Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как узнать мощность асинхронного двигателя


Как определить мощность и частоту оборотов электродвигателя


Возникла необходимость узнать мощность или частоту оборотов вала и другие параметры электродвигателя, но после внимательного осмотра на его корпусе не нашлось таблички (шылдика) с его наименованием и техническими параметрами. Придется определять самому, для этого есть несколько способов и мы их рассмотрим ниже.

Мощность электродвигателя представляет из себя скорость преобразования электрической энергии, ее принято определять в ваттах.

Чтоб осознать, как это работает, нам понадобится 2 величины: сила тока и напряжение. Сила тока — численность тока, которое проходит через поперечное сечение за некий отрезок времени, ее принято определять в амперах. Напряжение — значение, равная работе по перемещению заряда меж 2-мя точками цепи, ее принято определять в вольтах.

Для расчета мощности используется формула N = A/t, где:

N - мощность;

А - работа;

t - время.

Часто электродвигатель поступает с завода с уже указанными техническими параметрами. Но заявленная мощность не всегда соответствует фактической, а скорее всего она может значить лишь максимальную мощность электропотока.

Так что если на вашем электроинструменте указана, например, мощность в 500 ват, это совсем не значит что инструмент будит потреблять точно 500 ват.

Электродвигатели производят стандартной дискретной мощности, линейки типа 1.5,  2.2,  4 кВт.

Опытный электрик может легко отличить 1.5 от 2.2 кВт всего лишь взглянув на его габариты. Помимо этого он сможет определить количество оборотов двигателя по размеру статора, количеству пар полюсов и диаметра вала.

Еще более опытным в этом деле окажется обмотчик, специалист который занимается перемоткой электродвигателей со 100%-ой уверенностью определит технические параметры вашего электродвигателя.

Если табличка с характеристиками двигателя потеряна для подсчета мощности двигателя нужно измерить силу тока на обмотках ротора и с помощью стандартной формулы найти потребляемую мощность электродвигателя. 

Основные способы определения мощности двигателя

Определение мощности по току. Для этого подключаем двигатель в сеть и контролируем напряжение. Затем поочередно, в цепь каждой из обмоток статора включаем амперметр и замеряем потребляемый ток. После того как мы нашли суму потребляемых токов, полученное число необходимо умножить на фиксированное напряжение в результате получим число определяющее мощность электродвигателя в ваттах.

Определяем мощность по габаритам. Нужно измерить диаметр сердечника (с внутренней стороны) и его длину.

Дальше если знаем частоту сети нужно узнать синхронную частоту вращения вала.

Умножаем синхронную частоту вращения вала на диаметр сердечника (в сантиметрах) полученную цифру умножаем на 3.14 затем разделяем на частоту сети умноженную на 120. Полученное значение мощности будит в киловаттах.

Замер по счетчику. Способ считается самым простым. Для этого, для чистоты эксперимента, отключаем все нагрузки в доме. Дальше необходимо включить двигатель на определенное время (например 10 минут) На щетчике будит видно разницу в киловаттах по ней уже легко можно высчитать сколько киловаттах потребляет двигатель. Удобней всего будит воспользоваться портативным электросчетчиком который показывает потребление в киловаттах (ваттах) в режиме реального времени.


Для определения реального показателя мощности, которую выдает двигатель, необходимо найти скорость валового вращения, измеряемую в числе оборотов за секунду, тяговое усилие двигателя.

Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.

Определяем рабочее количество оборотов двигателя.

Самый быстрый способ - посчитать количество катушек (катушечных групп) Определяем мощность по расчетным таблицам. С помощью штангенциркуля замеряем диаметр вала, длину мотора (без выступающего вала) и расстояние до оси.Замеряем вылет вала и его выступающую часть, диаметр фланца если он есть, а также расстояние крепежных отверстий. По этим данным с помощью сводной таблицы можно легко определить мощность двигателя и другие характеристики

1,1 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм718080
Диаметр вала d1, мм192222
Крепление лап по ширине b10, мм112125125
Крепление лап по длине L10, мм90100100
Крепление фланца по центрам отверстий d20, мм165165165
Замок фланца d25, мм130130130

1,5 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм808090
Диаметр вала d1, мм222224
Крепление лап по ширине b10, мм125125140
Крепление лап по длине L10, мм100100125
Крепление фланца по центрам отверстий d20, мм165165215
Замок фланца d25, мм130130180

2,2 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм8090100
Диаметр вала d1, мм222428
Крепление лап по ширине b10, мм 125140160
Крепление лап по длине L10, мм100125140
Крепление фланца по центрам отверстий d20, мм165215215
Замок фланца d25, мм130180180

4 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм100100112
Диаметр вала d1, мм282832
Крепление лап по ширине b10, мм160160190
Крепление лап по длине L10, мм112140140
Крепление фланца по центрам отверстий d20, мм215215265
Замок фланца d25, мм180180230

асинхронных двигателей переменного тока | Как работают двигатели переменного тока

Крис Вудфорд. Последнее обновление: 21 апреля 2020 г.

Знаете ли вы, как работают электродвигатели? Ответ, вероятно, да и нет! Хотя многие из нас узнали, как основные моторные работы, от простых научных книг и веб-страниц, таких как это, многие из двигатели, которые мы используем каждый день - во всем, от заводских машин до электрички - вообще-то не работают.Какие книги научите нас о простых двигателях постоянного тока, которые имеют петля проволоки вращается между полюсами постоянного магнита; в реальной жизни, большинство мощных двигателей используют переменный ток (AC) и работать совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте внимательнее посмотрим!

Фото: повседневный асинхронный двигатель переменного тока со снятым корпусом и ротором, на котором показаны медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (движущуюся часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено US DOE / NREL.

Как работает обычный двигатель постоянного тока?

Работа: Электродвигатель постоянного тока основан на петле проволоки, вращающейся внутри неподвижного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют электрический ток каждый раз, когда проволока переворачивается, что позволяет ему вращаться в одном направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки согнут в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током, сидящий в магнитном поле.) Когда Вы подключаете провод к батарее таким образом, чтобы через него протекал постоянный ток, создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, вызывая проволоку перевернуть.Обычно провод останавливается в этой точке, а затем снова переворачивается, но если мы используем гениальное вращающееся соединение называется коммутатором, мы можем сделать текущий обратный каждый раз, когда провод переворачивается, и это означает, что провод будет вращаться в в том же направлении, пока ток течет. Это Суть простого электродвигателя постоянного тока, который был задуман в 1820-е годы Майкл Фарадей и превратился в практическое изобретение о десятилетие спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро Подводя итог, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю, статическую часть двигатель (статор), в то время как катушка провода, несущего электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который является постоянный магнит, в то время как вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянным магнитом поле статора и временное магнитное поле, создаваемое ротором, составляет что заставляет мотор вращаться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, в большинстве домов, офисов, заводы и другие здания не питаются от маленьких батарей: они не снабжаются постоянным током, а переменным током (AC), который меняет свое направление примерно 50 раз в секунду (с частотой 50 Гц). Если вы хотите запустить двигатель от электросети переменного тока вашей семьи, вместо батареи постоянного тока вам нужен другой дизайн двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляют статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора есть цельнометаллическая ось, петля из проволоки, катушка, короткозамкнутый каркас из металлических стержней и соединений (подобно вращающимся клеткам, люди иногда забавляют домашних мышей), или какая-то другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию на внутренний ротора, в двигателе переменного тока вы посылаете питание на внешние катушки, которые составляют статор. Катушки подаются в пары, последовательно, создавая магнитное поле, которое вращается вокруг двигателя.

Фото: статор создает магнитное поле, используя плотно намотанные витки медного провода, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим двигателем. Иногда проще заменить обмотки двигателя новым проводом - квалифицированная работа, которая называется перемоткой, что и происходит здесь. Фото Сет Скарлетт любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри Магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него в виде петли. Если проводник представляет собой просто твердый кусок металла, то вокруг него циркулируют вихревые токи. В любом случае, индуцированный ток производит его собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращением.(Вы можете думать о роторе отчаянно пытаясь «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция является ключом к тому, почему такой двигатель вращается, и именно поэтому он называется асинхронным двигателем.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером того, что называется асинхронным двигателем переменного тока.Теоретическая скорость вращения ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, что он ведет) также играет свою роль - имеет тенденцию замедлять ротор. Чем больше нагрузка, тем больше «скольжение» между скоростью вращающегося магнитного поля и фактической скоростью вращения ротора. Чтобы контролировать скорость двигателя переменного тока (заставить его двигаться быстрее или медленнее), вы должны увеличить или уменьшить частоту источника переменного тока, используя так называемую частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, работающей от асинхронного двигателя переменного тока, вы действительно контролируете цепь, которая поворачивает частоту тока, который приводит двигатель в движение вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить ротор с четырьмя катушками (две противоположные пары), как показано здесь. Можно построить асинхронные двигатели со всеми другими типами катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Число отдельных электрических токов, подающих питание на катушки независимо друг от друга, известно как фаза двигателя, поэтому показанная выше конструкция представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают ступенчато в двух парах). ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включаются и выключаются вместе тремя отдельными токами в противофазе.

Анимация

: трехфазный двигатель, питаемый от трех токов (обозначается красным, зеленым и синие пары катушек), 120 ° в противофазе.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ моторы, напротив, имеют коммутатор и угольные щетки, которые изнашиваются и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Artwork: Электродвигатели чрезвычайно эффективны, обычно преобразуя около 85 процентов поступающей электрической энергии в полезную, уходящую механическую работу. Несмотря на это, внутри обмоток все еще расходуется много энергии, поэтому двигатели могут сильно нагреваться. Большинство промышленных двигателей переменного тока имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который управляет машиной, к которой подключен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса мимо вентиляционных ребер. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), это причина: они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, который приводит его в движение, он вращается со постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного проще контролировать, просто увеличивая или уменьшая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за своей обмотки катушки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника питания постоянного тока (например, от солнечных батарей) без использования инвертора (устройства, которое превращает постоянный ток в переменный ток). Это потому, что им нужно изменение магнитного поля, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Работа: оригинальный дизайн Никола Тесла для асинхронного двигателя переменного тока.Он работает точно так же, как анимация выше, с двумя синими и двумя красными катушками, попеременно включаемыми генератором справа. Это произведение искусства получено из оригинального патента Tesla, депонированного в Бюро по патентам и товарным знакам США, которое вы можете прочитать сами в ссылках ниже.

Никола Тесла (1856–1943) был физиком и плодовитый изобретатель, чей удивительный вклад в науку и технику никогда не был полностью признан. После того, как он прибыл в Соединенные Штаты в возрасте 28 лет, он начал работает на знаменитого пионера электротехники Томаса Эдисона.Но двое мужчин выпали катастрофически и вскоре стали жестокими соперниками. Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал об обратном. Со своим партнером Джорджем Вестингауз, Тесла защищал AC, в то время как Эдисон был решил управлять миром на DC и придумал все виды рекламные трюки, чтобы доказать, что AC был слишком опасен для широкого использования (изобретая электрический стул, чтобы доказать, что переменный ток может быть смертельным, и даже на электрическом стуле Топси слон

.

Изменение частоты питания асинхронного двигателя от 50 до 60 Гц> ENGINEERING.com

Асинхронные двигатели, как однофазные, так и многофазные, предназначены для использования с определенной частотой переменного тока. Иногда мы сталкиваемся с «неправильной» частотой двигателя. В этой статье я помогу вам понять последствия.

Существует большое количество взаимодействующих отношений в конструкции двигателя. Существуют аспекты первого порядка, второго порядка и, возможно, даже третьего порядка, которые сбалансированы для создания надежного двигателя с желаемыми характеристиками.

Я буду обсуждать только аспекты Первого Порядка.

1) Скорость вращения является прямой функцией частоты мощности. Очень просто, если вы снизите частоту , двигатель замедлится . И наоборот, если вы увеличите частоту , двигатель ускорится. Изменение скорости, которое в результате будет пропорционально изменению частоты.

2) Охлаждение является прямой функцией скорости вращения. Вентилятор двигателя прикреплен к вращающемуся ротору двигателя, поэтому он будет испытывать то же ускорение или замедление, что и двигатель. Если двигатель замедляется, его охлаждение падает (и с большей скоростью, чем замедление). Если двигатель ускоряется, его охлаждение будет быстро увеличиваться.

3) Магнитная емкость магнитной (железной) цепи двигателя рассчитана на соотношение: напряжение / частота (V / f). Если частота падает, В / Гц повышается. Это означает, что двигателю требуется большая магнитная цепь.Без этого магнитная цепь может быть перегружена. Это называется насыщением и приводит к быстрому увеличению потребления тока и соответствующему значительному увеличению температуры, главного врага двигателя.

Если частота увеличивается, переменный ток / гц падает без проблем, так как магнитная цепь останется достаточно большой. [Подкрадываясь ко второму порядку, у двигателя может быть худший коэффициент мощности.]

Имея в виду вышеупомянутые аспекты, давайте рассмотрим, что все это значит, когда применяется к тому несчастному двигателю, который есть в вашей машине.

Если двигатель с частотой 50 Гц и вы собираетесь использовать его на 60 Гц, он будет вращаться на 20% быстрее.
Мощность в лошадиных силах (л.с.) пропорциональна числу оборотов в минуту. Так как крутящий момент двигателя не будет заметно изменяться с увеличением частоты, он теперь обеспечит увеличение мощности на 20%. Ваш 8-сильный мотор только что получил звание 10-сильного двигателя. Что-то почти даром!

Но подожди! Более быстрое вращение нагрузки на 20%, скорее всего, увеличит ее энергопотребление как минимум на 20%! Если нагрузка циклически ускоряется или замедляется во время работы, она будет подвергаться большим механическим воздействиям.Перебор? Если двигатель приводит в движение центробежные нагрузки, их спрос может даже возрасти на квадрат увеличения скорости. Центробежные насосы были бы примером этого. Поклонники, в зависимости от их стиля, также могут испытывать увеличение спроса в квадрате.

Ярким пятном этого является то, что охлаждающий вентилятор двигателя представляет собой центробежный вентилятор, который будет перемещать намного больше воздуха.

В / Гц двигателя понижается при повышении частоты двигателя, сообщая нам, что магнитная цепь не будет иметь проблем с переносом увеличенной нагрузки.Нам там хорошо.

Если двигатель с частотой 60 Гц, и вы собираетесь использовать его на частоте 50 Гц, он будет вращаться с частотой 20% с-1 - о-с-с-с-с.
Это также переводит на 20% меньше лошадиных сил. С другой стороны, если повернуть нагрузку медленнее, это обычно потребует меньше энергии. Это хорошо, потому что мотор был просто понижен в 20% от его мощности тоже. Все это и охлаждающий вентилятор обеспечивает меньше тоже. Но горилла за 800 фунтов здесь - отношение V / Hz.Это просто выросло на 20%! Не хорошо. Это означает, что во время частей каждого цикла линии электропередачи магнитная структура двигателя, вероятно, будет перегружена.

Когда это происходит, способность двигателя ограничивать ток через реактивное сопротивление теряется. Это приведет к чрезмерному току, протекающему при нагревании двигателя через I квадрат R потерь. Единственным выходом здесь является исправление V / Hz с помощью переменной, которую достаточно легко настроить - V напряжение. Понизьте напряжение с помощью трансформатора, чтобы скорректировать соотношение В / Гц.Я буду обсуждать это в данный момент.

Вернуться к загрузке. Будет ли он работать на более низкой скорости? Насос может больше не иметь напора, необходимого для выполнения своей задачи. Пропускная способность машины, вероятно, упадет на 20%. Будете ли вы обрабатывать достаточно продукта в данный момент времени?

Пример - у вас есть 60 Гц для 50 Гц машины.
Допустим, вы только что получили много на машине. Когда он был подключен, вы поняли, что на его шильдике 50 Гц, а у вас 60 Гц.СТОП.

Машина будет работать на 20% быстрее! Это будет проблемой? Если это так, можно ли вернуть скорость к расчетной скорости, изменив размер шкива, чтобы скорость снизилась на 20% до того уровня, на котором она была?

После того, как эта оценка была сделана, и шкивы изменены или другие изменения сделаны, чтобы помочь смягчить проблемы скорости / мощности, переходите к следующему шагу. Прочитайте паспортную табличку, чтобы получить полную амплитуду нагрузки, обычно известную как номинал FLA для двигателя при напряжении, с которым он будет работать.

Используя зажимной амперметр, запустите машину и убедитесь, что сила тока ниже FLA. Если это так, вы можете продолжить работу машины по желанию. Не забудьте проверить, что он все еще находится под FLA при полной загрузке. Если это более FLA, вы должны сделать какое-то уменьшение нагрузки.

Пример - у вас есть 50 Гц для машины 60 Гц.
Вы получаете машину, и поскольку вы находитесь на земле 50 Гц, ярлык 60 Гц беспокоит вас.Как и положено!

Опять же, понимая, что машина будет работать на 20% медленнее, она выполнит свою работу? В этом случае вы не можете изменить размеры шкива, чтобы скорректировать скорость, потому что двигатель только что потерял 20% своей номинальной мощности в лошадиных силах. Если вы поменяете шкивы, он, вероятно, будет перегружен - серьезно.

Если машина может работать на 20% медленнее, возможно, есть надежда. Несмотря на то, что он будет терять охлаждение, если его внутренний вентилятор будет работать медленнее, работа с нагрузкой будет медленнее, а двигатель с меньшей мощностью на 20%, скорее всего, выровняется.Увеличение V / Hz может все еще получить вас.

На данный момент, если ваша оценка показывает, что вы, вероятно, будете в порядке с более медленной скоростью, снова проверьте табличку с фамилией для FLA. Запустите машину и , , быстро, , проверьте рабочий ток с помощью амперметра . Если она ниже FLA, продолжайте загружать машину, внимательно следя за вещами. Если вы останетесь ниже FLA, вероятно, все будет в порядке.

Но! Работа на FLA теперь, когда охлаждающий вентилятор имеет пониженную производительность, все еще может стать проблемой.Вы должны следить за температурой двигателя и убедиться, что после продолжительного времени работы под нагрузкой он остается ниже повышения температуры на паспортной табличке.

Если даже без нагрузки вы видите FLA или более, вам нужно уменьшить напряжение, потому что двигатель, вероятно, насыщается. Прежде чем приступить к добавлению понижающих трансформаторов, серьезно подумайте о замене двигателя для правильной версии 50 Гц. Помните, что вам может потребоваться увеличить номинальную мощность, если вы собираетесь изменить передаточные числа, чтобы вернуть машину к ее первоначальной скорости.

Но подождите! А как насчет однофазных двигателей?
Последняя проблема, с которой необходимо столкнуться, - это однофазные двигатели. Все описанное выше относится к ним, но есть несколько добавок "ложка дегтя". Однофазные двигатели имеют пусковую обмотку. Поскольку однофазная мощность не имеет внутренней составляющей вращения, как у трехфазной, пусковая обмотка обеспечивает необходимый большой крутящий момент для вращения двигателя. Пусковая обмотка представляет собой очень большую нагрузку и, как правило, может работать только в течение нескольких секунд.Больше чем несколько секунд и дым начнет выходить вперед.

Центробежный выключатель обычно включается на роторе для управления питанием пусковой обмотки. Он остается закрытым, поэтому при подаче питания на двигатель обе обмотки, ход и пуск под напряжением. Когда двигатель быстро достигает скорости, центробежный аспект выключателя открывает пусковую обмотку, отключая его от дальнейшей работы.

Когда однофазный двигатель 50 Гц доводится до 60 Гц, функцию запуска можно отключить, поскольку двигатель достигает скорости центробежного переключателя на 20% раньше, чем обычно.Когда это происходит, пусковой момент двигателя внезапно уменьшается. Он может не ускориться дальше и никогда не достигнет нормальной скорости движения. Если это произойдет, дым на пути!

И наоборот, когда частота однофазного двигателя 60 Гц понижается, переключатель может не достигнуть скорости размыкания. Учитывая, что заданное значение скорости размыкания переключателя обычно составляет около 80% от скорости движения, вы можете увидеть потенциальную проблему. Помните, что двигатель будет вращаться на 20% медленнее.Если он не достигает скорости переключения, дым определенно находится на пути! Вы увидите это на мгновение.

Однофазные двигатели часто могут иметь два вида конденсаторов, связанных с ними. Первый - это рабочий конденсатор. Рабочий конденсатор увеличивает обычный вращающий момент двигателя. Второй - это пусковой конденсатор, используемый для увеличения пускового момента. Когда частота питания повышается, эти конденсаторы усиливают свои эффекты, что приводит к увеличению крутящего момента. Обычно это не проблема.Но если вы понижаете частоту, они теряют свои эффекты, и пусковые и / или вращающие моменты уменьшаются. Это может быть проблемой. Однако, если нагрузка вращается медленнее, она может выровняться.

Поскольку однофазные двигатели обычно меньше по размеру, часто эффективнее просто заменить их.

т. Теперь вы знаете, почему вы приобрели такую ​​«отличную цену» на покупку вашей машины.

Об авторе
Кит Кресс - консультант «широкого спектра», который занимается всем, от разработки встроенных контроллеров до систем питания пассажирских вагонов.С Китом можно связаться по телефону [email protected]

Кит является членом Гильдии технических писателей по адресу www.eng-tips.com . Он также MVP. Следуйте за Китом (itmoked) на http://www.eng-tips.com/userinfo.cfm?member=itsmoked

,

Страница не найдена | 404 Ошибка

  • Пропустить навигацию
Найти:
  • от А до Я Индекс
  • Люди Справочник
Узнать больше:
  • О Брауне
  • Академики
  • Прием
  • Исследования
  • Campus Life
Информация для:
  • нынешних студентов
  • Факультет
  • Персонал
  • Семьи
  • выпускников
  • Друзья и Соседи
Информация для:
  • нынешних студентов
  • Факультет
  • Персонал
  • Семьи
  • выпускников
  • Друзья и Соседи

Браун

  • О Брауне
  • Академики
  • Прием
  • Исследования
  • Campus Life
  • от А до Я Индекс
  • Люди Справочник

мBrown.edu

  • Новости
  • События
  • Визит
  • Campus Life
  • Карта
  • Справочник
  • Brown Apps
  • Безопасность
  • О Брауне
  • Академики
  • Прием
  • Исследования
  • Campus Life
  • от А до Я Индекс
  • Люди Справочник

Страница не найдена

Может ли Бруно помочь?

Или попробуйте это:

  • A-Z Directory
  • Люди Справочник
Ресурсы
  • от А до Я Индекс
  • карьерных возможностей
  • Сделать подарок
  • Люди Справочник
Браун университет
,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.