Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как соединить трехфазный двигатель на 220 через конденсатор


Как подключить электродвигатель 380В на 220В через конденсатор

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключить электродвигатель 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

  • что собой представляют двигатели обоих классов,
  • как они работают,
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить,
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал, когда столкнулся с чрезвычайной или критической ситуацией. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном источнике питания с помощью постоянного конденсатора. Эта маленькая вещь (конденсатор) очень полезна для того, чтобы трехфазный двигатель работал в однофазном источнике питания. поставка.

Согласно нашему последнему обсуждению о трехфазном двигателе, обычно у него есть два (2) соединения с общей обмоткой, соединение STAR или DELTA. В этом посте я объяснил, как подключить конденсатор к трехфазному двигателю, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным источником питания?

1) Проводка конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединении DELTA, как показано на рисунке ниже.

* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.

2) Проводка конденсатора для ОБРАТНОГО поворота

- Для ОБРАТНОГО вращения, мы должны установить конденсатор в любые две фазы обмотки в соединении STAR (Y), как показано на рисунке ниже.

* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.

Мощность двигателя

Мы должны учитывать мощность двигателя, когда мы преобразовали трехфазный в однофазный источник питания, чтобы соответствовать и соответствовать нашему применению. Но мы не можем получить фактическое значение из-за большого количества аспектов, которые мы должны рассчитать, и это так сложно. Можно оценить приблизительное значение выходной мощности двигателя в процентах (%) ниже: -

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать размер конденсатора при планировании работы трехфазного двигателя в однофазном источнике питания.Если не сделать правильный выбор, это может повлиять на состояние двигателя и производительность, а также может повредить обмотку двигателя.

Ниже приведено приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS Сетевое напряжение, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: -

,

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и простоте в эксплуатации. В 3-фазном двигателе переменного тока используется 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных применениях у нас есть только однофазные источники питания (1 р. 110 В, 220 В, 230 В, 240 В и т. Д.). .), особенно в бытовой технике. В случае запуска трехфазных машин на однофазных источниках питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить GoHz VFD
  3. Купить преобразователь частоты / фазы

I: перемотка двигателя
Необходимо выполнить некоторые работы для преобразования работы трехфазного двигателя на 1-фазный источник питания.Здесь вы узнаете, как преобразовать трехфазный электродвигатель на 380 В в однофазный источник питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла сбалансированного тока 120 ° через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, преобразованного для работы на однофазном источнике питания, мы должны объяснить проблему создания однофазного асинхронного двигателя с вращающимся магнитным полем, поскольку однофазный двигатель можно запустить только после создания вращающегося магнитного поля. ,Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, это фиксировано с точки зрения статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора, который не может генерировать крутящий момент, поскольку нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет различный угол наклона. Если он пытается произвести другой фазный ток, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвигать одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через различный ток, чтобы создать вращающееся магнитное поле для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель на 1-фазном источнике питания, мы можем подключить любые 2-фазные обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковые обмотки подключены к одному источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз.Для увеличения пускового момента на соединении можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.

Общие малые двигатели имеют Y-соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме запуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите увеличивать напряжение, блок питания 220 В также может использовать это.Поскольку для питания 220 В используется оригинальная трехфазная обмотка напряжения 380 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 Момент подключения слишком низкий. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На Рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой или рабочей обмотки. ,

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых - обратная нить), состоит из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем у 120 ° магнитного момента (показан на рисунке 6), поэтому пусковой крутящий момент на рисунке 5 больше, чем на рисунке 6.

Значение резистора доступа R (рис. 7) на обмотке стартера должно быть замкнуто относительно сопротивления фазы обмотки статора и должно выдерживать пусковой ток, который равен 0.1-0,12 раза от пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микро-закон), т. Е. Cosφ - исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используется конденсатор с микропроцессором от 4 до 6. Начальный конденсатор может быть выбран в соответствии с начальной нагрузкой, обычно от 1 до 4 раз от рабочего конденсатора.Когда двигатель достигает 75% ~ 80% от номинальной скорости, пусковой конденсатор должен быть отключен, в противном случае двигатель сгорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двухфазных обмоток были равны и равны номинальному току Ie, что означает 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Есть много преимуществ в использовании трехфазного двигателя на однофазном источнике питания, перемотка легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод может применяться только к двигателю мощностью 1 кВт или меньше.

II: Купите преобразователь частоты GoHz VFD
, сокращенное от частотно-регулируемого привода, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный 3-фазный ЧРП является наилучшим вариантом для 3-фазного двигателя, работающего от однофазного источника питания (1 час 220 В, 230 В, 240 В), он устраняет пусковой ток при запуске двигателя, заставляет двигатель работать с нулевой скорости до полной Скорость плавная, плюс, цена абсолютно доступная.Частотные преобразователи GoHz доступны от 1/2 л.с. до 7,5 л.с., более мощные ЧРП могут быть настроены в соответствии с фактическими двигателями.

ГГц Подключение к однофазному трехфазному VFD-видео

Преимущества использования частотного преобразователя GoHz для трехфазного двигателя:

  1. Мягкий запуск может быть достигнут путем настройки параметров ЧРП, время запуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости, позволяющая двигателю работать в наилучшем состоянии.
  3. Переведите двигатель с индуктивной нагрузкой в ​​емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Может быть легко запрограммирован через клавиатуру для достижения автоматического управления.

III: Купить преобразователь частоты / фазы
А ГГц-преобразователь частоты или фазовый преобразователь также можно использовать для таких ситуаций, он может преобразовывать однофазные (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазные (0- Регулируемый 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем для ШИМ-сигнала VFD, они предназначены для лабораторных испытаний, самолетов, военных и других применений, которые требуют высококачественных источников питания, это чрезвычайно дорого.

Статья по теме: Воздействие двигателя 60 Гц (50 Гц), используемого на источнике питания 50 Гц (60 Гц)

,

3-фазная схема регулятора скорости асинхронного двигателя

В этом посте мы обсудим создание простой 3-фазной схемы регулятора скорости асинхронного двигателя, которая также может применяться для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.

Когда речь идет об управлении скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных ступеней, таких как LC-фильтры, двунаправленные матрицы переключателей (с использованием IGBT) и т. Д.

Все это используется для достижения в конечном итоге прерывистый сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что в итоге обеспечивает необходимый контроль скорости двигателя.

Однако мы можем поэкспериментировать и попытаться выполнить управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары с детектором пересечения нуля, силовой триак и схему ШИМ.

Использование детектора пересечения нулевого уровня Opto Coupler

Благодаря серии оптопар MOC, которые сделали цепи управления симистором чрезвычайно безопасными и простыми в настройке, а также обеспечивают беспроблемную интеграцию ШИМ для предполагаемых органов управления.

В одном из моих предыдущих постов я рассмотрел простую схему контроллера двигателя с плавным пуском ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска на подключенном двигателе.

Здесь мы также используем идентичный метод для применения предложенной схемы регулятора скорости 3-фазного асинхронного двигателя. На следующем рисунке показано, как это можно сделать:

На рисунке мы видим три идентичных ступени оптопары MOC, сконфигурированные в их стандартном триаке режим регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.

3 цепи MOC сконфигурированы для обработки 3-фазного входа переменного тока и подачи его на подключенный асинхронный двигатель.

ШИМ-вход на изолированной светодиодной стороне управления opto определяет коэффициент прерывания 3-фазного входа переменного тока, который обрабатывается MOC ICS.

Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)

Это означает, что, регулируя ШИМ-регулятор, связанный с ИС 555, можно эффективно контролировать скорость асинхронного двигателя.

Выход на своем выводе № 3 имеет изменяющийся рабочий цикл, который, в свою очередь, соответственно переключает выходные триаки, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.

Увеличение среднеквадратичного значения посредством более широких ШИМ позволяет получить более высокую скорость вращения двигателя, в то время как снижение среднеквадратичного значения переменного тока через более узкие ШИМ дает противоположный эффект, то есть пропорционально замедляет двигатель.

Вышеуказанные функции реализованы с большой точностью и безопасностью, поскольку микросхемы имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, твердотельные реле и т. Д.

Микросхема также обеспечивает идеально изолированную операцию для ступени постоянного тока, что позволяет пользователю выполнять регулировки без страха поражения электрическим током.

Этот принцип также может быть эффективно использован для управления скоростью однофазного двигателя путем использования одной микросхемы MOC вместо 3.

Конструкция фактически основана на теории пропорционального по времени привода симистора. Верхняя схема ШИМ IC555 может быть отрегулирована для создания рабочего цикла 50% при значительно более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировок соответствующего блока.

Рекомендуется, чтобы эта микросхема 555 имела относительно более низкую частоту, чем верхняя цепь микросхемы 555. Это можно сделать, увеличив конденсатор с выводом № 6/2 до 100 нФ.

ПРИМЕЧАНИЕ. ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ В СЕРИИ С ФАЗОВЫМИ ПРОВОДАМИ МОЖЕТ КРАТКО УЛУЧШИТЬ ЭФФЕКТИВНОСТЬ СИСТЕМЫ УПРАВЛЕНИЯ СКОРОСТЬЮ.

Лист данных для MOC3061

Предполагаемое управление осциллограммой и фазой с использованием вышеуказанной концепции:

Описанный выше метод управления 3-фазным асинхронным двигателем на самом деле довольно грубый, так как он не имеет управления В / Гц .

Он просто использует включение / выключение сети с разными скоростями, чтобы вырабатывать среднюю мощность для двигателя и управлять скоростью, изменяя это среднее значение переменного тока для двигателя.

Представьте, если вы включаете / выключаете двигатель вручную 40 раз или 50 раз в минуту. Это может привести к замедлению вашего двигателя до некоторого относительного среднего значения, но при этом он будет непрерывно двигаться. Вышеуказанный принцип работает аналогичным образом.

Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В / Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.

Для этого мы в основном используем следующие этапы:

  1. Цепь драйвера IGBT H-моста или полного моста
  2. 3-фазная ступень генератора для питания полной мостовой цепи
  3. В / Гц ШИМ-процессор

с использованием полного моста Цепь управления IGBT

Если процедуры настройки вышеупомянутой конструкции на основе симистора выглядят утомительно, можно попробовать следующее полное управление скоростью асинхронного двигателя на основе ШИМ:

В схеме, показанной на рисунке выше, используется один чип микросхема полного привода IRS2330 (последняя версия 6EDL04I06NT), которая имеет все встроенные функции для обеспечения безопасной и безупречной работы трехфазного двигателя.

Микросхеме требуется только синхронизированный 3-фазный логический вход на его выводах HIN / LIN для генерации требуемого 3-фазного осциллирующего выхода, который, в конечном итоге, используется для работы полной мостовой IGBT-сети и подключенного 3-фазного двигателя.

ШИМ-управление с регулировкой скорости осуществляется через 3 отдельных полумостовых драйвера NPN / PNP, управляемых SPWM-питанием от генератора ШИМ IC 555, как видно из наших предыдущих разработок. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.

Прежде чем мы изучим метод управления фактической скоростью для асинхронного двигателя, давайте сначала разберемся, как можно добиться автоматического управления частотой / Гц с помощью нескольких цепей IC 555, как описано ниже. (Замкнутый контур)

В приведенных выше разделах мы изучили конструкции, которые помогут асинхронному двигателю двигаться со скоростью, указанной изготовителем, но он не будет регулироваться в соответствии с постоянным отношением В / Гц, если только следующий ШИМ Процессор интегрирован с входной подачей ШИМ H-Bridge.

Приведенная выше схема представляет собой простой генератор ШИМ, использующий пару IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе № 6 IC2 с помощью R4 / C3.

Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе 5 IC2. Эти выборочные пульсации получают путем выпрямления 3-фазной сети переменного тока в пульсации 12 В переменного тока и подают на вывод № 5 IC2 для необходимой обработки.

Сравнивая форму волны, генерируется SPWM с соответствующими размерами на выводе 3 IC2, который становится ведущим ШИМ для сети H-моста.

Как работает схема В / Гц

При включении питания конденсатор на выводе № 5 начинается с подачи нулевого напряжения на вывод № 5, что вызывает наименьшее значение SPWM для цепи H-моста, что, в свою очередь, позволяет асинхронный двигатель для запуска с медленным постепенным плавным пуском.

Когда этот конденсатор заряжается, потенциал на выводе № 5 увеличивается, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.

Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с выводом № 5 IC2.

Этот тахометр контролирует скорость вращения ротора или скольжения и генерирует дополнительное напряжение на выводе № 5 IC2.

Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора, и в процессе она начинает набирать скорость.

Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, приводит к тому, что IC2 увеличивает выход SPWM, что, в свою очередь, еще больше увеличивает скорость двигателя.

Приведенная выше настройка пытается поддерживать отношение В / Гц на достаточно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет увеличиваться дальше.

В этот момент скорость скольжения и скорость статора приобретают устойчивое состояние, и это поддерживается до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора V / Hz снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.

Тахометр

Схема тахометра также может быть дешево построена с использованием следующей простой схемы и интегрирована с описанными выше этапами схемы:

Как реализовать управление скоростью

В вышеприведенных параграфах мы понимали процесс автоматического регулирования, который Это может быть достигнуто путем интеграции обратной связи тахометра с цепью контроллера SPWM с автоматическим регулированием.

Теперь давайте узнаем, как можно управлять скоростью асинхронного двигателя, изменяя частоту, что в конечном итоге приведет к падению SPWM и поддержанию правильного соотношения В / Гц.

Следующая диаграмма поясняет стадию управления скоростью:

Здесь мы видим схему трехфазного генератора, использующую IC 4035, частоту фазового сдвига которой можно изменять, изменяя вход тактового сигнала на его выводе № 6.

3-фазные сигналы подаются через вентили 4049 IC для создания необходимых каналов HIN, LIN для сети драйверов полного моста.

Это означает, что, соответствующим образом изменяя тактовую частоту IC 4035, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.

Это реализуется через простую нестабильную схему IC 555, которая подает регулируемую частоту на вывод № 6 IC 4035 и позволяет регулировать частоту с помощью прилагаемой емкости 100К. Конденсатор С необходимо рассчитать так, чтобы диапазон регулируемой частоты соответствовал правильным характеристикам подключенного асинхронного двигателя.

Когда частота изменяется, эффективная частота асинхронного двигателя также изменяется, что соответственно изменяет скорость двигателя.

Например, когда частота снижается, вызывает уменьшение скорости двигателя, что, в свою очередь, заставляет выходной сигнал тахометра снижать напряжение p

.

Смотрите также


avtovalik.ru © 2013-2020