винт. Вместо этого он обеспечивает мощность для вертолета ротор. Турбовальный двигатель сконструирован таким образом, чтобы скорость вращения вертолета ротор не зависит от скорости вращения газогенератора. Это разрешает частота вращения ротора должна быть постоянной, даже если скорость генератора варьируется, чтобы модулировать количество производимой энергии.
Изображение турбовального двигателя
Ramjets
ПВРД является Самый простой реактивный двигатель и не имеет движущихся частей.Скорость струи "баранов" или нагнетает воздух в двигатель. По сути это турбореактивный двигатель, в котором вращается машины были опущены. Его применение ограничено тем, что его Степень сжатия полностью зависит от скорости движения. ПВРД не развивает статичность тяга и очень малая тяга вообще ниже скорости звука. Как следствие, Для ПВРД необходим некоторый вспомогательный взлет, такой как другой самолет. Он был использован в основном в ракетно-управляемых системах.Космические аппараты используют это тип струи.
Изображение Ramjet Engine
Вернуться к началу
Что такое аэронавтика? | Динамика полета | самолеты | Двигатели | история полета | Что такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Планы Индекс сайта | Дом
Как работают 4 типа турбинных двигателей
Жить с полетной палубыГазовые турбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина производила достаточно мощности, чтобы поддерживать свою работу. Проект был выполнен норвежским изобретателем Эгидусом Эллингом, и он произвел 11 лошадиных сил, что было огромным подвигом в то время.
В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них производят , что на больше, чем 11 лошадиных сил.Здесь представлены 4 основных типа турбинных двигателей, а также плюсы и минусы каждого.
1) Турбореактивный двигатель
Heinkel He 178, первый в мире турбореактивный самолет
турбореактивные двигатели были первыми изобретенными типами газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневые двигатели в вашем автомобиле или самолете, они работают по одной и той же теории: впуск , компрессия, мощность, выпуск .
Как работает турбореактивный двигатель?
Турбореактивные двигатели работают, пропуская воздух через 5 основных секций двигателя:
Шаг 1: Воздухозаборник
Воздухозаборник представляет собой трубу перед двигателем.Забор воздуха может выглядеть просто, но это невероятно важно. Задача впуска - плавно направлять воздух в лопатки компрессора. На низких скоростях он должен минимизировать потерю воздушного потока в двигатель, а на сверхзвуковых скоростях он должен замедлять воздушный поток ниже Маха 1 (воздух, поступающий в турбореактивный двигатель, должен быть дозвуковым, независимо от того, насколько быстро летит самолет ).
Шаг 2: Компрессор
Компрессор приводится в действие турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха.Компрессор представляет собой серию «вентиляторов», каждый из которых имеет все меньшие и меньшие лопасти. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Шаг 3: Камера сгорания
Далее идет камера сгорания, где волшебство действительно начинает происходить. Воздух высокого давления объединяется с топливом, и смесь воспламеняется. Когда топливно-воздушная смесь горит, она движется через двигатель к турбине. Турбореактивные двигатели работают очень обедненно, примерно с 50 частями воздуха на каждую 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6 до 1 до 18 до 1).Одна из главных причин, по которой турбины работают в таком наклоне, заключается в том, что для охлаждения турбореактивного двигателя необходим дополнительный поток воздуха.
Шаг 4: Турбина
Турбина - это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию высокоскоростного воздуха, проходящего через нее. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Круг жизни» турбореактивного двигателя почти завершен.
Шаг 5: Выхлоп (он же «Я отсюда!»)
Высокоскоростная сгоревшая топливно-воздушная смесь выходит из двигателя через выпускную форсунку.Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или все, к чему он прикреплен) вперед.
Турбореактивный вынос:
- Плюсы:
- Относительно простой дизайн
- Способный к очень высоким скоростям
- Занимает мало места
- Минусы:
- Высокий расход топлива
- Громко
- Плохая производительность на низких скоростях
2) Турбовинтовой двигатель
Жить с полетной палубыKing Air с турбовинтовыми двигателями
Следующие три типа турбинных двигателей - это все формы турбореактивного двигателя, и мы начнем с турбовинтового двигателя.Турбовинтовой двигатель представляет собой турбореактивный двигатель, соединенный с пропеллером через систему зацепления.
Как работает турбовинтовой двигатель?
Шаг 1 : турбореактивный двигатель вращает вал, который соединен с коробкой передач
Шаг 2 : коробка передач замедляет вращение, а самая медленная передача соединяется с винтом
Шаг 3 : Пропеллер вращается по воздуху, создавая тягу точно так же, как ваша Cessna 172
Разборка турбовинтового двигателя:
- Плюсы:
- Очень экономичный расход топлива
- Наиболее эффективен на средней скорости между 250-400 узлами
- Наиболее эффективен на средних высотах от 18 000 до 30 000 футов
- Минусы:
- Ограниченная прямая скорость полета
- Системы передачи тяжелы и могут сломаться
3) Турбовентиляторный двигатель
Жить с полетной палубыНекоторые широкофюзеляжные турбовентиляторные двигатели могут производить более 100 000 фунтов тяги.
Турбовентиляторыобъединяют лучшее из обоих миров между турбореактивными двигателями и турбовинтовыми двигателями.И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс.
Как работает турбовентилятор?
Турбовентиляторы работают, прикрепляя канальный вентилятор к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, помогает охлаждать двигатель и снижает уровень шума двигателя.
Шаг 1 : Входящий воздух делится на два отдельных потока. Один поток обтекает двигатель (обводной воздух), а другой - через сердечник двигателя.
Шаг 2 : Обводной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.
Шаг 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.
Турбофан вынос:
- Плюсы:
- Экономия топлива
- тише турбореактивных
- Они выглядят потрясающе
- Минусы:
- Тяжелее турбореактивных
- Большая лобовая площадь, чем у турбореактивных двигателей
- Неэффективно на очень больших высотах
Турбовентилятор Pratt & Whitney F100 с форсажной камерой F-16
4) Турбовальный двигатель
Вертолет Bell 206 с турбовальным двигателем
Турбовальные двигателив основном используются на вертолетах.Самое большое различие между турбовальными и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги в задней части двигателя.
Как работает турбовальный вал?
Турбовальные валы - это, по сути, турбореактивный двигатель с большим валом, соединенным с ним сзади. А поскольку большинство этих двигателей используются на вертолетах, этот вал соединен с лопастью ротора.
Шаг 1 : Двигатель по большей части работает как турбореактивный двигатель.
Шаг 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.
Шаг 3 : коробка передач передает вращение от вала к лопасти ротора.
Шаг 4 : Вертолет с помощью неизвестных и магических средств способен летать по небу.
Вывод турбовального вала:
- Плюсы:
- Гораздо более высокое отношение мощности к весу, чем у поршневых двигателей
- Обычно меньше поршневых двигателей
- Минусы:
- Громко
- Зубчатые передачи, соединенные с валом, могут быть сложными и выходить из строя
4 типа двигателей, основанные на одной базовой концепции
Газотурбинные двигатели прошли долгий путь за последние 100 лет.И хотя турбореактивные двигатели, турбовинтовые турбовентиляторы, турбовентиляторы и турбовалы имеют свои различия, они по сути производят мощность одинаково: впуск, сжатие, мощность и выхлоп.
Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и тесты, которые сделают вас умнее, безопаснее пилота.
,
Как работает реактивный двигатель
Возможно, вы задавались вопросом, как работает реактивный двигатель, но отказались от мысли, что вы сможете понять ракетостроение. Но на самом деле это простая концепция, которая поразит человека рядом с вами на вашем следующем рейсе. Итак, мы собираемся объяснить вовлеченные процессы, чтобы каждый мог получить хорошее представление о принципах, лежащих в основе реактивных двигателей.
Реактивные двигатели, чаще используемые для самолетов, представляют собой тип газотурбинного двигателя.Теперь вы можете знать паровые турбины, где топливо сжигается для производства высокотемпературного протекающего пара, который приводит в движение турбину, а затем вращает вал, прежде чем будет выпущен из системы. Поворот этого вала является выходной мощностью, и именно это вращение приводит в движение вращающийся объект. Газовая турбина напоминает те же основные принципы, однако за работу турбины отвечает газ под давлением. В реактивных двигателях высокотемпературный газ под давлением обеспечивает вращение компрессора спереди, но, что более важно, то, что выпускается из системы, вылетает сзади с высокой скоростью, создавая так называемую тягу.
Проще говоря, у реактивных двигателей есть ядро, которое разделено на три основные части:
- Компрессор - в передней части двигателя расположены лопасти вентилятора, некоторые вращающиеся (роторы) и некоторые статические (статоры), которые всасывают воздух в двигатель. Существует множество рядов лопастей, и, когда воздух проходит мимо каждого ряда, он становится все более герметичным и температура повышается.
- Камера сгорания - этот сжатый воздух затем распыляется с топливом (чаще всего Jet A или Jet A-1, которые имеют керосинового типа), а затем электрическая искра зажигает смесь топлива и воздуха в камере.Это приводит к тому, что смесь воздуха и топлива сгорает, что значительно увеличивает давление и температуру.
- Турбины - горячий сжатый газ вытягивается из двигателя задней турбиной, которая забирает энергию из газа и вызывает падение давления и температуры. Когда давление снижается, газ течет быстрее (подумайте о том, чтобы отпустить надувной баллон). Энергия от газа, который приводит в движение заднюю турбину, обеспечивает вращение компрессора, который всасывает воздух спереди.
Высокоскоростные газы, выпускаемые через заднее сопло, вызывают тягу. Чтобы понять это, мы ссылаемся на третий закон движения Ньютона: для каждого действия существует равная и противоположная реакция. Когда газ вырывается из спины, вперед направляется равная и противоположная сила. Подумайте о том, когда вы толкаете стену бассейна, чтобы скользить в противоположном направлении; даже если сила вашего толкания направлена к стене, равная и противоположная сила реакции заставляет вас двигаться в противоположном направлении.
При скорости около 400 миль в час один фунт тяги равен одной лошадиной силе, но на более высоких скоростях это соотношение увеличивается, а фунт тяги превышает одну лошадиную силу. На скорости менее 400 миль в час это соотношение уменьшается. Эта сила позволяет большим самолетам, таким как 747, летать со скоростью до 600 миль в час.
Существуют также различные типы реактивного двигателя, такие как турбовинтовой двигатель. Вы узнаете, является ли это турбовинтовым двигателем с помощью больших выталкивающих винтов в передней части, который отвечает за тягу, так как большая часть энергии от газа передается в компрессор задними турбинами, поэтому приложенный газ не отвечает за тяга.

Turboshaft - это тип вертолетов, вертолетов, силовых установок и даже танка M1. Процесс аналогичен турбовинтовому двигателю, однако вместо привода гребных винтов вращающийся вал может питать различные устройства, такие как насосы, генераторы, колеса и вообще все, что вращается.
Современные большие самолеты используют турбовентилятор High-Bypass Turbofan, который похож на стандартный турбореактивный двигатель, за исключением того, что большой вентилятор спереди всасывает больше воздуха в двигатель.Однако не весь воздух проходит через компрессор и турбины, при этом большая часть воздуха фактически проходит через сердечник и проходит через каналы снаружи от сердечника (в среднем в 5 раз больше воздуха обходится, чем фактически проходит через сердечник). Они более эффективны, особенно на дозвуковых скоростях (т. Е. Ниже скорости звука, 768 миль в час), а также намного тише, при этом все еще имея способность разгоняться с более тяжелой скоростью, чем локомотив, от 0 до 200 миль в час менее чем за 60 секунд.
,