Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как турбировать атмосферный двигатель


Турбирование на понятном языке — DRIVE2

Сейчас турбирование двигателей авто — наиболее распространенный и универсальный вариант форсировки.
Изучено немало конструкций и принципов работы различных опробованных схем. Решил вот поделиться опытом и теоретическими знаниями с теми, кто задумался турбировать атмосферный двигатель или же форсировать имеющийся уже турбированный.

1.Во-первых нужен новый выпускной коллектор, на который можно будет установить турбокомпрессор. Если ваша модель двигателя популярна для тюнинга, то скорее всего можно купить готовый коллектор с фланцем под турбину. Также его можно изготовить самостоятельно при наличии навыков работы со сваркой, трубами и так далее. Ещё можно подобрать похожий и подогнать или же изготовить из стандартного. Отличие выпускного коллектора к турбине от обычного в том, что он направляет выхлопные газы не в приёмную трубу глушителя, а в турбину, чтобы привести её в движение, а только потом из турбины выхлопные газы попадут в выпускную систему. Так же немало внимания уделяется равнодлинности каналов коллектора.

2.Так как воздуха машина с турбиной должна "вдыхать" побольше, можно подобрать новый воздушный фильтр больших размеров(подобрать его несложно) после чего либо переделать стандартную коробку воздушного фильтра под новый, или подобрать готовую коробку с фильтром от более прожорливой тачки. Другой вариант-нулевик конечно же. А необходима замена фильтра по нескольким причинам: во-первых при увеличении расхода воздуха стандартный воздушный фильтр будет загрязняться намного быстрее, во-вторых пропускной способности малообъёмного фильтра будет не хватать. Кроме фильтра и корпуса фильтра желательно заменить впускной воздуховод к фильтру на более крупный по диаметру.

3.В зависимости от модели выбранной турбины помимо четырех больших отверстий для впуска/выпуска воздуха и впуска/выпуска выхлопных газов вы обнаружите на ней два или четыре(четыре встречается реже) места для крепления патрубков. Если у вас их два — это впускное отверстие для масла(верхнее) и сливное(соответственно нижнее). Масло выполняет одновременно и смазывающую и охлаждающую функцию, в приёмное отверстие нужно подключить патрубок( на входное можно поставить армированный) от двигателя, по которому масло будет поступать в турбину. Для этого можно например приобрести проставку под масляный фильтр с входным и выходным фланцами(такие проставки активно используются и найти их можно под любой двигатель). Сливное отверстие нужно патрубком соединить с двигателем так, чтобы масло вернулось в его поддон. Для этого можно вварить фланец прямо в поддон, можно подсоединить к той же проставке. Масло турбине нужно в больших количествах потому как у неё очень высокая скорость вращения, высокий диапазон рабочих температур и используются подшипники скольжения на масляной подушке, хотя встречаются и шариковоподшипниковые. Если же отверстия четыре, то другие два из них нужны под охлаждающую жидкость, откуда её подвести я думаю любой найдет без проблем.

4. Переходим к впуску. Ко впускному отверстию турбины нужно подсоединить патрубок воздухозаборника(тот, на котором смонтирован воздушный фильтр). Но в отличие от атмосферного двигателя, у которого есть только один впускной пайпинг до дросселя, на турбодвигателе путь воздуха от фильтра к дросселю намного длиннее: Выходной патрубок турбины сначала подает сжатый нагретый воздух в интеркулер, для его охлаждения, что снизит нагрев двигателя и увеличит плотность воздуха, подаваемого в цилиндр, а только потом уже в дроссель. Поэтому нужно придумать схему расположения новых впускных трубопроводов в вашем капоте с минимумом поворотов — следовательно, минимальным сопротивлением. Также важно, чтобы сечение впускного тракта не варьировалось по его длине, чтобы не создавались лишние препятствия воздушному потоку. Другое отличие от впуска атмосферника — нужна большая прочность пайпингов, так как нагрузка на трубы и патрубки, создаваемое давлением турбины, намного больше, чем нагрузка, создаваемая разрежением обычного мотора. Поэтому применяются прочные силиконовые патрубки, а так же алюминиевые трубы, соединённые силиконовыми манжетами. Соединения скрепляются хомутами увеличенных размеров, чтобы давлением не сорвало тот или иной патрубок. У алюминиевых воздуховодов есть и еще плюсы — они рассеивают тепло сжатого воздуха — что только на пользу, а также не раздуваются, как резиновые, тем самым они не поглощают часть давления на преодоление упругости. Поэтому лучший вариант — выварить весь пайпинг из алюминиевой трубы, будет крепче, холоднее, однороднее.

5. следующий важный элемент блоу-офф(Blow-off). Это клапан сброса избыточного давления. Когда вы отпускаете педаль газа обороты двигателя падают, расход воздуха падает, но вал турбины благодаря инерции совсем не сразу снижает свою скорость. Из-за того давление в воздуховоде возрастает, так как мотор не справляется с объёмом подаваемого в него воздуха. Это даёт большую нагрузку на двигатель(детонация, температура), воздуховоды, крыльчатку турбины и ухудшает качество смеси. Блоу-офф это клапан, который открывается при возрастании давления в воздушной системе издавая при этом характерный свистящий "пшик" например при сбросе газа при переключении передач или просто когда вы отпускаете акселератор. Ставится клапан в разрез между компрессором и интеркулером, но возможны варианты: вварить в впускной воздуховод фланец под блоу-офф, вварить его прямо в воздуховод, вварить во впускной коллектор, в интеркулер, или иначе. Есть и другой вариант-байпасс(Bypass) клапан. он выпускает лишний воздух не в атмосферу а во впускной канал компрессора по трубке(в общем как бы избавляя двигатель от необходимости засасывать уже "обработанный" объем воздуха через воздушный фильтр). Байпасс-клапаны обычно стоят с заводана турбо-автомобилях, так как они менее шумные в отличие от блоу-оффов, а так же не загрязняют воздух, так как на выходе турбины воздух может содержать масло и другие продукты, а для повседневных автомобилей это считается неприемлемым. Также проблемой лишнего давления занимается встроенный в горячую часть турбины механизм(если есть). при превышении давления в холодной улитке он перемещает специальную заслонку внутри турбины, которая отправляет выхлопные газы в обход лопаток турбины в глушитель( или же изменяет геометрию наклона лопаток), тем самым сбрасывая обороты вала компрессора, сопротивление выпускной системы и понижая давление на впуске. Если давление на выходе турбины наоборот недостаточно, он наоборот повышает количество энергии выхлопных газов, направленных на вращение турбины, повышая частоту её вращения. Это приспособление называется Вестгейт, он бывает встроен в турбину, смонтирован на ней, а может быть вообще выносным, отдельным. Это единственный орган управления турбиной кроме изменения мощности потока газов.

6.Степень сжатия — отношение объема цилиндра к объему камеры сгорания. Для эффекта от использования турбины нужно понизить степень сжатия в цилиндрах двигателя. Для этого можно использовать поршни со сниженной степенью(с выточками-"лужами"), можно расточить камеры сгорания, использовать короткие шатуны, коленвал с уменьшеным подъемом. В общем нужно каким-либо способом увеличить объем камеры сгорания, так как в рабочий объем цилиндра будет нагнетаться количество воздуха, в разы превышающее обычное, а форсунки подадут большее количество топлива. То есть в цилиндр попадет намного больше смеси, поэтому после сжатия в не увеличенной камере сгорания эта смесь приобретет чрезмерно высокую компрессию, что может повлечь детонацию и повреждение двигателя, а так же создаст большее сопротивление вращению коленчатого вала. Поэтому снижение степени сжатия призвано сделать так, чтобы большее, чем раньше кол-во смеси после сжатия приобрело компрессию, не превышающую необходимую для полного сгорания топлива величину и не создающую лишнего сопротивления валу, не меняя при этом рабочий объем. Можно даже использовать толстую стальную "прокладку" под ГБЦ, что немного её приподнимет, главное учесть длину и тепловое расширение болтов крепления головы, соответственный момент затяжки, угол доворота и прочность — таковы требования. Конечно же поверхности проставки, гбц и бц должны быть идеально подогнаны и в проставке должны быть каналы подачи масла, антифриза и т.д. Также при установке турбины стоит подумать о кованной поршневой(чтобы выдержать возросшие нагрузки), усиленных шпильках гбц(для того же), более злых клапанных пружинах и прочем, причем чем больше узлов будет затронуто, тем больше будет рабочий диапазон форсированного двигателя и его надежность, отсюда и срок службы.

7. Отстройка — скорректировать фазы газораспределения(посредством установки разрезных шестерен, модифицированных распредвалов, или программно на автомобилях, оснащенных муфтой смещения фаз газораспределения или регулировки подъема клапанов, такие как VVT или VTEC ) отрегулировать ХХ, количество подаваемого топлива(путем изменения времени открытия форсунок, использования форсунок большей производительности), чтобы оптимизировать двигатель под новый диапазон оборотов и для получения пиковых мощности и момента ну других оборотах. Сделать это можно, внеся изменения в прошивку мозгов, в формулу смеси, если мозг подлежит перепрошивке, если же нет — используется вспомогательный мозг, получающий сигналы от штатного эбу, подменяющим нужные величины на нужные значения и отправляющий их дальше(такой как HKS f-con, например). Так же возможна установка гоночных управляемых мозгов вместо заводских. Какой вариант придется использовать — зависит от совместимости устройств и конкретной конфигурации.
Установив буст-контроллер(такой как Blitz sbc i-D) вы сможете задать давление, которое будет создавать ваша турбина. Вестгейт управляет частотой вращения крыльчатки и расчитан на определенное давление, когда оно достигается, частота снижается, когда до него далеко, вестгейт наращивает обороты турбины. Но если вы хотите управлять этим давлением, то устанавливаете в разрез трубки от выходи турбины к вестгейту специальный соленоид, который будет заменять давление на вест-гейт желаемым вами, таким образом позволяя "надуть" больше, а так же продлить пиковый буст при ослабевании потока выхлопных газов при сбросе оборотов.
Двигатель нужно опробовать в различных диапазонах оборотов, привести в соответствие возросшие объемы воздуха и топлива, время выхода на буст, возможно сдвинуть отсечку по оборотам, подобрать размер дросселя, на который будет более оптимальная реакция, изменить параметры холостого хода, учитывая, что на холостом ходу турбина не работает, а мощность турбодвигателя до включения наддува ниже, чем мощность на атмосферном, а поэтому для поддержания ровной работы на хх нужно снизить объем подаваемый форсунками относительно объема на рабочих оборотах, а так же увеличить обороты холостого хода.
Ну и конечно другие важные факторы:
маслорадиатор. — необходим чтобы компенсировать дополнительный нагрев масла в связи с контактом масла и турбины. Может быть установлен вразрез выходного патрубка с турбины, может быть подсоединен к проставке под масляный фильтр, можно и иначе.
так же Важное место имеет геометрия выпускного коллектора, или паука, считается, что лучшая геометрия — равнодлинный коллектор с минимальным сопротивлением потоку и большей надежности чем оригинальный. Поэтому используют выпускные коллекторы, сваренные из гнутых труб таким образом, чтобы несмотря на разные расстояния от цилиндро

Как настроить турбо двигатель

Резюме

Настройка двигателя с турбонаддувом может показаться пугающей для тех, кто прибывает на фоне настройки безнаддувных двигателей.На этом вебинаре мы рассмотрим то, что вам нужно понять, а также пошаговый подход к процессу настройки. Для этого вебинара мы будем использовать Nissan Silvia S14, оснащенный Link G4 + ECU

Стенограмма

Привет, ребята, это Андре из Академии Высокой эффективности. Спасибо, что присоединились к нам для этого вебинара. На этом вебинаре мы собираемся углубиться в методы, которые мы можем использовать для настройки автомобиля с турбонаддувом.Теперь, в частности, для сегодняшнего вебинара, мы собираемся продемонстрировать эти приемы на Nissan S14 с двухлитровым турбированным двигателем Nissan SR20DET. И ECU, установленный на это, является Plug and Play Link G4 Plus ECU.

Хотя некоторые из методов, которые мы собираемся рассмотреть, а также некоторые особенности ECU, на самом деле применимы только к бренду Link G4 Plus, на самом деле мы сосредоточим внимание на фундаментальных принципах. за техникой тюнинга, конечно, будут применяться независимо от того, что мы настраиваем.Теперь, когда мы говорим о тюнинге автомобилей с турбонаддувом, я знаю, что это, как правило, отпугивает многих начинающих тюнеров. Они могут быть довольно удобны в настройке безнаддувного двигателя, но идея настройки мощного или даже умеренного двигателя с турбонаддувом может показаться немного пугающей. Так что этот вебинар действительно призван показать вам, что бояться нечего. Я даю вам некоторые инструменты и методы, которые вы можете использовать, и, надеюсь, также лучше поймете, чего мы на самом деле пытаемся достичь и как мы должны это делать.

Если вы поймете все это, вы сможете получить лучший результат быстрее, что наиболее важно, без риска какого-либо потенциального повреждения вашего двигателя. Действительно, когда дело доходит до настройки двигателя с турбонаддувом, в сущности, они на самом деле мало чем отличаются от безнаддувного двигателя. На самом деле мы пытаемся настроить топливо, оптимизировать подачу топлива в соответствии с количеством воздуха

.

Как это работает: турбонаддув | Вождение

Раньше турбокомпрессоры использовались в основном на спортивных автомобилях с высокими эксплуатационными характеристиками. Они по-прежнему дают быстродействующим автомобилям дополнительный прирост мощности, но все чаще автопроизводители используют их на двигателях меньшего размера для повышения мощности при необходимости, но с большей общей экономией топлива. Они также используются практически на всех дизельных двигателях для увеличения мощности.

Турбокомпрессор - это, по сути, воздушный насос, который подает дополнительный кислород в двигатель по мере необходимости, так что он может сжигать больше топлива для увеличения мощности.

Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они поворачивают тяжелый центральный коленчатый вал, так же, как ваши ноги двигаются вверх и вниз, приводя в движение велосипед. Вращательное движение коленчатого вала используется для поворота колес автомобиля.

Двигатель Audi 3.0-L V6 с двумя турбонагнетателями, установленными последовательно.

Что заставляет все это двигаться, так это пары воздуха и бензина в верхней части поршня. Когда это зажигается свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть рукоятку.Сгоревшие газы затем удаляются в виде выхлопных газов.

Каждый поршень смещается вниз в начале своего цикла, создавая вакуум. В нетурбинном двигателе, известном как безнаддувный, воздух приливается, когда открывается впускной клапан, но он может заполнять цилиндр только при атмосферном давлении. Сжигание большего количества топлива приводит к большей мощности, но поскольку топливно-воздушная смесь должна быть точной, чтобы двигатель работал правильно, добавление большего количества бензина не будет работать, и цилиндр не сможет втянуть дополнительный воздух.

В двигателе с турбонаддувом турбонагнетатель нагнетает больший объем воздуха под давлением, и компьютер автомобиля отвечает, добавляя правильное количество дополнительного топлива.

Турбо работает от выхлопных газов. Одна сторона турбины расположена у выпускного коллектора, другая - у воздухозаборника двигателя и содержит два небольших вентилятора, соединенных валом. Когда выхлоп проходит через турбо, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, приводит в движение второй вентилятор, называемый компрессором, который всасывает свежий воздух, создает давление в нем и нагнетает его в двигатель. Разница между атмосферным давлением и величиной давления воздуха, которое обеспечивает турбонагнетатель, называется повышением и измеряется в фунтах на квадратный дюйм (фунт / кв. Дюйм).

Вместо турбонаддува некоторые автомобили используют нагнетатель, который также нагнетает воздух, но механически движется от коленчатого вала двигателя вместо потока выхлопных газов.

Вырез турбокомпрессора, показывающий вентиляторы турбины и компрессора, соединенные валом.

Одна из проблем, связанных с турбонаддувом, заключается в том, что воздух нагревается при сжатии, и это противоположно тому, что вы хотите. Холодный воздух более насыщен кислородом, поэтому его можно смешивать с большим количеством топлива и при этом правильно сжигать в цилиндре.Автопроизводители добавляют теплообменник, называемый интеркулером, к турбосистеме, которая поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.

Вентиляторы Turbo вращаются очень быстро - до 250 000 оборотов в минуту или более - и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке. Если это произойдет, откроется клапан, называемый перепускным клапаном, который отводит некоторые выхлопные газы от турбины.

Турбокомпрессор не поддерживает двигатель все время.Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как атмосферный. Когда вы нажимаете на газ, двигатель работает тяжелее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, повышает мощность двигателя, который, в свою очередь, получает больше топлива - вот почему эти двигатели небольшого объема могут внезапно стать намного жаждущими, чем ожидалось, когда вы жестко управляете ими. (С другой стороны, дополнительный кислород способствует более полному сгоранию топлива в цилиндре, что повышает эффективность двигателя и снижает вредные выбросы.)

Турбокомпрессор также создает головную боль для инженеров, потому что он не сразу работает на полную мощность. Существует небольшая задержка между временем, когда вы опускаете ногу, и когда турбонагнетатель вращается с достаточной скоростью, чтобы обеспечить ускорение и дать вам желаемый всплеск ускорения. Это известно как турбо лаг.

Раньше это было гораздо более заметно на старых автомобилях, но сегодня автопроизводители используют разные методы, чтобы уменьшить его. Используются легкие лопатки турбин, поэтому для их вращения требуется меньше давления.Турбокомпрессоры меньшего размера вращаются быстрее, и некоторые автопроизводители ставят два из них на двигатель, комбинируя маленький для быстрого начального ускорения с большим, который может обеспечить большую мощность при более высоких оборотах двигателя. Для достижения этого несколько автопроизводителей, включая Volvo, используют как нагнетатель с механическим приводом, так и турбонагнетатель с выхлопом.

Другая технология - это изменяемая геометрия, которая автоматически регулирует поток выхлопных газов в колесо турбины в зависимости от частоты вращения двигателя и требований к мощности.

Двигатели с турбонаддувом

, как правило, не требуют дополнительного обслуживания, за исключением случаев, когда автомобиль выполняет замену масла и замену свечи зажигания. Некоторые более новые турбодвигатели работают нормально на бензине обычного качества, но проверьте руководство своего владельца на предмет требований премиум-класса.

Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют фирменные названия, такие как TFSI от Audi (для многослойного впрыска с турбонаддувом) или Ford EcoBoost. Если вы не уверены, спросите, если это турбо, прежде чем купить.

Анимированные Двигатели - Newcomen Atmospheric

Newcomen Atmospheric Engine

Этот великолепный двигатель был запатентован в 1705 году Томасом Ньюкоменом и является вообще считается первым «современным» паровым двигателем. В отличие от позже Паровые машины Newcomen работают по атмосферному принципу .

Newcomen впервые был использован для откачки воды из шахт в Англии. Шток насоса слева соединен с приводным поршнем большим качанием луч.

Впуск

Вода кипятится непрерывно для производства пара.Во время поршня вверх, этот пар низкого давления (около 5 ps.i.) допускается к цилиндр Давление недостаточно, чтобы поднять поршень на его собственный - вес штока насоса выполняет большую часть работы.

Впрыск воды

В верхней части хода паровой клапан закрыт, и струя воды ненадолго включается, охлаждая пар в цилиндре.

Мощность

Холодный пар сжимается, всасывая поршень вниз. Другими словами, чем выше атмосферное давление движет поршень вниз, следовательно, название , атмосферный двигатель .В конце хода охлаждающая вода сливается из цилиндра дополнительным проходом, не показанным здесь.

Вспомогательный насос

Во время хода вверх вспомогательный насос заполняет охлаждающую воду резервуар.


Newcomen двигатели были успешными отчасти потому, что они были очень безопасны для работать. Поскольку пар находился под таким низким давлением, риска не было опасного взрыва котла.


Примечание о клапанном механизме

Самые ранние двигатели Newcomen имели клапаны с ручным управлением (как проиллюстрировано здесь).Оператор стоял на платформе возле цилиндра Основание и бросил клапанные рычаги на каждый ход.

Популярная легенда гласит, что мальчики, ответственные за эту утомительную задачу изобрел автоматический клапан с помощью канатов и рычагов для цель.

Книга Томас Ньюкомен, Предыстория Steam Двигатель убедительно рассеивает это понятие и дает детали автоматических клапанов, разработанных Ньюкоменом и его сотрудником Джон Колли Для больше на двигателе Newcomen, я очень рекомендую это книга.Я надеюсь проиллюстрировать автоматические клапаны когда-нибудь.


Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.