Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как узнать мощность двигателя постоянного тока


Просто о двигателях постоянного тока

На первый взгляд моторы постоянного тока кажутся довольно простыми. Подаем напряжение на оба контакта, и даааа, он крутится! А если мы хотим изменить направление движения ? Правильно, меняем провода местами. А что если нужно заставить двигатель вращаться на меньших оборотах? Нужно использовать меньшее напряжение питания. Но как робот может сделать все это автоматически? Как определить, какое напряжение подавать? Почему не 50 а 12 вольт? Что случится, если мотор перегреется? Управление двигателем намного интереснее чем кажется!  

Напряжение

Считается, что мотор постоянного тока не имеют полярности - имеется в виду, что можно менять полярность питания без каких-то вредных последствий. Обычно моторы постоянного тока питаются напряжением от 6 до 12В. Более мощные питаются от 24В и выше. Но для роботов лучше всего использовать питание в диапазоне 6-12В. Так почему же моторы работают на различном напряжении? Как известно (или должны быть известно), напряжение прямо пропорционально вращающему моменту. Больше напряжение, выше момент. Но не подавайте на мотор 100В, ничего хорошего из этого не выйдет )) Мотор рассчитан на напряжение, при котором он будет работать наиболее эффективно. Если подать слишком маленькое напряжение, мотор едва будет крутиться, если слишком много, он перегреется и обмотки расплавятся. Так что основным правилом можно считать подачу напряжения, приближенного к номинальному. К тому же, несмотря на то, что 24В двигатель может быть мощнее, разве стоит нагружать робота 24В батареями, которые значительно тяжелее и больше? Я предлагаю не использовать напряжения выше 12 вольт для до тех пор, пока не понадобится действительно высокая мощность.

Ток

Обязательно нужно обратить внимание на ток. Слишком мало, не будет крутиться. Слишком много и получим расплавившиеся обмотки. Когда покупаете мотор, следует обратить внимание на два значения. Первое - рабочий ток. Это среднее количество тока, потребляемое двигателем для работы при стандартной нагрузке. Умножим это значение на напряжение и получим среднюю мощность, потребляемую двигателем. Другое значение, на которое нужно обратить внимание это ток потребления при заблокированном роторе. Эта величина получается при подаче питания на двигатель и приложении достаточной силы что бы остановить его. Это максимальное значение потребляемого двигателем тока, а значит и максимальное значение потребляемой мощности. Поэтому нужно создавать систему управления таким образом, что бы она выдерживала ток при заблокированном роторе. К тому же, если вы планируете постоянно использовать двигатель, или подавать напряжение выше номинального, хорошо бы охлаждать двигатель для предупреждения перегрева.

Уровень мощности

Насколько большое напряжение можно подать на двигатель? Обычно все моторы рассчитаны (или должны рассчитываться) на определенную мощность. Мощность это энергия. Неэффективность преобразования электричества в движение напрямую связано с нагревом. Слишком много тепла и обмотки двигателя расплавятся. Поэтому производители моторов (качественных) знают, какая мощность приведет к повреждению двигателя и дают эту информацию в документации на двигатель.Поэкспериментируйте, что бы определить, какое количество тока потребляет двигатель при используемом напряжении.

Уравнение следующее:

Мощность [Ватт] = Напряжение [Вольт] * Ток [Ампер]

Выбросы напряжения

Для смены направления вращения необходимо изменить полярность питания. Двигатель обладает собственной индукцией и моментом, которые сопротивляются этому изменению напряжения. Поэтому при смене направления вращения двигателя происходит мощный кратковременный выброс. Напряжение импульса может вдвое превышать напряжение питания. Ток примерно равняется максимальному. Отсюда вывод, силовая система управления должна быть рассчитана на мощные электрические импульсы.

Момент 

При покупке двигателя постоянного тока нужно обратить внимание на два значения крутящего момента. Первый - рабочий крутящий момент. Это момент, на который рассчитан двигатель. Обычно это заявленное значение. Другое значение - момент при заблокированном роторе. Это момент, требуемый для остановки двигателя при вращении. Обычно используется только рабочий момент, но бывают случаи, когда нам нужно знать, насколько можно нагрузить двигатель. Если вы создаете колесного робота, большой момент означает хорошее ускорение. Мое личное правило - если на роботе 2 двигателя, момент каждого должен превышать вес робота на плече равном радиусу колеса. Всегда отдавайте предпочтение моменту перед скоростью. Помните, как сказано выше, значение крутящего момента может изменяться в зависимости от поданного напряжения. Так что если требуется чуть больший момент для того, что бы сломать что-то, подаем напряжение на 20% больше номинального, это безопасно для нас, но даст прирост мощности. Главное помните что это снижает КПД и требует дополнительного охлаждения двигателя.

Скорость вращения 

Скорость довольно сложное понятие когда речь заходит о моторах постоянного тока. Основное правило - двигатель работает наиболее эффективно на максимально возможных оборотах. Очевидно, что это не возможно. Бывает, нам нужно что бы робот двигался медленно. Первое что приходит в голову - шестерни, с их использованием двигатель может крутиться быстро, а с него можно снимать высокий момент. К сожалению, шестерни автоматически снижают эффективность, имея КПД не более 90%, Поэтому заложим 90% скорости и момента на каждую шестерню при расчете редуктора. Например, у нас есть 3 прямозубые шестерни, следовательно соединяя их дважды, мы получим КПД 90% x 90% = 81%. Напряжение и сопротивление вращению очевидно снижают скорость.

Способы управления

Наиболее важной технологией управления мотором постоянного тока на сегодня является Н-мост. После того как Н-мост будет подключен к двигателю, для определения скорости вращения и положения вала нужно использовать энкодер. И наконец, нужно найти хороший способ торможения двигателя.

Дополнительная информация

Подключение конденсатора емкостью несколько микрофарад между клеммами двигателя поможет продлить срок службы. Этот способ отлично работает с шумными и другими недорогими двигателями, почти удваивает ресурс двигателя. Однако, это намного меньше по сравнению с дорогими высококачественными моторами. Дополнительные способы выбора мотора для робота можно найти в статье про динамику роботов.

асинхронных двигателей переменного тока | Как работают двигатели переменного тока

Реклама

Крис Вудфорд. Последнее обновление: 21 апреля 2020 г.

Знаете ли вы, как работают электродвигатели? Ответ, вероятно, да и нет! Хотя многие из нас узнали, как основные моторные работы, от простых научных книг и веб-страниц, таких как это, многие из двигатели, которые мы используем каждый день - во всем, от заводских машин до электрички - вообще-то не работают.Какие книги научите нас о простых двигателях постоянного тока, которые имеют петля проволоки вращается между полюсами постоянного магнита; в реальной жизни, большинство мощных двигателей используют переменный ток (AC) и работать совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте внимательнее посмотрим!

Фото: повседневный асинхронный двигатель переменного тока со снятым корпусом и ротором, на котором показаны медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (движущуюся часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено US DOE / NREL.

Как работает обычный двигатель постоянного тока?

Работа: Электродвигатель постоянного тока основан на петле проволоки, вращающейся внутри неподвижного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют электрический ток каждый раз, когда проволока переворачивается, что позволяет ему вращаться в одном направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки согнут в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током, сидящий в магнитном поле.) Когда Вы подключаете провод к батарее таким образом, чтобы через него протекал постоянный ток, создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, вызывая проволоку перевернуть.Обычно провод останавливается в этой точке, а затем снова переворачивается, но если мы используем гениальное вращающееся соединение называется коммутатором, мы можем сделать текущий обратный каждый раз, когда провод переворачивается, и это означает, что провод будет вращаться в в том же направлении, пока ток течет. Это Суть простого электродвигателя постоянного тока, который был задуман в 1820-е годы Майкл Фарадей и превратился в практическое изобретение о десятилетие спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро Подводя итог, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю, статическую часть двигатель (статор), в то время как катушка провода, несущего электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который является постоянный магнит, в то время как вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянным магнитом поле статора и временное магнитное поле, создаваемое ротором, составляет что заставляет мотор вращаться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, в большинстве домов, офисов, заводы и другие здания не питаются от маленьких батарей: они не снабжаются постоянным током, а переменным током (AC), который меняет свое направление примерно 50 раз в секунду (с частотой 50 Гц). Если вы хотите запустить двигатель от электросети переменного тока вашей семьи, вместо батареи постоянного тока вам нужен другой дизайн двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляют статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора есть цельнометаллическая ось, петля из проволоки, катушка, короткозамкнутый каркас из металлических стержней и соединений (подобно вращающимся клеткам, люди иногда забавляют домашних мышей), или какая-то другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию на внутренний ротора, в двигателе переменного тока вы посылаете питание на внешние катушки, которые составляют статор. Катушки подаются в пары, последовательно, создавая магнитное поле, которое вращается вокруг двигателя.

Фото: статор создает магнитное поле, используя плотно намотанные витки медного провода, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим двигателем. Иногда проще заменить обмотки двигателя новым проводом - квалифицированная работа, которая называется перемоткой, что и происходит здесь. Фото Сет Скарлетт любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри Магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него в виде петли. Если проводник представляет собой просто твердый кусок металла, то вокруг него циркулируют вихревые токи. В любом случае, индуцированный ток производит его собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращением.(Вы можете думать о роторе отчаянно пытаясь «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция является ключом к тому, почему такой двигатель вращается, и именно поэтому он называется асинхронным двигателем.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары электромагнитных катушек, показанные здесь красным и синим, поочередно запитываются от источника переменного тока (не показан, но подключается к выводам справа).Две красные катушки соединены последовательно и под напряжением вместе, а две синие Катушки подключены одинаково. Поскольку это переменный ток, ток в каждой катушке не включается и не отключается внезапно (как показывает эта анимация), но плавно поднимается и опускается в форме синусоиды: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (смещение по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между собой, вызывает электрический ток в роторе.Этот ток создает свое собственное магнитное поле, которое пытается противостоять тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями вызывает вращение ротора.
  3. Поскольку магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (в теории) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером того, что называется асинхронным двигателем переменного тока.Теоретическая скорость вращения ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, что он ведет) также играет свою роль - имеет тенденцию замедлять ротор. Чем больше нагрузка, тем больше «скольжение» между скоростью вращающегося магнитного поля и фактической скоростью вращения ротора. Чтобы контролировать скорость двигателя переменного тока (заставить его двигаться быстрее или медленнее), вы должны увеличить или уменьшить частоту источника переменного тока, используя так называемую частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, работающей от асинхронного двигателя переменного тока, вы действительно управляете цепью, которая поворачивает частоту тока, который приводит двигатель в движение вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить ротор с четырьмя катушками (две противоположные пары), как показано здесь. Можно построить асинхронные двигатели со всеми другими типами катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Число отдельных электрических токов, подающих питание на катушки независимо друг от друга, известно как фаза двигателя, поэтому показанная выше конструкция представляет собой двухфазный двигатель (с двумя токами, подающими питание на четыре катушки, которые работают не шаг за шагом в двух парах). ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно распределенных катушек (три пары) или даже 12 катушек (три комплекта по четыре катушки) с одной, двумя или четырьмя катушками. включаются и выключаются вместе тремя отдельными токами в противофазе.

Анимация

: трехфазный двигатель, питаемый от трех токов (обозначается красным, зеленым и синие пары катушек), 120 ° в противофазе.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ моторы, напротив, имеют коммутатор и угольные щетки, которые изнашиваются и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Artwork: Электродвигатели чрезвычайно эффективны, обычно преобразуя около 85 процентов поступающей электрической энергии в полезную, уходящую механическую работу. Несмотря на это, внутри обмоток все еще расходуется много энергии, поэтому двигатели могут сильно нагреваться. Большинство промышленных двигателей переменного тока имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который управляет машиной, к которой подключен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса мимо вентиляционных ребер. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), это причина: они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, который приводит его в движение, он вращается со постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного проще контролировать, просто увеличивая или уменьшая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за своей обмотки катушки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника питания постоянного тока (например, от солнечных батарей) без использования инвертора (устройства, которое превращает постоянный ток в переменный ток). Это потому, что им нужно изменение магнитного поля, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Работа: оригинальный дизайн Никола Тесла для асинхронного двигателя переменного тока.Он работает точно так же, как анимация выше, с двумя синими и двумя красными катушками, попеременно включаемыми генератором справа. Это произведение искусства получено из оригинального патента Tesla, депонированного в Бюро по патентам и товарным знакам США, которое вы можете прочитать сами в ссылках ниже.

Никола Тесла (1856–1943) был физиком и плодовитый изобретатель, чей удивительный вклад в науку и технику никогда не был полностью признан. После того, как он прибыл в Соединенные Штаты в возрасте 28 лет, он начал работает на знаменитого пионера электротехники Томаса Эдисона.Но двое мужчин выпали катастрофически и вскоре стали жестокими соперниками. Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал об обратном. Со своим партнером Джорджем Вестингауз, Тесла защищал AC, в то время как Эдисон был решил управлять миром на DC и придумал все виды рекламные трюки, чтобы доказать, что AC был слишком опасен для широкого использования (изобретая электрический стул, чтобы доказать, что переменный ток может быть смертельным, и даже электрический ток Топси слону с AC, чтобы показать, насколько смертельно и жестоко это было).Битва между этими двумя очень разные взгляды на электроэнергию иногда называют войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Тесла выиграл день, и теперь электричество переменного тока дает много сил мира. Именно поэтому многие из электродвигателей, которые водить технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Тесла разработан в 1880-х годах (его патент, показанный здесь, был выдан в мае 1888 года).Итальянский физик по имени Галилео Феррарис независимо придумал ту же идею примерно в то же время, но история относилась к нему еще более жестоко, чем Тесла и его имя теперь почти забыты.

Узнайте больше

На этом сайте

На других сайтах

книг

Для пожилых читателей
Для младших читателей
  • Электричество для молодых производителей: веселые и простые проекты «Сделай сам». Автор Mark deVinck.Maker Media / O'Reilly, 2017. Отличное практическое знакомство с электричеством, в том числе пара мероприятий, которые включают создание электродвигателей с нуля. Возраст 9–12.
  • Эксперименты с электродвигателем Эд Собей. Enslow, 2011. Это отличное общее введение в электродвигатели с широким научным и технологическим контекстом. Однако по очевидным практическим соображениям и соображениям безопасности он сфокусирован только на двигателях постоянного тока и подходит для возраста 11–14 лет.
  • Сила и Энергия Криса Вудфорда.Факты в архиве, 2004. Одна из моих книг, рассказывающая об истории человеческих усилий по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: Крис Вудфорд, разработчик электроэнергии, в книге «Изобретатели и изобретения», том 5. Нью-Йорк: Маршал Кавендиш, 2008. Краткая биография Теслы, которую я написал несколько лет назад. На момент написания статьи все это было доступно через Интернет по этой ссылке в Google Книгах. Возраст 9–12.

Патенты

Патенты предлагают более глубокие технические детали - и собственные идеи изобретателя в своей работе.Вот очень маленький выбор из многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель, Никола Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели, Томас Х. Бартон и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 года. Асинхронный двигатель с улучшенным управлением скоростью.
  • Патент США 4311932: жидкостное охлаждение для асинхронных двигателей. Автор - Raymond N. Olson, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, Umesh C. Gupta, Vickers, Inc.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Следуйте за нами

Поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать об этом друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (Введите дату здесь)]

Подробнее на нашем сайте...

,Объясненные скорости двигателя

: погружение в двигатели переменного и постоянного тока

Скорость, крутящий момент, мощность и напряжение являются важными факторами при выборе двигателя. В этом блоге, состоящем из двух частей, мы углубимся в особенности скоростей мотора. В части 1 мы обсудим, как скорость зависит от типа двигателя, а во второй части мы рассмотрим, когда стоит рассмотреть возможность добавления коробки передач в приложение.

Скорости асинхронного двигателя

Двигатели переменного тока

уникальны, потому что они созданы для работы на определенных скоростях независимо от их конструкции или производителя.Скорость двигателя переменного тока зависит от количества полюсов, которые он имеет, и частоты линии электропитания, а не от его напряжения. Обычные двигатели переменного тока имеют два или четыре полюса. В полюсах статора создается магнитное поле, которое индуцирует возникающие магнитные поля в роторе, которые соответствуют частоте изменения магнитного поля в статоре. Двухполюсные электродвигатели переменного тока, работающие на частоте 60 Гц, всегда будут работать со скоростью примерно 3600 об / мин, а четырехполюсные электродвигатели переменного тока будут развивать скорость около 1800 об / мин.

Скорость = 120 х частота (Гц) / полюсов двигателя

Пример 120 х 60 Гц / 4 полюса = 1800 об / мин.

Имейте в виду, что скорость двигателя переменного тока не будет работать с этими точными числами - и будет немного ниже - потому что существует определенное количество проскальзывания, которое должно присутствовать для того, чтобы двигатель создавал крутящий момент. Ротор всегда будет вращаться медленнее, чем магнитное поле статора, и постоянно играет в догонялки. Это создает крутящий момент для запуска двигателя переменного тока.Разница между синхронными скоростями статора (3600 и 1800 об / мин) и фактической рабочей скоростью называется скольжением. (Для получения дополнительной информации о скольжении, посетите наш блог «Синхронные и индукционные двигатели: обнаружение различий».)

Элемент управления можно использовать для изменения скорости трехфазного двигателя переменного тока путем увеличения или уменьшения частоты, которая передается на двигатель, вызывая его ускорение или замедление. Кроме того, многие регуляторы переменного тока имеют однофазный вход, что позволяет вам запускать 3-фазные двигатели на объектах, которые не имеют 3-фазной мощности.

Тем не менее, эта способность изменять скорость не характерна для однофазных двигателей переменного тока. Эти двигатели подключаются непосредственно к стандартной настенной розетке и работают с использованием доступной установленной частоты. Исключением из этого практического правила является потолочный вентилятор, который работает с однофазным электродвигателем переменного тока, но имеет три различные настройки скорости.

Скорость двигателя постоянного тока

Хотя двигатели постоянного тока с постоянными магнитами также построены с полюсами, эти полюсы не влияют на скорость, как с двигателями переменного тока, потому что с двигателями постоянного тока есть несколько других факторов.Количество витков провода в якоре, рабочее напряжение двигателя и сила магнитов влияют на скорость двигателя. Если двигатель постоянного тока работает от батареи 12 В, это максимальное напряжение, доступное для устройства, и двигатель сможет работать только на скорости, рассчитанной на 12 В. Если батарея разряжена и подает меньшее напряжение, скорость будет уменьшаться соответственно.

Теперь, если вы подключите тот же двигатель 12 В постоянного тока к источнику питания 24 В постоянного тока, ваша скорость обычно удваивается. Помните, что при работе двигателя с удвоенной скоростью в той же точке нагрузки / крутящего момента двигатель будет работать интенсивнее, создавая дополнительный нагрев, который со временем может привести к преждевременному отказу двигателя.

Как и в случае трехфазных двигателей переменного тока и бесщеточных двигателей постоянного тока, органы управления могут использоваться с двигателями постоянного тока. Регуляторы постоянного тока регулируют скорость, изменяя напряжение, подаваемое на двигатель (это отличается от регуляторов двигателя переменного тока, которые регулируют частоту линии для двигателя).

Типичные холостые или синхронные скорости для двигателя с частичной мощностью переменного тока составляют 1800 или 3600 об / мин, и 1000-5000 об / мин для двигателя с дробной частью постоянного тока. Если приложение требует более медленной скорости и / или более высокого крутящего момента, то следует рассмотреть мотор-редуктор.Чтобы узнать больше о добавлении редуктора, ознакомьтесь с частью 2 «Объяснения скоростей двигателя: когда использовать коробку передач».

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.