Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как управляется турбина на дизельном двигателе


Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась  на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

 

 

Как работают дизельные двигатели?

Крис Вудфорд. Последнее обновление: 29 января 2020 г.

Вы когда-нибудь смотрели в изумлении, когда гигантский грузовик медленно ползет вверх по холму? Возможно нет! Такие вещи случаются каждый день. Но остановись и подумай момент о том, что происходит - как огромная, тяжелая нагрузка систематически поднял против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) - и вы можете согласиться То, что ты видишь, довольно примечательно.Дизельные двигатели - это мощь наших самых больших машин - грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но они генерируют больше энергии, более эффективно, работая немного по-другому. Давайте возьмем пристальный взгляд!

Фото: дизельные двигатели (как в этом железнодорожном локомотиве) идеально подходят для тяги тяжелых поездов. Это великолепно сохранившийся (и отлично отполированный!) Британский железнодорожный класс 55 («Deltic»), номер 55022, названный Royal Scots Grey 1960 года.Вот картинка из Дизельный двигатель Napier Deltic, который приводит его в действие.

Что такое дизельный двигатель?

Фото: типичный дизельный двигатель (из пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Как и бензиновый двигатель, дизельный двигатель - это тип внутреннего сгорания. двигатель. Горение это еще одно слово для горения, и внутреннее значит внутри, поэтому двигатель внутреннего сгорания просто тот, где топливо сгорает внутри главной части двигателя (цилиндры) где производится энергия.Это очень отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровом двигателе есть большой пожар на одном конце котел, который нагревает воду для приготовления пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень назад и вперед для перемещения колес. Это внешний сгорание, потому что огонь находится за пределами цилиндра (действительно, обычно 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих цилиндров.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно течь откуда он производится в цилиндр: все происходит одинаково место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают как от внутреннего сгорания, но в немного по-другому.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, что делает его взрывоопасным, и небольшая электрическая искра от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерируя энергию, которая толкает поршень вниз по цилиндру и (через коленвал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но проще.Во-первых, воздух допускается в цилиндр и поршень сжимает его, но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжатый примерно до десятой части своего первоначального объема. Но в дизеле двигатель, воздух сжимается на что-нибудь от 14 до 25 раз. Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали чем горячее в ваших руках, тем дольше вы его используете. Это потому что сжатие газа генерирует тепло. Представьте себе, сколько тепла генерируется путем нагнетания воздуха в 14–25 раз меньше пространства, чем обычно занимает.Так много тепла, как это бывает, что воздух становится действительно горячий - обычно не менее 500 ° C (1000 ° F), а иногда и очень горячее. Как только воздух сжат, туман топлива распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает немного как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от того, сколько энергии водитель хочет, чтобы двигатель работал.) Воздух настолько горячий, что топливо мгновенно воспламеняется и взрывается без искры подключи.Этот контролируемый взрыв заставляет поршень вытолкнуть цилиндр, производящий энергию, которая приводит в движение автомобиль или который двигатель установлен. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется сотни или тысячи раз минут!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели в два раза эффективнее бензиновых двигателей - около 40 процентов эффективный, то есть.Проще говоря, это означает, что вы можете пойти гораздо дальше на том же количестве топлива (или получите больше миль за свои деньги). Есть несколько причин этот. Во-первых, они сжимают больше и работают при более высоких температурах. Фундаментальная теория о том, как работают тепловые двигатели, известный как правило Карно, говорит нам, что эффективность двигателя зависит на высоких и низких температурах, между которыми он работает. Дизельный двигатель с большим перепадом температур (более высокая температура или самая низкая температура) более эффективна.Во-вторых, отсутствие системы зажигания с зажиганием делает более простая конструкция, которая может легко сжать воздух намного больше - и это делает топливо более горячим и более полным, высвобождая больше энергии. Есть еще одна экономия эффективности слишком. В бензиновом двигателе, который не работает на полную мощность, вам нужно подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на меньшей мощности. Другим важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, блокируя их атомы вместе (другими словами, дизель имеет более высокую плотность энергии, чем бензин).Дизель тоже лучше смазка, чем бензин, так дизельный двигатель будет естественно работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совсем разные. Вы будете знать это очень много, если вы когда-либо слышал страшные истории людей, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель является низкосортный, менее рафинированный продукт из нефти, полученный из более тяжелых углеводороды (молекулы построены из большего количества углерода и водорода атомов).Сырые дизельные двигатели, которым не хватает сложного впрыска топлива Теоретически, системы могут работать практически на любом углеводородном топливе, поэтому популярность биодизеля (вид биотоплива, сделанного, среди прочего, вещи, отработанные растительные масла). Изобретатель дизельного двигателя, Рудольф Дизель, успешно запустил свои ранние двигатели на арахисовом масле и думал, что его двигатель сделает людям одолжение, освободив их от зависимость от топлива, как уголь и бензин. Если бы он только знал!

Фото: смазка будет путешествовать: Джошуа и Кайя Тикелл, пара защитники окружающей среды, используйте этот трейлер (Green Grease Machine) для производства биодизельного топлива для своего фургона (прикрепленного к передней части) с использованием отработанного растительного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит внушительные $ 0,80 за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели - самые универсальные двигатели, работающие на топливе, на сегодняшний день, нашел во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и более экономичный. Они также безопаснее, потому что дизельное топливо меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей, они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо больше напряжения и деформации, чем в бензиновом двигателе. Поэтому дизельные двигатели должны быть сильнее и тяжелее и почему долго В то время они использовались только для питания больших транспортных средств и машин. Пока это может показаться недостатком, это означает, что дизельные двигатели, как правило, более Прочный и прослужит намного дольше, чем бензиновые двигатели.

Фото: дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они шумят, и они производят много несгоревших частиц сажи, которые являются грязными и опасными для здоровья. В теории, дизели более эффективны, поэтому они следует использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и вносить меньший вклад в глобальное потепление.На практике есть спор о том, действительно ли это так. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива только немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно выходят лучше. Другой Недавние исследования показывают, что даже новые дизельные автомобили очень загрязняющие. Как насчет выбросов CO2? По данным Британского общества автопроизводителей и трейдеры: «Дизельные автомобили внесли огромный вклад в сокращение выбросов CO2.С 2002 года покупатели, выбирающие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу ". Дизельные двигатели, как правило, стоят дороже, чем бензиновые двигатели, хотя их более низкие эксплуатационные расходы и длительный срок службы обычно компенсирует это. Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор произошло значительное падение продаж скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязняют окружающую среду.

Нет сомнений, что дизельные двигатели будут продолжать работать на тяжелых транспортных средствах - грузовиках, автобусы, корабли и железнодорожные локомотивы зависят от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный импульс для того, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти усовершенствованные газовые двигатели подрывают некоторые из очевидных преимуществ использования дизелей в автомобилях. В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться выдавленными вообще.Опять же сами дизели постоянно развиваются; в 2011 году министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизель может остаться претендент на меньшие транспортные средства в течение многих лет, особенно если их выбросы сажи может быть правильно решена.

Кто изобрел дизельный двигатель?

Произведение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, который он нарисовал в своем патенте 1895 года.Цилиндр (1) находится сверху. 2) «Плунжер» (как его называл дизель) крепится кривошипом и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную частоту вращения двигателя (отключение подачи топлива, если двигатель работает слишком быстро, затем его включение, когда двигатель снова замедляется). Иллюстрации любезно предоставлены Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: «Способ и устройство для преобразования тепла в работу» Рудольфа Дизеля.

Не удивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Рош (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на эту идею 16 февраля 1862 года, но ему не удается собрать работающую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: в возрасте 22 лет, Рудольф Дизель переходит на работу к инженеру-холодильнику Карлу фону Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как сделать улучшенное внутреннее сгорание двигатель использует более высокое давление и температуру, для чего не требуется свеча зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы другие не могли ими воспользоваться.
  • 1893: Дизель строит огромный, стационарный двигатель, который работает целую минуту под своей собственной власть, 17 февраля 1894 г.
  • 1895: патент на дизельное топливо выдан в США 16 июля 1895 года.
  • 1898: с помощью Дизеля, первый коммерческий двигатель построен в завод в Сент-Луисе, штат Миссури, США, Адольф Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На дизельном заводе в Аугсбурге начинается производство дизельных двигателей. Дизель начинает лицензировать свои идеи другим фирмам и вскоре становится очень богатый
  • 1903: Petit Pierre, один из первых дизельных кораблей, начинает работу над каналом Марн-Рейн во Франции.
  • 1912: MS Selandia, первый океанский дизельный корабль, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, по-видимому, падая за борт с корабля Дрезден во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или совершил самоубийство, но ничего не происходит доказана.
  • 1931: Clessie Cummins, основатель Cummins Engine Co., строящий один из первых успешных автомобилей с дизельным двигателем и демонстрирующий его эффективность, перевозя его из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершил революцию в сельском хозяйстве, представив Diesel Sixty, первый дизельный гусеничный трактор на базе популярного Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и это остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой мощный дизель-электрический локомотив EMD FT и отправляет первый (номер 103) в путешествие на протяжении года, чтобы продемонстрировать свою ценность.Несомненно, это доказывает превосходство дизельного двигателя.
  • 1970-е годы: глобальный топливный кризис вызывает новый интерес к использованию небольших, эффективных дизельных двигателей в автомобилях.
  • 1987: Всемирно известный корабль Королевы Елизаветы 2 (QE2) оснащен девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что делает его самым мощным торговым судном с дизельным двигателем в то время.
  • 2000: Peugeot представляет первый в мире фильтр частиц (PF) для дизельных двигателей на своей модели 607, утверждая, что выброс сажи на 99 процентов ниже.
  • 2015: Volkswagen погрузился в огромный глобальный скандал после систематического обмана на тестах на выбросы дизельного двигателя. Продажи дизельных автомобилей резко упали впервые за многие годы.
  • 2017: Volvo становится первым крупным производителем автомобилей, который отказался от бензиновых и дизельных двигателей, объявив, что все новые автомобили будут гибридами или полностью электрическими с 2019 года.
.

Пять мифов о дизельных двигателях

Аргоннский инженер-механик Стив Чиатти (Steve Ciatti) разбирается с некоторыми из наиболее устойчивых мифов, касающихся технологии дизельных двигателей. Предоставлено: Аргоннская национальная лаборатория.

(PhysOrg.com) - Дизельные двигатели, давно прилегающие к грузовым автомобилям и судам, вызывают все больший интерес к своей топливной эффективности и уменьшенным выбросам углекислого газа по сравнению с бензиновыми двигателями. Аргоннский инженер-механик Стив Чиатти (Steve Ciatti) разбирается с некоторыми из самых стойких мифов, связанных с технологией.

Миф № 1: Дизель загрязнен.

«У всех нас есть это изображение грузовиков, извергающих грязный черный дым», - сказал Чиатти. Этот дым представляет собой твердые частицы из дизельного выхлопа: сажа и небольшое количество других химических веществ, выделяемых двигателем.

Но требования к выбросам EPA значительно ужесточились, и дизельные двигатели теперь должны соответствовать тем же критериям, что и бензиновые двигатели.Они делают это, добавляя дизельный сажевый фильтр (DPF), который удаляет видимый дым. «DPF очень эффективны», сказал Ciatti. «Они удаляют 95 с лишним процентов массы дыма».

Дым, попавший в керамическую матрицу, накапливается до тех пор, пока компьютер автомобиля не решит, что пришло время очистить его в процессе, называемом «циклом регенерации».

Во время работы небольшое количество дополнительного топлива добавляется в камеры сгорания в двигателе; полученное тепло и кислород активируют катализатор в DPF, чтобы сжечь накопившуюся сажу.Это приводит к небольшому штрафу за расход топлива.

«Видимый дым практически исчез, согласно правилам 2007-2010 годов», - сказал Чиатти. «Если вы покупаете дизельный автомобиль с 2007 года или позже, он не более грязный, чем автомобиль с бензиновым двигателем».

И в невидимом диапазоне - дизельные двигатели фактически выделяют меньше углекислого газа, чем бензиновые двигатели.

Миф № 2: Дизельные двигатели не запускаются зимой.

«Современные технологии холодного запуска очень эффективны», - сказал Чиатти.«Современные дизельные двигатели запускаются в холодную погоду без особых усилий».

Проблема в том, что дизель желеет при низких температурах. Ниже примерно 40 ° F некоторые углеводороды в дизельном топливе превращаются в гелеобразный. «Поскольку двигатель зависит от аэрозольного топлива, вам не нужно пупырчатое топливо», - объяснил Чиатти.

Часто это исправляется свечами накаливания, которые нагреваются аккумулятором и помогают подогревать топливо, чтобы оно могло испариться.

Низкие температуры не являются проблемой для бензиновых двигателей, потому что бензин гораздо более огнеопасен, чем дизель.Даже при комнатной температуре и давлении бензин частично испаряется. «Бросьте спичку в лужу бензина, и спичка никогда не ударится даже о поверхность жидкости; она зажжет слой пара над бассейном», - сказал Чиатти. «Вот почему с бензином нужно обращаться очень осторожно с любым источником возгорания. Дизель не такой изменчивый; если вы бросите эту спичку в бассейн дизельного топлива, он погаснет».

Свечи накаливания и другие средства, однако, эффективно испаряют дизельное топливо, чтобы подготовить его к сжиганию.

Миф № 3: Дизельные машины не работают хорошо.

Поскольку дизельные двигатели по-прежнему наиболее распространены в грузовиках, многие люди предполагают, что автомобили с дизельным двигателем будут вести себя так же, как грузовик: медленно и вяло. «Но имейте в виду, что этот грузовик, вероятно, перевозит около 50 тонн», - сказал Чиатти. «На самом деле, в некоторой степени, некоторые люди, которые ездят на дизелях, обнаруживают, что они работают лучше, чем бензиновые двигатели».

Это связано с тем, что дизельные двигатели получают максимальную мощность, когда обороты двигателя в минуту (об / мин) низкие, то есть на скоростях ниже 65 миль в час, где происходит большая часть движения.Бензиновые двигатели, напротив, достигают максимальной мощности, работая на очень высокой и быстрой скорости; автомобиль с бензиновым двигателем достигает своей максимальной мощности только с педалью акселератора в пол и двигателем, работающим на 5000 об / мин.

«Производительность дизельного автомобиля намного выше, чем воспринимаемая мощность, потому что вы получаете всю эту мощность на скоростях, на которых вы фактически водите автомобиль», - сказал Чиатти. «У вас больше силы тяги и ускорения на этих скоростях».

Миф № 4: Вы не можете найти дизель в насосе.

дизельные пикапы и автомобили достаточно популярны, чтобы рынок заинтересовался; на большинстве заправочных станций теперь есть автомобильные дизельные насосы.

«Я сам ездил на дизельном автомобиле в течение 10 лет. С одной стороны, я могу рассчитывать, сколько раз мне действительно пришлось искать насос», - сказал Чиатти.

Миф № 5: Дизельное топливо дороже, чем бензин.

Хотя цены на дизельное топливо в Чикаголанде, как правило, выше, чем на бензин, в большинстве районов страны цены на дизельное топливо и бензин сопоставимы.Сегодня Иллинойс облагает налогом дизельное топливо по более высоким ставкам, чем бензин.

«Дизельное топливо не дороже в производстве, чем бензин», объяснил Чиатти. «Его цена обычно связана с местной налоговой структурой».

Бонус: одна вещь, которую вы можете не знать о дизеле!

Дизельные двигатели действительно работают лучше на больших высотах, чем бензиновые двигатели.

Почему? Бензиновые двигатели работают при очень специфическом соотношении топлива и воздуха. На больших высотах воздух тоньше - буквально: на кубический фут приходится меньше молекул воздуха.Таким образом, в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное соотношение, что влияет на производительность.

«Но дизельный двигатель работает на обедненном топливе; вам не нужно поддерживать идеальное соотношение», - сказал Чиатти. Дизельные двигатели имеют турбокомпрессоры, которые представляют собой насосы, приводимые в движение выхлопными газами. Они добавляют больше воздуха в камеру сгорания, и больше воздуха означает, что можно добавить больше топлива. На высоте он может втягивать больше воздуха и топлива, и, таким образом, получает больше мощности, чем бензиновые двигатели. Турбокомпрессоры не используют дополнительную энергию; они расходуют термодинамически «свободную» энергию, которая будет потеряна в виде выхлопных газов, если не будет использована.

"Управляй дизельным двигателем на высоте, и ты увидишь, как другие машины борются, пока ты проносишься мимо", - сказал Чиатти. «Эффект очень заметен».


Комбинирование бензиновых и дизельных двигателей может дать лучшее из обоих миров
Предоставлено Аргоннская национальная лаборатория

Цитирование : Пять мифов о дизельных двигателях (2011, 14 июня) восстановлено 16 июля 2020 г. с https: // физ.орг / Новости / 2011-06-мифы-diesel.html

Этот документ защищен авторским правом. Кроме честных сделок с целью частного изучения или исследования, нет Часть может быть воспроизведена без письменного разрешения. Содержание предоставлено исключительно в информационных целях.

,

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Крис Вудфорд. Последнее обновление: 6 января 2020 г.

Нет такого понятия, как совершенное изобретение: мы всегда можем сделать что-то лучше, дешевле, более эффективный или более экологичный. Возьми внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приведенный в действие жидкостью может швырнуть Вас по шоссе или ускорить Вас через небо во много раз быстрее, чем вы могли бы путешествовать.Но это всегда можно построить двигатель, который будет двигаться быстрее, дальше или использовать меньше топлива. Один из способов улучшить двигатель - это использовать турбокомпрессор -a. пара вентиляторов, которые используют отработанную выхлопную мощность в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше "ооо", чем вы в противном случае получить. Мы все слышали о турбинах, но как именно они работают? Давайте присмотрись!

Фото: типичный автомобильный турбонагнетатель использует пару вентиляторов в форме улитки, как это.Здесь вы видите Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делькора любезно предоставлено ВМС США.

Что такое турбокомпрессор?

Фото: два вида безмасляного турбонагнетателя, разработанного НАСА. Фото предоставлено Исследовательский центр Гленна НАСА (NASA-GRC).

Вы когда-нибудь видели, как мимо вас проносятся машины с дымящимися выхлопными газами? Очевидно, что выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше Очевидно, что они тратят энергию в то же время.Выхлоп есть смесь горячих газов, откачивающихся со скоростью и всей энергии содержит - тепло и движение (кинетическая энергия) - исчезают бесполезно в атмосферу. Не было бы аккуратно, если бы двигатель Можно ли использовать эту затраченную энергию для ускорения движения машины? Это именно то, что делает турбокомпрессор.

Автомобильные двигатели получают мощность, сжигая топливо в прочных металлических банках, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, поворачивая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается назад, он откачивает отработанный воздух и топливная смесь из цилиндра в качестве выхлопа. Количество силы автомобиль может производить напрямую связан с тем, насколько быстро он сжигает топливо. Чем больше у вас баллонов и чем они больше, тем больше топлива автомобиль может гореть каждую секунду и (теоретически, по крайней мере) быстрее можешь идти.

Один из способов сделать машину быстрее, это добавить больше цилиндров. Вот почему супер-быстрые спортивные автомобили как правило, имеют четыре и двенадцать цилиндров вместо четырех или шести цилиндры в обычной семейной машине.Другой вариант заключается в использовании турбокомпрессор, который каждую секунду нагнетает больше воздуха в цилиндры, они могут сжигать топливо с большей скоростью. Турбокомпрессор простой, относительно дешевый, дополнительный немного комплекта, который может получить больше мощности от того же двигателя!

Как работает турбокомпрессор?

Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбокомпрессора автомобиля. реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выбрасывает горячий воздух из спины.Так как горячий воздух уходит, он ревет мимо турбины (немного похоже на очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который выталкивает воздух в двигатель заставить топливо гореть правильно. Турбокомпрессор на автомобиль наносит очень принцип, аналогичный поршневому двигателю. Он использует выхлопные газы для водить турбину. Это раскручивает воздушный компрессор, который выталкивает дополнительный воздух (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать "больше энергии в секунду").Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбонагнетатель, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он питается от вращающегося коленчатого вала автомобиля. Как правило, это недостаток: если турбонагнетатель работает от ненужной энергии в выхлопе, нагнетатель фактически крадет энергию от собственного источника питания автомобиля (коленчатого вала), что, как правило, бесполезно.

Фото: сущность турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой поворачивается тоже. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Как работает турбонаддув на практике? Турбокомпрессор - фактически два маленьких воздушных вентилятора (также названный рабочими колесами или газовые насосы) сидят на одном металлическом валу так, что оба вращаются вокруг все вместе. Один из этих вентиляторов, называемый турбиной , находится в поток выхлопных газов из цилиндров. Как цилиндры дуют горячий газ мимо лопасти вентилятора, они вращаются и вал, к которому они подключены (технически называется вращающийся узел центральной ступицы или CHRA) вращается также.Второй вентилятор называется компрессором и, поскольку он сидит на одном валу с турбиной, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, поэтому при вращении он притягивает воздух в машину и выталкивает его в цилиндры.

Теперь здесь есть небольшая проблема. Если вы сжимаете газ, вы делаете его горячее (вот почему велосипедный насос прогревается, когда вы начинаете накачивать шины). Hotter воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше помогает сжигать топливо, поэтому было бы гораздо лучше, если бы воздух, поступающий из компрессора, охлаждался до его поступления цилиндры.Чтобы охладить его, выход компрессора проходит через теплообменник, который удаляет дополнительный нагрев и каналы его в другом месте.

Как работает турбокомпрессор - внимательнее

Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который направляет воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вот как это все работает:

  1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
  2. Вентилятор компрессора помогает всасывать воздух.
  3. Компрессор сжимает и нагревает поступающий воздух и снова выдувает его.
  4. Горячий сжатый воздух из компрессора проходит через теплообменник, который охлаждает его.
  5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре с большей скоростью.
  6. Поскольку цилиндр сжигает больше топлива, он вырабатывает энергию быстрее и может передавать больше энергии колесам через поршень, валы и шестерни.
  7. Отработанный газ из цилиндра выходит через выпускное отверстие.
  8. Горячие выхлопные газы, проходящие мимо вентилятора турбины, заставляют его вращаться с высокой скоростью.
  9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показана здесь бледно-оранжевой линией). Таким образом, когда турбина вращается, компрессор тоже вращается.
  10. Выхлопные газы покидают автомобиль, тратя меньше энергии, чем в противном случае.

На практике компоненты могут быть подключены примерно так.Турбина (красная справа) забирает отработанный воздух через воздухозаборник, приводя в действие компрессор (синяя слева), который забирает чистый наружный воздух и закачивает его в двигатель. Эта конкретная конструкция оснащена электрической системой охлаждения (зеленого цвета) между турбиной и компрессором.

Artwork: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США №7946118: охлаждение турбонагнетателя с электрическим управлением, выполненного Уиллом Хиппеном и др., Ecomotors International, выданным 24 мая 2011 года.Произведение любезно предоставлено Управлением по патентам и товарным знакам США.

Откуда берется дополнительная сила?

Турбокомпрессоры дают автомобилю большую мощность, но эта дополнительная мощность не поступают непосредственно из отработанного выхлопного газа - и это иногда смущает людей. С турбокомпрессором, мы используем часть энергии в выхлопе для привода компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо, где автомобиль имеет дополнительную мощность происходит от. Все выхлопные газы питают турбокомпрессор и, потому что турбокомпрессор не связан с коленчатым валом или колесами автомобиля, это не непосредственно , добавляя к движущей силе автомобиля любым способом.Это просто позволяет Тот же двигатель для сжигания топлива с большей скоростью, что делает его более мощным.

Сколько дополнительной мощности вы можете получить?

Если турбокомпрессор даст двигателю большую мощность, больший и лучший турбокомпрессор даст это еще большая сила. Теоретически, вы можете продолжать улучшать турбокомпрессор сделать ваш двигатель все более и более мощным, но в конечном итоге вы достигнете предела. Цилиндры очень большие, и они могут сжечь столько топлива. Там только столько воздуха, что вы можете нагнетать в них через впуск определенного размера, и только столько выхлопных газов, которые вы можете выбросить, что ограничивает энергию, которую вы можете использовать для управления турбонагнетателем.Другими словами, в игру вступают другие ограничивающие факторы, которые вы должны принять во внимание. счет также; Вы не можете просто турбировать свой путь в бесконечность!

Преимущества и недостатки турбокомпрессоров

Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и на более или менее любых тип транспортного средства (автомобиль, грузовик, корабль или автобус). Основное преимущество использования турбокомпрессора заключается в том, что вы получаете больше мощности для двигателя одинакового размера (каждый такт поршня в каждом цилиндре вырабатывает больше энергии, чем в противном случае).Тем не менее, чем больше мощность, тем больше энергии и выработки в секунду, и закон сохранения энергии говорит нам, что это означает, что вам также нужно вкладывать больше энергии, поэтому вы должны сжигать соответственно больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него. Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, вырабатывающий ту же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении.Производители теперь часто могут сойти с рук, установив гораздо меньший двигатель на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндровый двигатель с турбонаддувом вместо V6). И здесь автомобили с турбонаддувом получают свое преимущество: работая хорошо, они могут сэкономить до 10 процентов вашего топлива. Поскольку они сжигают топливо с большим количеством кислорода, они имеют тенденцию сжигать его более тщательно и чисто, производя меньше загрязнения воздуха.

« Большинство экспертов отрасли ожидают, что к 2027 году более половины автомобилей, продаваемых в Соединенных Штатах, будут оснащены одним.

Нью-Йорк Таймс, 2018

Больше мощности для двигателя того же размера звучит замечательно, так почему же не все двигатели с турбонаддувом? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как того требовали производители (стремящиеся использовать любые маркетинговые преимущества над своими конкурентами). В одном из исследований Consumer Reports 2013 года были обнаружены небольшие двигатели с турбонаддувом, обеспечивающие значительно более низкую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и сделан вывод: «Не принимайте эко-хвасту от двигателей с турбонаддувом за чистую монету.Существуют более эффективные способы экономии топлива, в том числе гибриды, дизели и другие передовые технологии ». Надежность также часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности обычному двигателю - короче говоря, есть еще немало вещей, которые можно Неправильно. Это может сделать обслуживание турбин значительно дороже. По определению, турбонаддув - это все, что нужно для получения большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к преждевременному выходу деталей из строя; поэтому, вообще говоря, двигатели с турбонаддувом не работают так долго.Даже вождение может быть разным с турбинами: поскольку турбонагнетатель работает на выхлопных газах, часто существует значительная задержка («турбо-запаздывание») между моментом, когда вы нажимаете ногу на акселератор, и когда включается турбина, и это может привести к турбокомпрессору. автомобили очень разные (а иногда и очень сложные) для вождения. В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывали частично или полностью электрические турбонагнетатели для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Borg - eBooster®.

Кто изобрел турбокомпрессор?

Кого мы благодарим за турбокомпрессоры? Альфред Дж. Бючи (1879–1959), автомобильный инженер, работающий в компании Gebrüder Sulzer Engine Company, Винтертур, Швейцария. Как и турбокомпрессор, который я проиллюстрировал выше, его оригинальная конструкция использовала вал турбины с приводом от выхлопа для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя. Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

Однако

Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугальд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с использованием двух отдельных цилиндров. Это работало как наддув, увеличивая как поток воздуха в цилиндре, так и количество топлива, которое можно было сжечь. Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.

Произведение искусства: один из проектов турбокомпрессора Альфреда Бучи, выпущенный в конце 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопной газ из цилиндра подается вокруг трубы (зеленого цвета), которая приводит в движение турбину. Это связано с оранжевым «нагнетателем» (компрессор) и охладителем (синяя коробка), который выталкивает воздух в цилиндр через синюю трубу.Существуют и другие сложные элементы, но я не буду вдаваться во все детали; если вам интересно, взгляните на патент США №1955620: двигатель внутреннего сгорания (подается через патенты Google). Произведение любезно предоставлено Управлением по патентам и товарным знакам США.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.