Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как работает тнвд дизельного двигателя


Изучаем ТНВД — DRIVE2

Топливный насос высокого давления (сокр. ТНВД) — одно из основных и сложных устройств дизельного мотора. Он подает топливо в двигатель. Качественный ремонт дизельного ТНВД требует профессиональное оборудование для диагностики и регулировки. Наша специализированная станция оснащена таким оборудованием.

В подавляющем большинстве случаев, ремонт ТНВД необходим по причине применения низкокачественного топлива и моторных масел. При попадании с дизтопливом твердых частиц, пыли и т.п. способствует выходу из строя плунжерных пар, установка которых производится с микронным допуском. Также могут пострадать форсунки отвечающие за распыление и впрыск горючего. Основными признаками несправности в работе насоса и форсунок являются: увеличение расхода, дымность, посторонние шумы, снижение мощности, трудный запуск.

Самые современные моторы стали оснащаться электронными системами впрыска. Теперь ЭБУ отвечает за дозировку подачи топлива в цилиндры по времени и по количеству солярки. При появлении каких либо перебоев в работе следует, не откладывая, обратиться в дизель-сервис с профессиональным диагностическим оборудованием. В ходе ремонта топливного насоса высокого давления потребуется замена некоторых деталей. Диагностика позволяет определить степень износа и остаточный ресурс запчастей, позволяя съэкономить (не менять же всё подряд).

В ходе работ выясняется равномерность подачи топлива, стабильность давления, частота вращения вала и т.д.

По мере ужесточения норм допустимого выброса вредных веществ в атмосферу транспортными средствами, традиционные механические топливные насосы высокого давления (ТНВД) дизельных автомобилей оказались не в состоянии обеспечить необходимую точность дозирования топлива и скорость реагирования на изменяющиеся условия движения. Это привело к необходимости установки электронного регулирования топливной системы дизельного двигателя. Фирмами Bosch, Diesel Kiki и Nippon Denso был разработан ряд систем электронного управления подачей топлива на базе топливного насоса VЕ. Эти системы обеспечили повышение точности дозирования топлива в отдельные цилиндры, уменьшение межцикловой нестабильности процесса сгорания и уменьшение неравномерности работы дизеля в режиме холостого хода. В отдельных системах устанавливается быстродействующий клапан, который позволяет разделить процесс впрыска на две фазы, что уменьшает жесткость процесса сгорания.

Точное регулирование системы впрыска, не только способствует снижению выброса токсичных веществ в результате более полного сгорания топлива, но и повышает КПД двигателя и увеличение мощности.

В электронных системах применяются топливные насосы распределительного типа, которые дополнены управляемыми исполнительными устройствами для регулирования положения дозатора и клапана автомата опережения впрыска топлива.

Электронный блок управления получает сигналы от множества датчиков, таких как положения педали акселератора, частоты вращения вала двигателя, температуры охлаждающей жидкости и топлива, подъема иглы форсунок, скорости движения автомобиля, давления наддува и температуры воздуха на впуске.

Эти сигналы обрабатываются в электронном блоке управления. Суммированный сигнал посылается в ТНВД, обеспечивая подачу оптимального количества топлива к форсункам и оптимальный угол опережения впрыска в соответствии с эксплуатационными условиями. Если подключается дополнительная нагрузка (например, включают кондиционер воздуха), то в электронный блок управления приходит соответствующий сигнал, и дополнительная нагрузка компенсируется увеличением подачи топлива. Электронный блок управления также контролирует работу свечей накаливания в трех стадиях – период накаливания, установившийся режим работы свечей накаливания и период после накаливания, в зависимости от температуры.


Рис. 1. Схема электронного регулирования одноплунжерного топливного насоса типа VE фирмы Bosch дизельного двигателя.

Рис.2. Схема системы электронного управления одноплунжерного ТНВД: 1 – датчик начала впрыска; 2 – датчик ВМТ и частоты вращения коленчатого вала; 3 – расходомер воздуха; 4 – датчик температуры охлаждающей жидкости; 5 – датчик положения педали подачи топлива; 6 – блок управления; 7 – исполнительное устройство ускорителя пуска и прогрева двигателя; 8 – исполнительное устройство управления клапаном рециркуляции отработавших газов; 9 – исполнительное устройство управления углом опережения впрыска; 10 – исполнительное устройство привода дозирующей муфты; 11 – датчик хода дозатора; 12 – датчик температуры топлива; 13 – ТНВД
Основным элементом системы является электромагнитное исполнительное устройство 10, которое перемещает дозирующую муфту ТНВД.

Управление процессами топливоподачи осуществляется с помощь блока управления 6. В блок управления поступает информация от различных датчиков: начала впрыска 1, установленного в одной из форсунок впрыска топлива; верхней мертвой точки и частоты вращения коленчатого вала 2; расходомера воздуха 3; температуры охлаждающей жидкости 4; положения педали топлива 5 и др. В соответствии с заданными в памяти блока управления характеристиками управления и полученной информацией от датчиков блок управления выдает выходные сигналы на исполнительные механизмы управления цикловой подачей и углом опережения впрыска топлива. Таким образом, регулируется величина цикловой подачи топлива от холостого хода до режима полной нагрузки, а также во время холодного пуска.

Потенциометр исполнительного устройства посылает сигнал обратной связи в электронный блок управления, определяя точное положение дозирующей муфты. Угол опережения впрыскивания топлива регулируется подобным же образом.

Электронный блок управления формирует сигналы, обеспечивающие протекание регуляторных характеристик, стабилизацию частоты вращения холостого хода, рециркуляцию ОГ, степень которой определяется по сигналам датчика массового расхода воздуха. При этом в блоке управления сопоставляются реальные сигналы датчиков со значениями в запрограммированных полях характеристик, в результате чего на сервомеханизм исполнительных устройств передается выходной сигнал, обеспечивающий требуемое положение дозирующей муфты с высокой точностью регулирования.

В систему заложена программа самодиагностики и отработки аварийных режимов, что позволяет обеспечить движение автомобиля при большинстве неисправностей, кроме выхода из строя микропроцессора.

В большинстве случаев, для одноплунжерных насосов высокого давления распределительного типа, в качестве исполнительного устройства, регулирующего цикловую подачу, используется электромагнит 6 (рис.) с поворотным сердечником, конец которого соединен через эксцентрик с дозирующей муфтой 5. При прохождении тока в обмотке электромагнита сердечник поворачивается на угол от 0 до 60°, соответственно перемещая дозирующую муфту 5, с помощью которой происходит изменение цикловой подачи.
Основным элементом системы является электромагнитное исполнительное устройство 10, которое перемещает дозирующую муфту ТНВД.


Рис.3. Развернутая схема одноплунжерного насоса с электронным управлением: 1 – ТНВД; 2 – электромагнитный клапан управления автоматом опережения впрыскивания; 3 – жиклер; 4 – цилиндр автомата опережения впрыскивания; 5 – дозатор; 6 – электромагнитное устройство изменения подачи топлива; 7 – электронный блок управления; 8 – датчики температуры, давления наддува, положение подачи топлива; 9 – педаль управления; 10 – возврат топлива; 11 – подача топлива к форсунке

Управление автоматом опережения впрыска осуществляется электромагнитным клапаном 2, который регулирует давление топлива, действующего на поршень автомата. Клапан работает в импульсном режиме «открыт — закрыт», модулируя давление в зависимости от частоты вращения распределительного вала двигателя. Когда клапан открыт, давление уменьшается, и угол опережения впрыскивания также уменьшается. Когда клапан закрыт, давление увеличивается, перемещая поршень автомата в сторону увеличения угла опережения впрыска. Отношение импульсов определяется электронным блоком в зависимости от режима работы и температурного состояния двигателя. Для определения момента начала впрыска одна из форсунок имеет индукционный датчик подъема иглы.

В качестве исполнительных механизмов, воздействующих на органы, управляющие подачей топлива в ТНВД, применяются пропорциональные электромагнитные, моментные, линейные или шаговые электродвигатели, которые служат в качестве непосредственного привода дозатора топлива в насосах распределительного типа.


Рис.4. Электромагнитный исполнительный механизм ТНВД распределительного типа: 1 – датчик хода дозатора; 2 – исполнительное устройство; 3 – дозатор; 4 – клапан изменения угла начала впрыска с электромагнитным приводом

В корпус форсунки встроена катушка возбуждения 2 (рис.), на которую электронный блок управления подает определенное опорное напряжение, чтобы ток в электрической цепи поддерживался постоянным, независимо от изменений температуры.


Рис.5. Схема форсунки с датчиками подъема иглы: 1 – регулировочный винт; 2 – катушка возбуждения; 3 – шток; 4 – провод; 5 – электрический разъем

Этот ток создает вокруг катушки магнитное поле. Как только игла форсунки поднимается, сердечник 3 изменяет магнитное поле, вызывая изменение сигнала напряжения. В определенный момент подъема иглы возникает пиковый импульс, который воспринимается электронным блоком управления и используется для управления углом опережения впрыска. Этот сигнал сравнивается с хранящимися в памяти электронного блока значениями для соответствующих эксплуатационных условий работы дизеля. Электронный блок управления посылает обратный сигнал на электромагнитный клапан, соединенный с рабочей камерой автомата опережения впрыскивания и давление, действующее на поршень автомата, изменяется, в результате чего поршень перемещается под действием пружины, изменяя угол опережения впрыскивания.

Максимальное давление впрыска, достигаемое электронным управлением топливоподачей на базе топливного насоса VЕ составляет 150 кгс/см2. Однако ресурсы этой конструктивной схемы по напряжениям в сложном кулачковом приводе практически исчерпаны. Более совершенными являются ТНВД следующего поколения – VP-44.

Она использована на последних моделях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2.


Рис.6 Система непосредственного впрыска дизельного двигателя с ТНВД VP-44: А – датчики и исполнительные механизмы; В – приборы; С – контур низкого давления; Д – система подачи воздуха; Е – система нейтрализации вредных веществ в отработавших газах; М – крутящий момент; CAN – бортовой контроллер связи; 1 – датчик хода педали управления подачей топлива; 2 – механизм выключения сцепления; 3 – конт

Дизельные ТНВД - Топливный ТНВД

Фото 2/5 | Угловой насос для дизельных насосов

Топливный насос является сердцем дизельного двигателя. Точно доставленное топливо поддерживает ритм или синхронизацию, которые обеспечивают плавную работу двигателя. Одновременно насос также контролирует количество топлива, необходимое для получения желаемой мощности. ТНВД выполняет работу как дроссельной заслонки, так и системы зажигания, необходимых в бензиновых двигателях.При поиске неисправностей бензинового двигателя вы проверяете компрессию, топливо и искру. Дизель не имеет системы зажигания, поэтому есть еще одна вещь, чтобы пойти не так, как надо с ним. Основные успехи в разработке дизельного двигателя являются прямым результатом лучшего впрыска топлива. Вот как работает впрыскивающий насос.

Насосы Inline-Injection (Jerk)
Первые насосы, использующие поршни для нагнетания дозированного топлива в камеру сгорания, были разработаны еще в 1890-х годах. Это заняло почти сорок лет, но в 1927 году Bosch представила серийно выпускаемый линейный насос с управляемой спиралью.Эти первые насосы очень похожи на Bosch P7100 (P-pump) на двигателях Dodge Ram 5.9L Cummins '94 до '98. Иногда их называют рывковыми насосами, они состоят из отдельных насосных и плунжерных блоков, соединенных в линию, по одному на цилиндр. Они активируются кулачком, который механически связан с двигателем. Тем не менее, насос имеет возможность варьировать время, хотя и не является сложной системой с электронным управлением. ТНВД выглядят как мини-линейные двигатели. Самые ранние встроенные нагнетательные насосы давали давление впрыска 3000-5000 фунтов на квадратный дюйм, в то время как более новый Bosch P7100, установленный на двигателях Cummins '94 - 981/2, давал давление 18000 фунтов на квадратный дюйм.

Распределительные (роторные) нагнетательные насосы
В этих типах насосов имеется только один поршень для дозирования топлива. Вращающийся ротор создает гидравлическое соединение с различными отверстиями на распределительной головке, что похоже на работу распределителя на бензиновом двигателе. Преимущества роторного насоса с одним поршнем в том, что все выстрелы топлива в точности одинаковы, что делает его меньшим в целом. Кроме того, насосы распределительного типа имеют меньше движущихся частей по сравнению с встроенными насосами.Два примера механических роторных насосов - Stanadyne DB2 и Bosch VE. Stanadyne DB2 создает давление 6700 фунтов на квадратный дюйм, а Bosch VE - 17 000 фунтов на квадратный дюйм.

Примером электронного роторного насоса является Bosch VP44, который способен создавать давление 23 000 фунтов на квадратный дюйм. Это самый умный насос с наибольшей ответственностью - даже по сравнению с новыми насосами СР3 Common-Rail. Это так, потому что все, что нужно CP3, это создать давление. Помимо создания давления, VP44 должен в электронном виде контролировать время и количество топлива, поступающего в двигатель.

Впрыск Common-Rail
При впрыске Common-Rail сам насос потерял значительную часть своих полномочий, чтобы решить, когда будет доставлено топливо под давлением и в каком количестве. Например, насос CP3 получает топливо из топливного бака. Затем он использует радиально-поршневую конструкцию для огромного увеличения давления. Топливо под высоким давлением направляется в систему Common-Rail, которая в основном является аккумулятором для форсунок. Инжекторы вступают во владение оттуда.

Форсунки
Линии, соединяющие топливный насос с топливной форсункой, создавали проблемы для первых инженеров-дизелей.Так в 1905 году Карл Вайдман избавился от них, прочесав инжекторный насос и инжектор. Инжектор блока представляет собой компактную конструкцию впрыска топлива, в которой поршень насоса создает высокое давление за счет механической силы, прикладываемой двигателем. Плунжер и инжектор объединены в одно устройство, задачей которого является подача распыляемого топлива в камеру сгорания. Наиболее распространенное применение для форсунок - это Volkswagen и большие дизельные двигатели. DP

Интересные факты о закачке топлива
* Первые дизельные двигатели использовали сжатый воздух для подачи топлива в камеру сгорания.Это была оставшаяся технология от экспериментов с угольной пылью.

* Компания Atlas Imperial Diesel в Окленде, штат Калифорния, разработала свою первую топливную систему Common-Rail в 1919 году.

* Основной проблемой для систем впрыска топлива является отсутствие капель в конце впрыска. Даже небольшая дополнительная капля скинула бы цикл сгорания.

* В современных дизельных двигателях топливо покидает инжектор со скоростью 30 000 фунтов на квадратный дюйм. Для сравнения, это число соответствует диапазону давлений, в которых работают водяные струи.Водоструйные машины используют газ под высоким давлением h30 для резки различных материалов, включая пластик, дерево, сталь и алюминий.

* Cummins и Scania объединились для создания системы впрыска Common-Rail высокого давления XPI, способной поддерживать высокое давление топлива при любых оборотах двигателя.

* Первые инъекционные насосы имели масляные щупы.

,

впрыск дизельного топлива | HowStuffWorks

Одно большое различие между дизельным и газовым двигателями заключается в процессе впрыска. Большинство автомобильных двигателей используют впрыск порта или карбюратор. Система впрыска порта впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух поступает в цилиндр. Поэтому в автомобильном двигателе все топливо загружается в цилиндр во время такта впуска и затем сжимается.Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя - если он слишком сильно сжимает воздух, топливно-воздушная смесь самопроизвольно воспламеняется и вызывает детонации . Из-за сильного нагрева стук может повредить двигатель.

В дизельных двигателях

используется непосредственный впрыск топлива - дизельное топливо впрыскивается непосредственно в цилиндр.

Инжектор на дизельном двигателе является его наиболее сложным компонентом и был предметом многочисленных экспериментов - на любом конкретном двигателе он может быть расположен в разных местах.Инжектор должен выдерживать температуру и давление внутри цилиндра и при этом доставлять топливо в мелком тумане. Распространение тумана в цилиндре так, чтобы он был равномерно распределен, также является проблемой, поэтому некоторые дизельные двигатели используют специальные индукционные клапаны, камеры предварительного сгорания или другие устройства для завихрения воздуха в камере сгорания или иным образом улучшают процесс зажигания и сгорания. ,

Некоторые дизельные двигатели содержат свечу накаливания .Когда дизельный двигатель холодный, процесс сжатия может не поднять воздух до достаточно высокой температуры, чтобы воспламенить топливо. Свеча накаливания - это провод с электрическим подогревом (подумайте о горячих проводах, которые вы видите в тостере), который нагревает камеры сгорания и повышает температуру воздуха, когда двигатель холодный, чтобы двигатель мог запуститься. По словам Клея Браттона, технического специалиста по тяжелому оборудованию Journeyman:


Все функции в современном двигателе контролируются контроллером ЭСУД, связывающимся с тщательно продуманным набором датчиков, измеряющих все от R.ВЕЧЕРА. к температуре охлаждающей жидкости двигателя и масла и даже к положению двигателя (т.е. T.D.C.). Свечи накаливания сегодня редко используются на больших двигателях. Контроллер ЭСУД измеряет температуру окружающего воздуха и задерживает синхронизацию двигателя в холодную погоду, чтобы инжектор распылял топливо позднее. Воздух в цилиндре сжимается больше, создавая больше тепла, что способствует запуску.

Меньшие двигатели и двигатели, у которых нет такого продвинутого компьютерного управления, используют свечи накаливания, чтобы решить проблему холодного запуска.

Конечно, механика - не единственная разница между дизельными и бензиновыми двигателями. Есть также проблема самого топлива.

,

дизельных двигателей против бензиновых двигателей

Теоретически дизельные и бензиновые двигатели очень похожи. Оба двигателя внутреннего сгорания предназначены для преобразования химической энергии, имеющейся в топливе, в механическую энергию. Эта механическая энергия перемещает поршни вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом, и движение поршней вверх и вниз, известное как линейное движение, создает вращательное движение, необходимое для вращения колес автомобиля вперед.

Как дизельные, так и бензиновые двигатели преобразуют топливо в энергию посредством серии небольших взрывов или возгораний. Основное различие между дизелем и бензином заключается в том, как происходят эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и зажигается искрами от свечей зажигания. Однако в дизельном двигателе сначала сжимается воздух, а затем впрыскивается топливо. Поскольку воздух нагревается при сжатии, топливо воспламеняется.

Следующая анимация показывает цикл дизеля в действии.Вы можете сравнить его с анимацией бензинового двигателя, чтобы увидеть различия.

Дизельный двигатель использует четырехтактный цикл сгорания точно так же, как бензиновый двигатель. Четыре удара:

  1. Ход впуска - Впускной клапан открывается, впуская воздух и опуская поршень.
  2. Ход сжатия - поршень движется вверх и сжимает воздух.
  3. Ход сгорания - Когда поршень достигает вершины, топливо впрыскивается в нужный момент и зажигается, заставляя поршень снова опуститься.
  4. Ход выхлопа - поршень движется назад к вершине, выталкивая выхлоп, созданный в результате сгорания, из выпускного клапана.

Помните, что дизельный двигатель не имеет свечи зажигания, что он впускает воздух и сжимает его, а затем впрыскивает топливо непосредственно в камеру сгорания (прямой впрыск). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе. В следующем разделе мы рассмотрим процесс впрыска дизеля.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.