Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как устроен бесколлекторный двигатель постоянного тока


Бесколлекторный двигатель постоянного тока: принцип работы, устройство, применение

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Бесколлекторный двигатель в компьютерном дисководе

Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.

Фазы работы бесколлекторного привода

Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.

Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.

Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Как работает бесщеточный электродвигатель?

В статье «Как работают электродвигатели» объясняется, как работают щеточных электродвигателей . В типичном двигателе постоянного тока есть постоянные магнита снаружи и вращающаяся якоря внутри. Постоянные магниты являются стационарными, поэтому их называют , статор . Якорь вращается, поэтому он называется ротором и .

Якорь содержит электромагнит .Когда вы запускаете электричество в этот электромагнит, он создает магнитное поле в якоре, которое притягивает и отталкивает магниты в статоре. Таким образом, арматура вращается на 180 градусов. Чтобы он вращался, вы должны изменить полюса электромагнита. Щетки справляются с этим изменением полярности. Они вступают в контакт с двумя вращающимися электродами, прикрепленными к якорю, и изменяют магнитную полярность электромагнита при его вращении.

Эта установка работает, ее просто и дешево изготовить, но у нее много проблем:

  • Щетки со временем изнашиваются.
  • Поскольку щетки создают / разрывают соединения, вы получаете искрение и электрический шум.
  • Щетки ограничивают максимальную скорость двигателя.
  • Наличие электромагнита в центре двигателя затрудняет его охлаждение.
  • Использование щеток ограничивает количество полюсов арматуры.

С появлением дешевых компьютеров и силовых транзисторов стало возможным «вывернуть двигатель наизнанку» и устранить щетки.В бесщеточном двигателе постоянного тока (BLDC) вы надеваете постоянные магниты на ротор и перемещаете электромагниты к статору. Затем вы используете компьютер (подключенный к мощным транзисторам) для зарядки электромагнитов при вращении вала. Эта система имеет все преимущества:

  • Поскольку компьютер управляет двигателем вместо механических щеток, это более точно. Компьютер также может учитывать скорость двигателя в уравнении.Это делает бесщеточные двигатели более эффективными.
  • Нет искрения и гораздо меньше электрических помех.
  • Нет щеток для износа.
  • С помощью электромагнитов на статоре их очень легко охлаждать.
  • Для более точного управления на статоре может быть много электромагнитов.

Единственным недостатком бесщеточного двигателя является его более высокая начальная стоимость, но вы часто можете возместить эту стоимость за счет большей эффективности в течение срока службы двигателя.

Для получения дополнительной информации о бесщеточных двигателях, проверьте ссылки, которые следуют.

Связанные Статьи HowStuffWorks

Больше замечательных ссылок

,

Как работают бесщеточный двигатель и ESC

В этом уроке мы узнаем, как работают бесщеточный двигатель и ESC. Эта статья является первой частью следующего видео, где мы изучим принцип работы бесщеточного двигателя постоянного тока и ESC (Electronic Speed ​​Controller), а во второй части мы узнаем, как управлять двигателем BLDC с помощью Arduino.

Принцип работы


Двигатель BLDC состоит из двух основных частей: статора и ротора.Для этой иллюстрации ротор представляет собой постоянный магнит с двумя полюсами, а статор состоит из катушек, расположенных, как показано на рисунке ниже.

Мы все знаем, что если мы подадим ток через катушку, он создаст магнитное поле, а линии магнитного поля или полюса зависят от направления тока.

Таким образом, если мы подадим соответствующий ток, катушка создаст магнитное поле, которое привлечет постоянный магнит ротора.Теперь, если мы активируем каждую катушку одну за другой, ротор будет продолжать вращаться из-за силового взаимодействия между перманентом и электромагнитом.

Чтобы повысить эффективность двигателя, мы можем намотать две противоположные катушки как одну катушку таким образом, чтобы генерировать противоположные полюса к полюсам роторов, таким образом, мы получим двойную силу притяжения.

С помощью этой конфигурации мы можем генерировать шесть полюсов на статоре всего с тремя катушками или фазой.Мы можем еще больше повысить эффективность, запитав две катушки одновременно. Таким образом, одна катушка будет притягивать, а другая катушка будет отталкивать ротор.

Чтобы ротор совершил полный 360-градусный цикл, ему нужно шесть шагов или интервалов.

Если мы посмотрим на форму волны тока, мы можем заметить, что в каждом интервале есть одна фаза с положительным током, одна фаза с отрицательным током и третья фаза выключена. Это дает представление о том, что мы можем соединить свободные конечные точки каждой из трех фаз вместе, и поэтому мы можем разделить ток между ними или использовать один ток для одновременного возбуждения двух фаз.

Вот пример. Если мы поднимаем фазу A High или подключаем его к положительному напряжению постоянного тока, с помощью какого-то переключателя, например, MOSFET, а с другой стороны, подключаем фазу B к земле, то ток будет течь от VCC через фаза А, нейтральная точка и фаза В, на землю. Таким образом, с помощью всего лишь одного потока тока мы создали четыре разных полюса, которые приводят ротор в движение.

В этой конфигурации мы фактически имеем соединение звездой фаз двигателя, где нейтральная точка соединена внутри, а остальные три конца фаз выходят из двигателя, и поэтому у бесщеточного двигателя есть три провода, выходящие из Это.

Итак, чтобы ротор совершил полный цикл, нам просто нужно активировать два правильных МОП-транзистора в каждом из 6 интервалов, и это то, чем на самом деле являются ESC.

Как работает шаговый двигатель

В этом руководстве вы узнаете, как работает шаговый двигатель. Мы рассмотрим основные принципы работы шаговых двигателей, их режимов движения и…

ESC или электронный регулятор скорости контролируют движение или скорость бесщеточного двигателя, активируя соответствующие полевые МОП-транзисторы для создания вращающегося магнитного поля, так что двигатель вращается.Чем выше частота или чем быстрее ESC пройдет через 6 интервалов, тем выше будет скорость двигателя.

Однако здесь возникает важный вопрос, и вот как мы узнаем, когда активировать какую фазу. Ответ заключается в том, что нам нужно знать положение ротора, и для определения положения ротора используются два распространенных метода.

Первый распространенный метод заключается в использовании встроенных в статор датчиков Холла, расположенных на 120 или 60 градусов друг от друга.

По мере вращения постоянных магнитов роторов датчики Холла обнаруживают магнитное поле и генерируют логическую «высокую» для одного магнитного полюса или логическую «низкую» для противоположного полюса. Согласно этой информации ESC знает, когда активировать следующую последовательность коммутации или интервал.

Второй общий метод, используемый для определения положения ротора, заключается в измерении обратной электродвижущей силы или обратной ЭДС. Обратная ЭДС возникает в результате совершенно противоположного процесса генерации магнитного поля или когда движущееся или изменяющееся магнитное поле проходит через катушку, оно индуцирует ток в катушке.

Таким образом, когда движущееся магнитное поле ротора проходит через свободную катушку или неактивное, оно будет вызывать протекание тока в катушке и, как следствие, падение напряжения в этой катушке. ESC фиксирует эти падения напряжения по мере их возникновения и на основании них предсказывает или рассчитывает, когда должен произойти следующий интервал.

Так что это основной принцип работы бесщеточных двигателей постоянного тока и ESC, и он одинаков, даже если мы увеличим количество полюсов как ротора, так и статора.У нас все еще будет трехфазный двигатель, только количество интервалов увеличится, чтобы завершить полный цикл.

Здесь мы также можем упомянуть, что двигатели BLDC могут быть как опережающими, так и опережающими. Бесщеточный двигатель внутреннего хода имеет постоянные магниты внутри электромагнитов, и наоборот, двигатель внешнего запуска имеет постоянные магниты снаружи электромагнитов. Опять же, они используют один и тот же принцип работы, и у каждого из них есть свои сильные и слабые стороны.

Хорошо, хватит теории, так что теперь давайте продемонстрируем и посмотрим в реальной жизни то, что мы объяснили выше.Для этого мы подключим три фазы бесщеточного двигателя к осциллографу. Я подключил 3 резистора в одну точку, чтобы создать виртуальную нейтральную точку, а с другой стороны я подключил их к трем фазам двигателя BLDC.

Первое, что мы можем здесь заметить, - это три синусоиды. Эти синусоидальные волны на самом деле являются обратной EFM, генерируемой в фазах, когда они не активны.

Мы можем видеть, что при изменении частоты вращения двигателя частота синусоидальных колебаний изменяется, а также их амплитуда.Чем выше число оборотов в минуту, тем выше частота и амплитуда синусоидальных волн обратной ЭДС. Тем не менее, двигателем являются именно эти пики, которые являются активными фазами, которые генерируют изменяющееся магнитное поле.

Мы можем заметить, что на каждом интервале присутствуют две активные и одна неактивная фаза. Например, здесь у нас активны фазы A и B, а фаза C неактивна. Тогда у нас активны фазы A и C, а фаза B неактивна и так далее.

Здесь я хотел бы дать привет Banggood.ком за предоставление мне этого осциллографа. Это Rigol DS1054Z, и это один из лучших осциллографов начального уровня по своей цене. Он имеет четыре входных канала, полосу пропускания 50 МГц, которая может быть взломана до 100 МГц, имеет частоту дискретизации 1 ГГц / с и относительно большую глубину памяти 24 Мбит / с.

Дисплей 7 дюймов, и он действительно красивый и яркий. Он имеет различные математические функции, фильтры низких и высоких частот, декодирование SPI и I2C и многое другое. Итак, еще раз, большое спасибо Banggood.com и убедитесь, что вы проверите этот осциллограф в их магазине.

Тем не менее, это основной принцип работы бесщеточного двигателя. Если вам нужны более реальные примеры из жизни и вы научитесь управлять моторами, используя Arduino, вы должны проверить вторую часть этого урока.

Я надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любые вопросы в разделе комментариев ниже и не забудьте проверить мою коллекцию проектов Arduino.

Что такое бесщеточный двигатель постоянного тока (BLDC)? Конструкция, работа и применение

Конструкция, работа и применение BLDC (бесщеточный двигатель постоянного тока)

Бесщеточные двигатели постоянного тока (BLDC) стали очень интересной областью для многих производителей двигателей, поскольку эти двигатели становятся все более предпочтительными выбор во многих приложениях, особенно в области технологий управления двигателем. Двигатели BLDC превосходят щеточные двигатели постоянного тока во многих отношениях, таких как способность работать на высоких скоростях, высокая эффективность и лучшее рассеяние тепла.

Они являются неотъемлемой частью современной технологии привода, чаще всего используемой для привода приводов, станков, электрореактивных двигателей, робототехники, компьютерной периферии, а также для производства электроэнергии. С развитием технологии без датчиков, помимо цифрового управления, эти двигатели становятся настолько эффективными с точки зрения общей стоимости системы, размера и надежности.

Что такое бесщеточный двигатель постоянного тока (BLDC)?

Бесщеточный электродвигатель постоянного тока (известный как BLDC) представляет собой синхронный электродвигатель с постоянным магнитом , который приводится в действие электричеством постоянного тока (DC) и обеспечивает работу системы коммутации с электронным управлением (коммутация - это процесс создания вращающего момента в двигателе изменяя фазные токи через него в соответствующее время) вместо механической коммутационной системы.Двигатели BLDC также называются трапецеидальными двигателями с постоянными магнитами.

В отличие от обычного электродвигателя постоянного тока щеточного типа, в котором щетки создают механический контакт с коммутатором на роторе для формирования электрического пути между источником постоянного тока и обмотками якоря ротора, двигатель BLDC использует электрическую коммутацию с ротором с постоянным магнитом и статором с последовательностью катушек. В этом двигателе вращается постоянный магнит (или полюса поля), а проводники с током фиксируются.

Катушки якоря переключаются электронным способом с помощью транзисторов или управляемых кремнием выпрямителей в правильном положении ротора таким образом, чтобы поле якоря находилось в квадратуре пространства с полюсами поля ротора. Следовательно, сила, действующая на ротор, заставляет его вращаться. Датчики Холла или поворотные датчики чаще всего используются для определения положения ротора и расположены вокруг статора. Обратная связь положения ротора от датчика помогает определить, когда следует переключать ток якоря.

Это электронное коммутационное устройство исключает использование коммутатора и щеток в двигателе постоянного тока и, следовательно, обеспечивает более надежную и менее шумную работу. Благодаря отсутствию щеток двигатели BLDC способны работать на высоких скоростях. КПД двигателей BLDC обычно составляет от 85 до 90 процентов, тогда как двигатели постоянного тока щеточного типа имеют эффективность от 75 до 80 процентов. Доступны широкие варианты двигателей BLDC: от небольшого диапазона мощности до дробной мощности, интегральной мощности и большого диапазона мощности.

Конструкция двигателя BLDC

Двигатели BLDC могут быть сконструированы в различных физических конфигурациях. В зависимости от обмоток статора они могут быть настроены как однофазные, двухфазные или трехфазные двигатели. Однако чаще всего используются трехфазные двигатели BLDC с ротором с постоянными магнитами.

Конструкция этого двигателя имеет много общего с трехфазным асинхронным двигателем, а также с обычным двигателем постоянного тока.Этот двигатель имеет детали статора и ротора, как и все остальные двигатели.

Статор двигателя BLDC, состоящий из многослойных стальных пластин, предназначенных для перемещения обмоток. Эти обмотки размещены в пазах, которые вырезаны в осевом направлении вдоль внутренней периферии статора. Эти обмотки могут быть расположены в виде звезды или дельты. Тем не менее, большинство двигателей BLDC имеют трехфазную звезду, подключенную к статору.

Каждая обмотка состоит из множества взаимосвязанных катушек, где одна или несколько катушек размещены в каждом гнезде.Для формирования четного числа полюсов каждая из этих обмоток распределена по периферии статора.

Статор должен быть выбран с правильным номинальным напряжением в зависимости от возможностей источника питания. Для применения в робототехнике, автомобилестроении и малых приводах предпочтительны двигатели BLDC напряжением 48 В или менее. Для промышленного применения и систем автоматизации используются двигатели мощностью 100 В или выше.

Ротор

Двигатель BLDC имеет постоянный магнит в роторе.Количество полюсов в роторе может варьироваться от 2 до 8 пар полюсов с чередованием южного и северного полюсов в зависимости от требований применения. Для достижения максимального крутящего момента в двигателе плотность потока материала должна быть высокой. Для получения необходимой плотности магнитного поля необходим надлежащий магнитный материал для ротора.

Ферритовые магниты недороги, однако они имеют низкую плотность потока для данного объема. Магниты из редкоземельных сплавов обычно используются для новых конструкций.Некоторыми из этих сплавов являются кобальт самария (SmCo), неодим (Nd) и феррит и бор (NdFeB). Ротор может быть изготовлен с различными конфигурациями сердечника, такими как кольцевой сердечник с постоянным магнитом по периферии, кольцевой сердечник с прямоугольными магнитами и т. Д.

Датчики Холла

Датчик Холла предоставляет информацию для синхронизации возбуждения якоря статора с положением ротора , Поскольку коммутация двигателя BLDC контролируется электронным способом, обмотки статора должны включаться последовательно, чтобы вращать двигатель.Перед подачей питания на конкретную обмотку статора необходимо подтвердить положение ротора. Таким образом, встроенный в статор датчик Холла определяет положение ротора.

Большинство двигателей BLDC имеют три датчика Холла, которые встроены в статор. Каждый датчик генерирует низкий и высокий сигналы всякий раз, когда полюса ротора проходят рядом с ним. Точная последовательность коммутации обмотки статора может быть определена на основе комбинации этих трех датчиков.

Принцип работы и работа двигателя BLDC

Двигатель BLDC работает по принципу, аналогичному принципу обычного двигателя постоянного тока, т.е.закон силы Лоренца, который гласит, что всякий раз, когда токонесущий проводник помещен в магнитное поле, он испытывает силу. В результате силы реакции магнит будет испытывать равную и противоположную силу. В случае двигателя BLDC токонесущий проводник неподвижен, а постоянный магнит движется.

Когда катушки статора электрически переключаются от источника питания, он становится электромагнитом и начинает создавать однородное поле в воздушном зазоре.Несмотря на то, что источником питания является постоянный ток, при переключении генерируется сигнал переменного напряжения трапециевидной формы. Благодаря силе взаимодействия между статором электромагнита и ротором с постоянными магнитами, ротор продолжает вращаться.

Рассмотрим рисунок ниже, на котором статор двигателя возбуждается в зависимости от различных состояний переключения. При переключении обмоток в качестве сигналов высокого и низкого напряжения соответствующие обмотки подаются на север и юг. Ротор с постоянными магнитами с северным и южным полюсами совмещается с полюсами статора, вызывая вращение двигателя.

Обратите внимание, что двигатель создает крутящий момент из-за развития сил притяжения (при выравнивании север-юг или юг-север) и сил отталкивания (при выравнивании север-север или юг-юг). Таким образом, двигатель движется по часовой стрелке.

Здесь может возникнуть вопрос: откуда мы знаем, какая катушка статора должна быть под напряжением и когда это делать. Это потому что; Непрерывное вращение двигателя зависит от последовательности переключения вокруг катушек. Как обсуждалось выше, датчики Холла передают электронное устройство управления обратной связи о положении вала.

На основании этого сигнала от датчика контроллер определяет конкретные катушки для подачи питания. Датчики Холла генерируют сигналы низкого и высокого уровня всякий раз, когда полюса ротора проходят рядом с ним. Эти сигналы определяют положение вала.

Бесщеточный привод двигателя постоянного тока

Как описано выше, схема электронного контроллера запитывает соответствующую обмотку двигателя поворотом транзистора или других твердотельных переключателей для непрерывного вращения двигателя. На рисунке ниже показана схема простого привода двигателя BLDC , которая состоит из моста MOSFET (также называемого мостом инвертора), электронного контроллера, датчика эффекта Холла и двигателя BLDC.

Здесь датчики Холла используются для обратной связи по положению и скорости. Электронный контроллер может представлять собой микроконтроллер или микропроцессор, процессор DSP, FPGA или любой другой контроллер. Этот контроллер принимает эти сигналы, обрабатывает их и отправляет сигналы управления в схему драйвера MOSFET.

В дополнение к переключению на номинальную скорость двигателя, дополнительные электронные схемы изменяют скорость двигателя в зависимости от требуемого применения. Эти блоки управления скоростью обычно реализуются с ПИД-регуляторами для обеспечения точного управления.Также возможно производить работу с четырьмя квадрантами от двигателя, в то же время поддерживая хорошую эффективность при изменениях скорости с использованием современных приводов.

Статьи о соответствующих электроприводах

Преимущества двигателя BLDC

Двигатель BLDC имеет ряд преимуществ по сравнению с обычными двигателями постоянного тока, и некоторые из них

  • Он не имеет механического коммутатора и связанных с ним проблем
  • Высокая эффективность благодаря использованию ротор с постоянным магнитом
  • Высокая скорость работы даже в нагруженных и ненагруженных условиях из-за отсутствия щеток, ограничивающих скорость
  • Меньшая геометрия двигателя и меньший вес, чем у щеточных двигателей постоянного и асинхронного типа
  • Долгий срок службы без проверки и требуется техническое обслуживание для системы коммутаторов
  • Более высокий динамический отклик из-за низкой инерции и несущих обмоток в статоре
  • Меньше электромагнитных помех
  • Довольно работа (или низкий уровень шума) из-за отсутствия щеток
Недостатки бесщеточного двигателя
  • Эти двигатели являются дорогостоящими
  • 9012 0 Требуется электронный контроллер для управления этим двигателем.
  • Недостаточно много встроенных электронных систем управления, особенно для крошечных двигателей BLDC
  • Требуется сложная схема привода
  • Необходимы дополнительные датчики

Вы также можете прочитать: Подключение трехфазного двигателя Звезда / треугольник (Y-Δ) Обратный / Вперед с диаграммой питания и управления таймера

Применение бесщеточных двигателей постоянного тока (BLDC)

Бесщеточные двигатели постоянного тока (BLDC) используются для широкого спектра применений требования, такие как изменяющиеся нагрузки, постоянные нагрузки и приложения позиционирования в областях промышленного контроля, автомобильной промышленности, авиации, систем автоматизации, медицинского оборудования и т. д.Некоторые конкретные области применения двигателей BLDC:

  • Компьютерные жесткие диски и DVD / CD-плееры
  • Электромобили, гибридные автомобили и электрические велосипеды
  • Промышленные роботы, станки с ЧПУ и простые системы с ременным приводом
  • Стиральные машины, компрессоры и сушилки
  • Вентиляторы, насосы и воздуходувки

Вы также можете прочитать

.

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.