Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как работает водородный двигатель


что это, как работает, схема, фото, безопасность,

Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.

Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.

В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles - электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.

В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.

Риваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.

Фото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Плюсы и минусы водородной установки для автомобиля

Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.

Недостатки водородного топлива:

  • Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
  • Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
  • Высокая стоимость автомобиля.
  • Передвигаться можно лишь в тех местах, где имеются заправки.
  • Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
  • Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.

Плюсы водородного топлива:

  • Нет вредных выбросов в атмосферу.
  • Водородные двигатели практически не шумят.
  • Быстрая заправка – менее 5 минут.
  • Есть большой потенциал для развития.
  • Водород даёт в 3 раза больше энергии, чем бензин.
  • Высокий крутящий момент при начале движения.
  • Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
  • Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
  • Хороший запас хода водородного авто – 400-1000 км.

Опасен ли водород для человека?

Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.

Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.

Чем водородные авто лучше электромобилей?

Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.

Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.

Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.

Как выглядит батарея в электрокаре

На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.

Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?

Как работает водородный автомобиль

Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.

Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.

Попов Андрей Геннадьевич

Автослесарь, стаж работы 19 лет

Задать вопрос

За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).

А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.

 

Мелехов Алексей Викторович

Автоэлектрик , стаж работы 9 лет

Задать вопрос

Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.

А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.

Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.

Mazda RX-8 Hydrogen RE

Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.

Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.

Где заправляют водородные автомобили?

К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.

Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.

Автозаправки бывают 3 типов:

  1. Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
  2. Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
  3. Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.

Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.

Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina h3 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.


Сколько раз прочитали статью:
998

Есть свое мнение или вопрос по теме статьи? Напиши свой комментарий ниже!

Как работают водородные двигатели? (с рисунком)

Водородные двигатели считаются многими отличной альтернативой двигателям на ископаемом топливе. Есть два типа водородных двигателей, и они основаны на различных принципах мощности. Водородные двигатели внутреннего сгорания работают аналогично двигателям внутреннего сгорания, работающим на бензине. Двигатель на водородных топливных элементах работает, смешивая водород и кислород, вырабатывая электричество во время химической реакции.

Водород можно использовать вместо ископаемых видов топлива для двигателей.Водородные двигатели сгорания

аналогичны другим двигателям внутреннего сгорания, за исключением того, что они используют водород вместо ископаемого топлива, что упрощает преобразование процесса производства из нефтяных горелок в водородные двигатели. Эти водородные двигатели сжигают жидкий водород для перемещения поршней и выработки энергии. Водород обеспечивает высокую энергию без вредных выхлопных газов.

Однако существуют некоторые ограничения для водородного двигателя внутреннего сгорания, которые делают его непрактичным.Чтобы хранить достаточно топлива, чтобы быть полезным, водород должен храниться в жидкой форме, что требует охлаждения до экстремально низких температур. Такая низкая температура приведет к деформации и образованию трещин не только на топливном баке, но и на любой окружающей конструкции. Изоляция и усиление транспортного средства, чтобы противостоять этим температурам, увеличивает стоимость производства до непомерно высокого уровня.

Альтернативой этой модели является модель топливного элемента.Водород и кислород смешиваются внутри топливного элемента, объединяясь в воду. Эта химическая реакция также выделяет электричество, которое можно хранить и использовать для питания двигателя. Вода - единственный выхлоп, производимый этим двигателем, что делает его хорошим вариантом для уменьшения загрязнения воздуха.

Хотите автоматически сэкономить время и деньги месяца? Пройдите 2-минутный тест, чтобы узнать, как начать экономить до 257 долларов в месяц.

Внутри топливного элемента сжатый газообразный водород проходит через покрытый платиной катализатор, где электроны вытягиваются, генерируя электричество и создавая положительные ионы водорода. Кислород вводится в клетку через катодную связь с ионами, образуя воду. Эта вода может затем быть выпущена как выхлоп. Энергии, генерируемой одним топливным элементом, будет недостаточно для питания транспортного средства, но ряд элементов может быть связан для обеспечения достаточной энергии.

Существуют также ограничения для водородных двигателей на топливных элементах. Они исключительно хрупкие и могут быть недостаточно прочными, чтобы выдержать использование в автомобиле. Они используют дорогие компоненты и драгоценные металлы, такие как платина, в своей конструкции, что увеличивает стоимость производства.

Топливные элементы также подвержены замерзанию, особенно перед запуском.После того, как водородный двигатель работает, химический процесс генерирует достаточное количество тепла для предотвращения замерзания клеток. Однако они не производят столько тепла, сколько двигатели внутреннего сгорания, а двигателям с топливными элементами требуется значительно больше времени для прогрева.

,

Как работают водородные автомобили | HowStuffWorks

Автомобиль будущего здесь сегодня. Конечно, вы еще не можете купить его; но если вы живете в Калифорнии, вы можете арендовать один. Он не использует бензин и не загрязняет воздух. Фактически, он производит пар вместо выхлопа. Так в чем же загадочное топливо? Водород - самый простой и распространенный элемент во вселенной. И некоторые люди думают, что через 20-30 лет мы все будем водить эти водородные, экономичные автомобили.

Хотя автомобили на водородном топливе обладают качеством научной фантастики, идея на самом деле не нова. На самом деле, технология использования водорода для производства энергии существует с первой половины 19-го века - это дольше, чем автомобили. Новым является то, что вы можете увидеть на дороге водородный автомобиль с паром, выходящим из выхлопной трубы вместо дурно пахнущих газов. В настоящее время существует несколько водородных автомобилей, но большинство из них - концепт-кары.Эти экологичные машины для вождения включают Chevrolet Equinox, BMW 745h и Honda FCX, которая в настоящее время доступна для аренды в Калифорнии.

Что делает возможным использование водородного автомобиля, так это устройство под названием , топливный элемент , который преобразует водород в электричество, выделяя только тепло и воду в качестве побочных продуктов. Поскольку это экологически чистый, водород кажется идеальным топливом для 21-го века. Многие люди в правительстве и автомобильной промышленности в восторге от его потенциала.Водородные автомобили обладают потенциалом экономии топлива и дают надежду на экологичное, экологичное вождение. Но все еще есть много проблем, которые необходимо преодолеть, и на вопросы, на которые необходимо ответить, прежде чем водород станет топливом выбора для достаточного количества людей, чтобы сделать большую разницу в нашем нынешнем использовании ископаемого топлива. Например, где мы возьмем водород? Насколько дорогими будут эти экономичные автомобили? Сможете ли вы найти водородную заправочную станцию, чтобы пополнить свой бак? И, пожалуй, самое главное, что топливо в качестве топлива действительно так экологически чист, как кажется?

Мы рассмотрим эти вопросы на следующих страницах, но мы можем дать вам один быстрый ответ прямо сейчас: если только вы не проживаете в очень специфических частях страны и не имеете карманов с наличными деньгами, не ждите водород автомобиль на вашей дороге в течение следующего десятилетия.

,

топливных элементов | Гидрогеника

Водород + Кислород = Электричество + Водяной пар


Катод: O 2 + 4H + + 4e - → 2H 2 O
Анод: 2H 2 4H + + 4e - 9000 Всего: 2H 2 + O 2 2H 2 O

Топливный элемент - это устройство, которое преобразует потенциальную химическую энергию (энергию, запасенную в молекулярных связях) в электрическую энергию.Элемент PEM (протонообменная мембрана) использует газообразный водород (H 2 ) и газообразный кислород (O 2 ) в качестве топлива. Продуктами реакции в клетке являются вода, электричество и тепло. Это значительное улучшение по сравнению с двигателями внутреннего сгорания, электростанциями, работающими на угле, и атомными электростанциями, которые производят вредные побочные продукты.

Поскольку O 2 легко доступен в атмосфере, нам нужно только снабдить топливный элемент H 2 , который может быть получен в процессе электролиза (см. Щелочной электролиз или PEM электролиз).

Существует четыре основных элемента топливного элемента PEM:

Анод, отрицательный пост топливного элемента, имеет несколько рабочих мест. Он проводит электроны, которые освобождены от молекул водорода, так что они могут быть использованы во внешней цепи. Он имеет протравленные в нем каналы, которые равномерно распределяют газообразный водород по поверхности катализатора.

Катод, положительный полюс топливного элемента, имеет протравленные в нем каналы, которые распределяют кислород по поверхности катализатора.Он также проводит электроны обратно из внешнего контура к катализатору, где они могут рекомбинировать с ионами водорода и кислорода с образованием воды.

Электролит - это протонообменная мембрана. Этот специально обработанный материал, похожий на обычную кухонную пластиковую пленку, проводит только положительно заряженные ионы. Мембрана блокирует электроны. Для PEMFC мембрана должна быть гидратирована, чтобы функционировать и оставаться стабильной.

Катализатор представляет собой специальный материал, который облегчает реакцию кислорода и водорода.Обычно его изготавливают из наночастиц платины, очень тонко нанесенных на копировальную бумагу или ткань. Катализатор является шероховатым и пористым, так что максимальная площадь поверхности платины может подвергаться воздействию водорода или кислорода. Покрытая платиной сторона катализатора обращена к PEM.

Как следует из названия, сердце клетки - это протонообменная мембрана. Это позволяет протонам проходить через него практически беспрепятственно, в то время как электроны блокируются. Таким образом, когда H 2 попадает на катализатор и распадается на протоны и электроны (помните, что протон - это то же самое, что и ион H +), протоны проходят непосредственно через сторону катода, в то время как электроны вынуждены проходить через внешнюю цепи.По пути они выполняют полезную работу, например, зажигают лампочку или приводят в движение мотор, а затем объединяются с протонами и O 2 на другой стороне для производства воды.

Как это работает? Газообразный водород под давлением (H 2 ), поступающий в топливный элемент со стороны анода. Этот газ проходит через катализатор под давлением. Когда молекула H 2 вступает в контакт с платиной на катализаторе, она расщепляется на два иона H + и два электрона (e-). Электроны проходят через анод, где они проходят через внешнюю цепь (выполняя полезную работу, такую ​​как вращение двигателя) и возвращаются к катодной стороне топливного элемента.

Между тем, на катодной стороне топливного элемента газообразный кислород (O 2 ) проходит через катализатор, где он образует два атома кислорода. Каждый из этих атомов имеет сильный отрицательный заряд. Этот отрицательный заряд притягивает два иона H + через мембрану, где они соединяются с атомом кислорода и двумя электронами из внешнего контура, образуя молекулу воды (H 2 O).

Все эти реакции происходят в так называемом стеке клеток. Опыт также включает в себя установку полной системы вокруг основного компонента, который является стеком ячеек.

Стек будет встроен в модуль, включающий управление топливом, водой и воздухом, аппаратное и программное обеспечение управления охлаждающей жидкостью. Затем этот модуль будет интегрирован в целостную систему для использования в различных приложениях.

Из-за высокого энергетического содержания водорода и высокой эффективности топливных элементов (55%), эта великолепная технология может использоваться во многих приложениях, таких как транспорт (автомобили, автобусы, вилочные погрузчики и т. Д.) И резервное питание для производства электроэнергии во время отказа электросеть.

Преимущества технологии:

  • За счет преобразования химической потенциальной энергии непосредственно в электрическую энергию топливные элементы избегают «теплового узкого места» (следствие закона термодинамики 2 и ) и, таким образом, по своей природе более эффективны, чем двигатели внутреннего сгорания, которые должны сначала преобразовывать потенциальную энергию химического вещества. в тепло, а затем механическую работу.
  • Прямые выбросы от автомобиля на топливных элементах - это только вода и немного тепла. Это огромное улучшение по сравнению с линией парниковых газов двигателя внутреннего сгорания.
  • Топливные элементы не имеют движущихся частей. Таким образом, они намного надежнее традиционных двигателей.
  • Водород можно производить без вреда для окружающей среды, а добыча и переработка нефти очень вредны.

Смотрите также


avtovalik.ru © 2013-2020