Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как устроена турбина в дизельном двигателе


Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась  на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

 

 

Как работают дизельные двигатели?

Крис Вудфорд. Последнее обновление: 19 июля 2020 г.

Вы когда-нибудь смотрели в изумлении, когда гигантский грузовик медленно ползет вверх по холму? Возможно нет! Такие вещи случаются каждый день. Но остановись и подумай момент о том, что происходит - как огромная, тяжелая нагрузка систематически поднял против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) - и вы можете согласиться То, что ты видишь, довольно примечательно.Дизельные двигатели - это сила наших самых больших машин - грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но они генерируют больше энергии, более эффективно, работая немного по-другому. Давайте возьмем пристальный взгляд!

Фото: дизельные двигатели (как в этом железнодорожном локомотиве) идеально подходят для тяги тяжелых поездов. Это великолепно сохранившийся (и отлично отполированный!) Британский железнодорожный класс 55 («Deltic»), номер 55022, названный Royal Scots Grey 1960 года.Вот картинка из Дизельный двигатель Napier Deltic, который приводит его в действие.

Что такое дизельный двигатель?

Фото: типичный дизельный двигатель (из пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Как и бензиновый двигатель, дизельный двигатель - это тип внутреннего сгорания. двигатель. Горение это еще одно слово для горения, и внутреннее значит внутри, поэтому двигатель внутреннего сгорания просто тот, где топливо сгорает внутри главной части двигателя (цилиндры) где производится энергия.Это очень отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровом двигателе есть большой пожар на одном конце котел, который нагревает воду для приготовления пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень назад и вперед для перемещения колес. Это внешний сгорание, потому что огонь находится за пределами цилиндра (действительно, как правило, 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих цилиндров.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно течь откуда он производится в цилиндр: все происходит одинаково место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают как от внутреннего сгорания, но в немного по-другому.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, что делает его взрывоопасным, и небольшая электрическая искра от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерируя энергию, которая толкает поршень вниз по цилиндру и (через коленвал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но проще.Во-первых, воздух допускается в цилиндр и поршень сжимает его, но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжатый примерно до десятой части своего первоначального объема. Но в дизеле двигатель, воздух сжимается на что-нибудь от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали чем горячее в ваших руках, тем дольше вы его используете. Это потому что сжатие газа генерирует тепло. Представьте себе, сколько тепла генерируется путем нагнетания воздуха в 14–25 раз меньше пространства, чем обычно занимает.Так много тепла, как это бывает, что воздух становится действительно горячий - обычно не менее 500 ° C (1000 ° F), а иногда и очень горячее. Как только воздух сжат, туман топлива распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает немного как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от того, сколько энергии водитель хочет, чтобы двигатель работал.) Воздух настолько горячий, что топливо мгновенно воспламеняется и взрывается без искры подключи.Этот контролируемый взрыв заставляет поршень вытолкнуть цилиндр, производящий энергию, которая приводит в движение автомобиль или который двигатель установлен. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется сотни или тысячи раз минут!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели в два раза эффективнее бензиновых двигателей - около 40–45 процентов эффективный в лучшем случае.[2] Проще говоря, это означает, что вы можете пойти гораздо дальше на том же количестве топлива (или получите больше миль за свои деньги). Есть несколько причин этот. Во-первых, они сжимают больше и работают при более высоких температурах. Фундаментальная теория о том, как работают тепловые двигатели, известный как правило Карно, говорит нам, что эффективность двигателя зависит на высоких и низких температурах, между которыми он работает. Дизельный двигатель с большим перепадом температур (более высокая температура или самая низкая температура) более эффективна.Во-вторых, отсутствие системы зажигания с зажиганием делает более простая конструкция, которая может легко сжать воздух намного больше - и это делает топливо более горячим и более полным, высвобождая больше энергии. Есть еще одна экономия эффективности слишком. В бензиновом двигателе, который не работает на полную мощность, вам нужно подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на меньшей мощности. Другим важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, блокируя их атомы вместе (другими словами, дизель имеет более высокую плотность энергии, чем бензин).Дизель тоже лучше смазка, чем бензин, так дизельный двигатель будет естественно работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совсем разные. Вы будете знать это очень много, если вы когда-либо слышал страшные истории людей, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель является низкосортный, менее рафинированный продукт из нефти, полученный из более тяжелых углеводороды (молекулы построены из большего количества углерода и водорода атомов).Сырые дизельные двигатели, которым не хватает сложного впрыска топлива Теоретически, системы могут работать практически на любом углеводородном топливе, поэтому популярность биодизеля (вид биотоплива, сделанного, среди прочего, вещи, отработанные растительные масла). Изобретатель дизельного двигателя, Рудольф Дизель, успешно запустил свои ранние двигатели на арахисовом масле и думал, что его двигатель сделает людям одолжение, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованного источники энергии. [3] Если бы он только знал!

Фото: смазка будет путешествовать: Джошуа и Кайя Тикелл, пара защитники окружающей среды, используйте этот трейлер (Green Grease Machine) для производства биодизельного топлива для своего фургона (прикрепленного к передней части) с использованием отработанного растительного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит внушительные $ 0,80 за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели - самые универсальные двигатели, работающие на топливе, на сегодняшний день, нашел во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и более экономичный. Они также безопаснее, потому что дизельное топливо меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей, они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо больше напряжения и деформации, чем в бензиновом двигателе. Поэтому дизельные двигатели должны быть сильнее и тяжелее и почему долго В то время они использовались только для питания больших транспортных средств и машин. Пока это может показаться недостатком, это означает, что дизельные двигатели, как правило, более Прочный и прослужит намного дольше, чем бензиновые двигатели.

Фото: дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксидов азота, окиси углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.В теории, дизели более эффективны, поэтому они следует использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и вносить меньший вклад в глобальное потепление. На практике есть спор о том, действительно ли это так. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива только немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно выходят лучше. Другие недавние исследования показывают, что даже новые дизельные автомобили очень загрязняющие.Европейское агентство по окружающей среде, например, отмечает, что даже типичный, «чистый» дизельный автомобиль который соответствует нормам выбросов ЕВРО-6, производит в 10 раз больше азота оксидное загрязнение как сопоставимый бензиновый автомобиль. [4] Как насчет выбросов CO2? По данным Британского общества автопроизводителей и трейдеры: «Дизельные автомобили внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, стоят дороже, чем бензиновые двигатели, хотя их более низкие эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор произошло значительное падение продаж скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязняют окружающую среду.

Нет сомнений, что дизельные двигатели будут продолжать работать на тяжелых транспортных средствах - грузовиках, автобусы, корабли и железнодорожные локомотивы зависят от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный импульс для того, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться выдавленными вообще. Опять же сами дизели постоянно развиваются; в 2011 году министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизель может остаться претендент на меньшие транспортные средства в течение многих лет, особенно если их выбросы сажи может быть правильно решена.

Кто изобрел дизельный двигатель?

Произведение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, который он нарисовал в своем патенте 1895 года.Цилиндр (1) находится сверху. 2) «Плунжер» (как его называл дизель) крепится кривошипом и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную частоту вращения двигателя (отключение подачи топлива, если двигатель работает слишком быстро, затем его включение, когда двигатель снова замедляется). Иллюстрации любезно предоставлены Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: «Способ и устройство для преобразования тепла в работу» Рудольфа Дизеля.

Не удивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Рош (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на эту идею 16 февраля 1862 года, но ему не удается собрать работающую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: в возрасте 22 лет, Рудольф Дизель переходит на работу к инженеру-холодильнику Карлу фону Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как сделать улучшенное внутреннее сгорание двигатель использует более высокое давление и температуру, для чего не требуется свеча зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы другие не могли ими воспользоваться.
  • 1893: Дизель строит огромный, стационарный двигатель, который работает целую минуту под своей собственной власть, 17 февраля 1894 г.
  • 1895: патент на дизельное топливо выдан в США 16 июля 1895 года.
  • 1898: с помощью Дизеля, первый коммерческий двигатель построен в завод в Сент-Луисе, штат Миссури, США, Адольф Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На дизельном заводе в Аугсбурге начинается производство дизельных двигателей. Дизель начинает лицензировать свои идеи другим фирмам и вскоре становится очень богатый
  • 1903: Petit Pierre, один из первых дизельных кораблей, начинает работу над каналом Марн-Рейн во Франции.
  • 1912: MS Selandia, первый океанский дизельный корабль, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, по-видимому, падая за борт с корабля Дрезден во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или совершил самоубийство, но ничего не происходит доказана.
  • 1931: Clessie Cummins, основатель Cummins Engine Co., строящий один из первых успешных автомобилей с дизельным двигателем и демонстрирующий его эффективность, перевозя его из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершил революцию в сельском хозяйстве, представив Diesel Sixty, первый дизельный гусеничный трактор на базе популярного Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и это остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой мощный дизель-электрический локомотив EMD FT и отправляет первый (номер 103) в путешествие на протяжении года, чтобы продемонстрировать свою ценность.Несомненно, это доказывает превосходство дизельного двигателя.
  • 1970-е годы: глобальный топливный кризис вызывает новый интерес к использованию небольших, эффективных дизельных двигателей в автомобилях.
  • 1987: Всемирно известный корабль Королевы Елизаветы 2 (QE2) оснащен девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что делает его самым мощным торговым судном с дизельным двигателем в то время.
  • 2000: Peugeot представляет первый в мире фильтр частиц (PF) для дизельных двигателей на своей модели 607, утверждая, что выброс сажи на 99 процентов ниже.
  • 2015: Volkswagen погрузился в огромный глобальный скандал после систематического обмана на тестах на выбросы дизельного двигателя. Продажи дизельных автомобилей резко упали впервые за многие годы.
  • 2017: Volvo становится первым крупным производителем автомобилей, который отказался от бензиновых и дизельных двигателей, объявив, что все новые автомобили будут гибридами или полностью электрическими с 2019 года.
,

Двигатели

Что такое аэронавтика? | динамика полета | Самолеты | Двигатели | История полета | какой такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Ланс | Индекс сайта | Дом

Двигатели

Как работает реактивный двигатель?


NEW!
Видео "Как работает реактивный двигатель".

Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов поднимается с земли с такой легкостью. Как это случилось? Ответ прост. Это двигатели.

Пусть Тереза ​​Беньо из Исследовательского центра Гленна НАСА объяснит больше ...

Как показано на НАСА Направление завтра.


Реактивные двигатели с огромной силой двигают самолет вперед, создаваемый огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называются газовые турбины, работать по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор поднимает давление воздуха. Компрессор сделан со многими лезвиями, прикрепленными к валу. Лопасти вращаются с высокой скоростью и сжимают или сжимают воздух. Сжатый воздух тогда распыляется с топливом, и электрическая искра зажигает смесь. горючие газы расширяются и выдуваются через сопло в задней части двигателя.Когда струи газа стреляют назад, двигатель и самолет смещаются вперед. Когда горячий воздух идет к соплу, он проходит через другую группу лопастей. называется турбиной. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины приводит к вращению компрессора.

На рисунке ниже показано, как воздух проходит через двигатель. Воздух проходит через ядро двигателя, а также вокруг ядра.Это вызывает некоторое количество воздуха быть очень горячим, а некоторые - круче. Кулер воздух затем смешивается с горячим воздух на выходе из двигателя.

Это картина того, как воздух проходит через двигатель

Что такое тяга?

Тяга это передняя сила, которая толкает двигатель и, следовательно, самолет вперед. сэр Исаак Ньютон обнаружил, что для «каждого действия существует равное и противоположная реакция. "Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топливо, температура воздуха может достигать трех тысяч градусов. Мощность воздуха используется для вращения турбины. Наконец, когда воздух выходит, это выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.

Части реактивного двигателя

Поклонник - Вентилятор является первым компонентом в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий вентилятора сделаны из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть проходит через «ядро» или центр двигателя, где на него воздействуют другие компоненты двигателя.

Вторая часть «обходит» сердечник двигателя. Проходит через воздуховод который окружает ядро ​​в задней части двигателя, где он производит большую часть сила, которая продвигает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.

Компрессор - Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает воздух, который поступает в него Постепенно меньшие площади, что приводит к увеличению давления воздуха. это приводит к увеличению энергетического потенциала воздуха. Раздавленный воздух нагнетается в камеру сгорания.

Combustor - В камере сгорания воздух смешан с топливом, а затем загорелся. Есть 20 форсунок для распыления топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Горючее с кислородом в сжатом топливе воздух, производящий горячие расширяющиеся газы. Внутренняя часть камеры сгорания часто производится из керамических материалов для обеспечения термостойкой камеры. Жара может достигать 2700 °.

Турбина - Высокоэнергетический поток воздуха из камеры сгорания уходит в турбину, вызывая вращение лопастей турбины. Турбины связаны валом, чтобы вращать лопасти в компрессоре и раскрутить впускной вентилятор спереди.Это вращение отнимает энергию у поток высокой энергии, который используется для привода вентилятора и компрессора. Газы Произведенные в камере сгорания движутся через турбину и вращают ее лопасти. Турбины реактивного двигателя вращаются вокруг тысячи раз. Они закреплены на валах которые имеют несколько наборов шарикоподшипников между ними.

Насадка - Сопло является вытяжным каналом двигатель. Это часть двигателя, которая на самом деле производит тягу для самолет.Истощенный энергией воздушный поток, который прошел турбину, в дополнение к более холодный воздух, который обошел ядро ​​двигателя, создает силу при выходе из форсунка, которая движет вперед двигатель и, следовательно, самолет. Сочетание горячего воздуха и холодного воздуха выталкивается и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из активной зоны двигателя с воздух с более низкой температурой, который был обойден в поклоннике.Смеситель помогает сделать двигатель тише.

Первый реактивный двигатель - А Краткая история ранних двигателей

Сэр Исаак Ньютон в 18 веке был сначала предположить, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло в обратном направлении, самолет движется вперед.

Анри Жиффар построил дирижабль, который был приведен в действие первым двигателем самолета - паровой двигатель с тремя лошадьми. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 году Феликс де Храм года построил моноплан который пролетел короткий прыжок вниз по склону с помощью угольного парового двигателя.

Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался привести в действие свой трехместный биплан с двумя угольными паровыми двигателями.Это только пролетели за несколько секунд.

Ранние паровые двигатели работали на подогреве угля и, как правило, слишком тяжелый для полета.

американец Сэмюэль Лэнгли сделал модель самолета которые были приведены в действие паровыми двигателями. В 1896 году он успешно управлял Беспилотный самолет с паровым двигателем, названный Aerodrome . Он пролетел около 1 мили, прежде чем испарился. Затем он попытался построить полный размер самолета, Aerodrome A, с бензиновым двигателем.В 1903 году это разбился сразу же после спуска с домашнего катера.

В 1903 году братьев Райт полетел, Flyer , с 12-сильным газом двигатель.

С 1903 года, года первого полета братьев Райт, до конца 1930-х годов бензиновый поршневой двигатель внутреннего сгорания с пропеллером единственное средство, используемое для приведения в движение самолета.

Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттл впервые полетел успешно в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему сгорания. камера, одноступенчатая турбина и сопло.

В то же время, когда Уиттл работал в Англии, Ганс фон Охайн работал над аналогичным дизайном в Германии. Первый самолет успешно Использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель рейс.

General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Это был экспериментальный самолет XP-59A, который впервые полетел в октябре 1942 года.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается в 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания для поднять температуру жидкой смеси примерно до 1100 ° F до 1300 ° F. Полученный горячий воздух проходит через турбину, которая приводит в движение компрессор. Если турбина и компрессор работают, давление на выходе турбины будет почти вдвое больше атмосферного давления, и это избыточное давление отправляется к соплу, чтобы произвести высокоскоростной поток газа, который создает тягу.Значительное увеличение тяги может быть достигнуто с помощью форсаже. Это вторая камера сгорания, расположенная после турбины и перед сопло. Дожигатель повышает температуру газа перед соплом. Результатом этого повышения температуры является увеличение примерно на 40 процентов в тяге при взлете и гораздо больший процент на высоких скоростях, как только самолет в воздухе.

Турбореактивный двигатель - реактивный двигатель.В реакторе, расширяющемся газе давить сильно на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает это. Газы протекают через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопа, толкая самолет вперед.

Изображение турбореактивного двигателя

Турбовинты

А турбовинтовой двигатель реактивный двигатель, прикрепленный к винтуТурбина в задняя часть поворачивается горячими газами, и это поворачивает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты приводятся в действие турбовинтовыми двигателями.

Как турбореактивный, турбовинтовой двигатель состоит из компрессора, сгорания камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель обладает большей эффективностью при скорости полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены винтами, которые имеют меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособить более высокие скорости полета, лопасти имеют форму ятагана с опущенными передними кромками на концах лезвия. Двигатели с такими винтами называются пропфанов .

Изображение турбовинтового двигателя

Турбовентиляторы

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха проходит вокруг двигателя, что делает его тише и дает больше тяги на низких скоростях. Большинство современных авиалайнеров имеют питание турбовентиляторы. В турбореактивном двигателе весь воздух, поступающий на впуск, проходит через газогенератор, который состоит из компрессора, камеры сгорания и турбины. В турбовентиляторном двигателе только часть поступающего воздуха поступает в камера сгорания. Остальная часть проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно как «холодная» струя или смешивается с выхлопом газогенератора производить "горячую" струю.Целью этого типа обходной системы является увеличение тяга без увеличения расхода топлива. Это достигается путем увеличения общий воздушно-массовый поток и снижение скорости в пределах того же общего источника энергии.

Изображение турбовентиляторный двигатель

Турбовальные валы

Это еще одна форма газотурбинного двигателя, которая работает во многом как турбовинтовой двигатель система.Это не водить винт. Вместо этого он обеспечивает мощность для вертолета ротор. Турбовальный двигатель сконструирован таким образом, чтобы скорость вращения вертолета ротор не зависит от скорости вращения газогенератора. Это разрешает частота вращения ротора должна быть постоянной, даже если скорость генератора варьируется, чтобы модулировать количество производимой энергии.

Изображение турбовального двигателя

Ramjets

ПВРД является Самый простой реактивный двигатель и не имеет движущихся частей.Скорость струи "баранов" или нагнетает воздух в двигатель. По сути это турбореактивный двигатель, в котором вращается машины были опущены. Его применение ограничено тем, что его Степень сжатия полностью зависит от скорости движения. ПВРД не развивает статичность тяга и очень малая тяга вообще ниже скорости звука. Как следствие, Для ПВРД необходим некоторый вспомогательный взлет, такой как другой самолет. Он использовался в основном в ракетных системах.Космические аппараты используют это тип струи.

Изображение Ramjet Engine

Вернуться к началу

Что такое аэронавтика? | Динамика полета | самолеты | Двигатели | история полета | Что такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Планы Индекс сайта | Дом

,

дизельного топлива - как работают дизельные двигатели

Нефтяное топливо начинается как сырая нефть, которая естественным образом содержится на Земле. Когда сырая нефть перерабатывается на нефтеперерабатывающих заводах, ее можно разделить на несколько видов топлива, включая бензин, топливо для реактивных двигателей, керосин и, конечно же, дизельное топливо.

Если вы когда-нибудь сравнивали дизельное топливо и бензин, вы знаете, что они разные. Они, конечно, пахнут по-разному. Дизельное топливо тяжелее и жирнее.Он испаряется гораздо медленнее, чем бензин - его температура кипения на самом деле выше, чем температура кипения воды. Вы часто будете слышать дизельное топливо, называемое «дизельное масло», потому что оно очень жирное.

Дизельное топливо испаряется медленнее, потому что оно тяжелее. Он содержит больше атомов углерода в более длинных цепях, чем бензин (бензин обычно C9h30, а дизельное топливо обычно C14h40). Для создания дизельного топлива требуется меньше переработки, поэтому раньше оно было дешевле бензина.Однако с 2004 года спрос на дизельное топливо возрос по нескольким причинам, включая рост индустриализации и строительства в Китае и США [источник: Управление энергетической информации].

Дизельное топливо имеет на большую плотность энергии на , чем бензин. В среднем 1 галлон (3,8 л) дизельного топлива содержит приблизительно 155x10 6 джоулей (147 000 БТЕ), в то время как 1 галлон бензина содержит 132x10 6 Джоулей (125 000 БТЕ). Это в сочетании с улучшенной эффективностью дизельных двигателей объясняет, почему дизельные двигатели имеют больший пробег, чем эквивалентные бензиновые двигатели.

Дизельное топливо используется для питания различных транспортных средств и операций. Он, конечно, питает дизельные грузовики, которые вы видите, грохоча по шоссе, но он также помогает перемещать лодки, школьные автобусы, городские автобусы, поезда, краны, сельскохозяйственную технику и различные машины аварийного реагирования и генераторы энергии. Подумайте о том, насколько важно дизельное топливо для экономики - без его высокой эффективности, как строительная индустрия, так и сельское хозяйство сильно пострадают от инвестиций в топливо с низкой мощностью и эффективностью.Около 94 процентов грузов - будь то в грузовиках, поездах или лодках - зависит от дизеля.

С точки зрения экологии дизель имеет свои плюсы и минусы. Плюс дизель выделяет очень небольшое количество угарного газа, углеводородов и углекислого газа, выбросы, которые ведут к глобальному потеплению. Недостатки - большое количество соединений азота и твердых частиц (сажи) выделяется при сжигании дизельного топлива, что приводит к кислотным дождям, смогу и ухудшению состояния здоровья. На следующей странице мы рассмотрим некоторые недавние улучшения, сделанные в этих областях.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.