Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как узнать температуру двигателя шевроле авео


Где находится датчик температуры Шевроле Авео: описание

Зачастую, когда не срабатывает вентилятор системы охлаждения на Шевроле Авео необходимо проверить датчик температуры. При этом необходимо знать месторасположения узла, чтобы проводить диагностику и замену.

Расположение датчика

Датчик температуры охлаждающей жидкости установлен в правой части головки блока цилиндров между 1-м и 2-м цилиндрами. Вентилятор может не срабатывать, либо нет контакта на соединительной фишке проводов, либо мотор вентилятора сгорел. Самая простая его проверка: отсоедините от датчика температуры фишку и включите зажигание — вентилятор должен заработать(если не работает, тогда проблема в проводке или в вентиляторе).

Датчик температуры.

Диагностика датчика

Существует ряд факторов, которые указывают о неисправности датчика температуры. Рассмотрим, какие причины и методы диагностики существуют:

Месторасположение элементов системы охлаждения.

Если датчик температуры охлаждающей жидкости не работает, сначала необходимо проверить предохранители.

Если датчик температуры показывает чрезмерно высокую или низкую температуру, следует прогреть двигатель.

Если датчик температуры показывает высокую температуру, когда двигатель еще не прогрелся, отсоедините провода от датчика . Если наблюдаются перепады температуры, тогда датчик следует заменить. Если датчик показывает высокую температуру, значит провода закорочены.

Если после прогрева двигателя датчик температуры все еще не функционирует, а предохранители проверены, заглушите двигатель. Отсоедините провод от датчика и заземлите его на корпусе двигателя. Включите зажигание, не запуская двигатель. Если датчик показывает высокую температуру, его следует заменить.

Если датчик температуры все еще не работает, значит, он неисправен, либо цепь может быть разомкнутой.

Замена

Когда двигатель полностью остынет, отсоедините кожух радиатора, сожмите верхний шланг радиатора и замените крышку.

  1. Отсоедините датчик от электричества.

    Снимаем провод питания.

  2. Приготовьте новый температурный датчик.

    Выкручиваем датчик с блока.

  3. Установите новый датчик.

Аккуратно вставьте датчик и подсоедините жгут проводов.

Долейте охлаждающую жидкость и заведите двигатель. Проверьте систему на наличие утечек.

Вывод

Датчик температуры охлаждающей жидкости Шевроле Авео расположен на блоке цилиндров. Провести диагностику узла можно самостоятельно, для этого необходимо только демонтировать деталь с автомобиля.

Как измерить температуру двигателя

Хоть машина системы охлаждения предназначены для поддержания довольно постоянной рабочая температура, фактическая двигатель температура может варьироваться для ряда причины. Он может даже достичь такого высокого уровня, что повреждение двигателя становится возможность.

Биметаллические полосовые датчики

Биметаллические полосковые датчики постепенно приближаются к своим показаниям при включении зажигания.Блок датчика пропускает ток, изменяющийся в зависимости от температуры двигателя, к катушке нагревателя внутри датчика. Биметаллическая полоса внутри катушки изгибается на величину, зависящую от величины тока, и отклоняет стрелку по калиброванной шкале, чтобы получить показание температуры.

датчик температуры обеспечивает раннее предупреждение о перегреве, позволяя вам остановить машину до того, как произойдет какое-либо повреждение. В очень холодную погоду датчик может также сказать вам, если двигатель переохлаждается (что увеличит топливо расход и износ двигателя).Затем вы можете принять профилактические средства, такие как блокируя часть радиатор или изменяя термостат ,

Другие приложения

Температурные датчики используются не только для измерения тепла двигателя охлаждающая жидкость , хотя это их основное применение. Высокопроизводительные автомобили часто имеют датчики для измерения температура моторного масла, потому что это может сильно возрасти во время жесткого вождения. У некоторых гоночных автомобилей даже есть датчики для контроля температуры коробка передач и дифференциал масло.Во время тестов разработки двигатель часто оснащается серией температура датчиков распределены по каналам охлаждения и масло галереи , Они дают картину того, как двигатель нагревается под нагрузкой чтобы можно было внести изменения в систему, чтобы дать больше охлаждения перегретые участки - или уменьшить охлаждение там, где оно чрезмерное.

Система измерения температуры обычно состоит из двух элементы ; сам датчик и блок датчика, который управляет им, оба соединены один провод.

Типы датчика

Существует два распространенных типа измерительного механизма - магнитные датчики и биметаллические датчики. Вы можете сказать, какой тип имеет ваш автомобиль по тому, как он реагирует когда ты переключатель на зажигание , С магнитными инструментами игла немедленно прыгает, чтобы дать чтение; биметаллические датчики медленно движутся к чтение после включения.

Датчики температуры встроены в корпус прибора автомобиля на панель приборов , Однако сенсорный блок может находиться в одном из нескольких мест: корпус термостата, крышка цилиндра или верхний радиатор шланг ,Во всех случаях датчик расположен так, что охлаждающая жидкость течет по нему на выходе из двигатель.

Магнитные датчики

Магнитные датчики температуры

В стержне иглы имеется мягкая железная арматура, которая перемещается на определенную величину в зависимости от напряженности магнитного поля между двумя проволочными катушками. Сила поля зависит от величины тока, передаваемого в катушку от сенсорного блока.

Магнитные датчики, также называемые датчиками подвижного железа, имеют пару катушки , один на каждой стороне поворотного железа арматура который несет иглу. Иногда железная арматура взвешивается для удержания иглы в исходном положении; в других в случаях, когда это делают легкие волосы.

Катушки подключены непосредственно к электроснабжению автомобиля - одна заземлен напрямую, а остальные земли через датчик, чей сопротивление меняется с температурой двигателя. ток проходя через катушки производит магнитное поле который перемещает арматуру против веса или пружины. количество движения зависит от разницы в поля производится двумя катушки. Эта разница зависит от величины тока, пропускаемого сенсорный блок.

Биметаллические датчики

При использовании биметаллических полосовых датчиков ток, пропускаемый датчиком, равен подается на катушку резистивного провода, намотанного вокруг биметаллической полосы, которая связана к игле.

Ток, протекающий через биметаллическую полосу, вызывает нагрев полосы.Так как это делает так, это изгибается, потому что два металла в полосе расширяются с высокой температурой разные суммы. Изгибающая полоска отклоняет иглу через масштаб , количество изгибов полосы зависит от количества тока, поступающего на датчик, что в свою очередь зависит от тепла двигателя.

Чтобы избежать ошибок, вызванных колебаниями напряжения питания автомобиля из-за электрическая нагрузка и генератор скорость, стабилизатор напряжения включен в инструмент схема , Стабилизатор напряжения также работает на биметаллической полосе принцип и держит инструменты на постоянном уровне 8 или 10 вольт ,

Сенсорные блоки

Существует два типа сенсорных блоков: полупроводник тип и биметаллический полосовой тип.

Полупроводниковые датчики на сегодняшний день являются наиболее распространенным типом и состоят из полупроводник резистор элемент в металлической капсуле. Сопротивление полупроводник уменьшается с ростом температуры. Когда двигатель нагревается, сопротивление датчика уменьшается, увеличивая поток тока к датчику и давая более высокое чтение.

Биметаллический принцип используется в редких типах датчиков.Движение биметаллическая полоска внутри нагревательной катушки в датчике открывает пару контактов, отключение тока от нагревателя и датчика. С выключенным током полоса охлаждается и выпрямляется, переделывая контакт так, чтобы протекал ток очередной раз. Эта последовательность повторяется быстро, с количеством времени контактов закрыты (и количество времени, что токи течет к датчику) в зависимости на общую температуру сенсорного блока.

Капиллярные датчики

Старые типы датчиков температуры использовали прямой связь между датчик и датчик.Блок датчика представляет собой колбу с жидкостью с низкой температурой кипения и соединен с датчиком тонкой металлической капиллярной трубкой. Как датчик прогревается жидкость испаряется так увеличивая давление в лампочке. это давление передается через капиллярную трубку к манометру, где оно действует на. трубка Бурдона , который выпрямляется под давлением, чтобы переместить индикаторная стрелка. Недостатком этой конструкции является то, что датчик, датчик и трубка должны остается одной единицей, а это означает, что вся длина трубки должна быть пронизывал приборную панель во время монтажа.Кроме того, подвергается капиллярная трубка может быть легко повреждена, и когда это произойдет, сборка должна быть заменена.

Сигнальные огни

Датчики для сигнализаторов высокой температуры отличаются от используемых для датчиков и работают только как переключатели. Они только передают ток светится при превышении заданной температуры.

Когда двигатель и датчик горячие, требуется меньше электрического нагрева для согните полоску и откройте контакты, и процесс охлаждения займет больше времени.это означает, что контакты остаются открытыми дольше, поэтому меньше общего тока течет в схема Игла соединена таким образом, что слабый ток равен высокая читаемость.

,

Четырехцилиндровый передний привод Автоматический 51 000 миль ...

Привет Дейв,

Извините, забыл ответить на вторую часть вашего поста, так что вот оно.

Датчик абсолютного давления в коллекторе (MAP) является ключевым датчиком, поскольку он определяет нагрузку на двигатель. Датчик генерирует сигнал, который пропорционален количеству вакуума во впускном коллекторе. Затем компьютер двигателя использует эту информацию для регулировки времени зажигания и обогащения топлива.

Когда двигатель работает усердно, всасывающий вакуум падает, когда дроссель открывается широко.Двигатель всасывает больше воздуха, что требует большего количества топлива для поддержания баланса воздуха и топлива. Фактически, когда компьютер считывает сигнал большой нагрузки от датчика MAP, это обычно приводит к тому, что топливная смесь становится немного богаче, чем обычно, поэтому двигатель может производить больше энергии. В то же время компьютер немного замедлит (откатит) время зажигания, чтобы предотвратить детонацию (искровой удар), которая может повредить двигатель и снизить производительность.

Когда условия меняются, и автомобиль движется в крейсерском режиме под небольшой нагрузкой, выбегая или замедляясь, требуется меньше мощности от двигателя.Дроссельная заслонка не очень широко открыта или может быть закрыта, что может привести к увеличению всасывающего вакуума Датчик MAP обнаруживает это, и компьютер реагирует, высовывая топливную смесь, чтобы уменьшить расход топлива, и увеличивает время зажигания, чтобы выжать немного больше топлива из двигателя.

Как работает датчик MAP:

Датчики MAP

называются датчиками абсолютного давления в коллекторе, а не датчиками вакуума на впуске, поскольку они измеряют разницу давления между внешней атмосферой и уровнем вакуума во впускном коллекторе.

Давление окружающего воздуха обычно варьируется от 28 до 31 дюймов ртутного столба (Hg) в зависимости от вашего местоположения и климатических условий. Более высокие возвышения имеют более низкое давление воздуха, чем районы рядом с океаном или где-то вроде Долины Смерти в Калифорнии, которая на самом деле находится ниже уровня моря. В фунтах на квадратный дюйм атмосфера оказывает в среднем 14,7 фунтов на квадратный дюйм на уровне моря.

Вакуум внутри впускного коллектора двигателя, для сравнения, может варьироваться от нуля до 22 дюймов ртутного столба или более в зависимости от условий эксплуатации.Вакуум на холостом ходу всегда высокий и обычно составляет от 16 до 20 дюймов ртутного столба в большинстве транспортных средств. Самый высокий уровень вакуума возникает при торможении с закрытым дросселем. Поршни пытаются всасывать воздух, но закрытый дроссель перекрывает подачу воздуха, создавая высокий вакуум во впускном коллекторе (обычно на четыре-пять дюймов ртутного столба выше, чем на холостом ходу). Когда дроссель внезапно открывается, как при резком ускорении, двигатель всасывает большой глоток воздуха, и вакуум падает до нуля. Затем вакуум медленно поднимается вверх, когда дроссель закрывается.

Причина, по которой датчики MAP измеряют перепад давления, а не только вакуум, заключается в том, что атмосферное давление изменяется в зависимости от погоды и высоты. Поскольку это влияет на баланс воздушно-топливной смеси, компьютеру необходим способ обнаружения изменений, чтобы он мог компенсировать это. Некоторые транспортные средства используют датчик «баро» для измерения барометрического давления (это метеорологический жаргон для атмосферного давления воздуха) и датчик вакуума, подключенный к впускному коллектору для измерения вакуума на впуске. Компьютер сравнивает показания, вычисляет разницу и производит необходимую топливную смесь и корректирует время.Но проще дать датчику MAP измерить разницу. На некоторых автомобилях датчик MAP также используется для проверки атмосферного давления при первом включении зажигания. Это делается как своего рода проверка калибровки базовой линии.

На двигателях с турбонаддувом и наддувом ситуация немного сложнее, потому что при наддуве на самом деле может быть положительное давление во впускном коллекторе. Но датчик MAP не заботится, потому что он просто контролирует разницу в давлении.

На двигателях с электронной системой впрыска "скорость-плотность" воздушный поток оценивается, а не измеряется непосредственно с помощью датчика воздушного потока. Компьютер анализирует сигнал датчика MAP, а также обороты двигателя, положение дроссельной заслонки, температуру охлаждающей жидкости и температуру окружающего воздуха, чтобы оценить, сколько воздуха поступает в двигатель. Компьютер также может принимать во внимание сигнал обогащения / обеднения датчика кислорода и положение клапана EGR, прежде чем вносить необходимые поправки в воздушно-топливную смесь, чтобы поддерживать равновесие.Такой подход к управлению топливом не так точен, как системы, использующие лопастной или массовый датчик воздушного потока для измерения фактического воздушного потока, но он также не так сложен и не слишком дорог.

Еще одним преимуществом систем EFI со скоростной плотностью является то, что они менее чувствительны к утечкам вакуума. Любой воздух, который просачивается в двигатель на задней стороне датчика воздушного потока, является «неизмеренным» воздухом и действительно нарушает точный баланс, необходимый для поддержания точной воздушно-топливной смеси. В системе с регулированием скорости и скорости датчик MAP обнаружит небольшое падение вакуума, вызванное утечкой воздуха, и компьютер компенсирует это, добавляя больше топлива.

На многих двигателях GM, оснащенных датчиком массового расхода воздуха (MAF), датчик MAP также используется в качестве резервного в случае потери сигнала воздушного потока и для контроля работы клапана EGR. Отсутствие изменений в сигнале датчика MAP, когда клапан EGR открывается, будет указывать на проблему с системой EGR и устанавливать код неисправности.

Датчики аналоговой карты:

Датчик MAP состоит из двух камер, разделенных гибкой диафрагмой. Одна камера является «эталонным воздухом» (который может быть герметизирован или выпущен для наружного воздуха), а другая - вакуумной камерой, которая соединена с впускным коллектором на двигателе с помощью резинового шланга или прямого соединения.Датчик MAP может быть установлен на брандмауэре, внутреннем крыле или впускном коллекторе.

Чувствительная к давлению электронная схема внутри датчика MAP контролирует движение мембраны и генерирует сигнал напряжения, который изменяется пропорционально давлению. Это производит аналоговый сигнал напряжения, который обычно колеблется от одного до пяти вольт.

Аналоговые датчики MAP имеют трехпроводной разъем: заземление, опорный сигнал 5 В от компьютера и сигнал возврата. Выходное напряжение обычно увеличивается, когда дроссель открывается и вакуум падает.Датчик MAP, который считывает один или два вольт на холостом ходу, может показывать от 4,5 вольт до пяти вольт при широко открытой дроссельной заслонке. Выход обычно изменяется от 0,7 до 1,0 вольт на каждые пять дюймов изменения давления в вакууме.

.

суббота, 24 июля 2010 г., 6:48

,

11 Причины потери мощности автомобиля при ускорении (и как это исправить)

Обновлено

Если вы едете на своей машине и замечаете, что теряете мощность при ускорении, может быть только одна из две причины для этого. Либо вам не хватает топлива в вашем автомобиле, либо вам не хватает мощности.

Ищете хорошее онлайн руководство по ремонту? Нажмите здесь, чтобы увидеть 5 самых популярных вариантов.

Есть много причин, по которым ваш автомобиль может терять мощность, особенно при ускорении.Вот некоторые из этих общих причин:

  • Механические проблемы , такие как: низкая компрессия, засоренный топливный фильтр, грязный воздушный фильтр, засоренный выпускной коллектор
  • Неисправность датчиков , таких как: датчик положения распределительного вала, датчик MAF, датчик кислорода Датчик коленчатого вала и все датчики относительно системы EFI.
  • Неисправность приводов , например: неисправные форсунки, неисправный топливный насос, неисправные свечи зажигания

11 Причины потери мощности автомобиля при ускорении

Существует несколько разных причин между газовыми и дизельными двигателями.Ниже приведены 11 наиболее распространенных причин потери мощности легкового или грузового автомобиля при попытке ускорения:

# 1 - Низкая компрессия (бензиновый и дизельный двигатель)

Для правильной работы двигателя автомобиля и обеспечения достаточной мощности для транспортного средства, должно быть хорошее сжатие цилиндра на протяжении всего процесса сгорания. Если компрессия низкая, то мощность двигателя будет низкой. Результатом будет двигатель, который просто не работает должным образом. Диагностика низкого сжатия цилиндра - следующий шаг к решению.

# 2 - Засорен топливный фильтр (бензиновый и дизельный двигатель)

Топливный фильтр расположен между топливными форсунками и топливным насосом вашего автомобиля. Работа топливного фильтра заключается в проверке бензина на наличие любых примесей, которые могут в нем присутствовать. Таким образом, когда топливный насос отправляет бензин в двигатель, этих примесей там не будет.

Топливный фильтр - это буквально барьер между загрязнителями в бензине и двигателем вашего автомобиля.Если бы у вас был грязный топливный фильтр или фильтр, который не мог выполнять свою работу должным образом, потому что он поврежден или забит, тогда эти загрязнения попадут в двигатель и в какой-то момент вызовут дорогостоящие повреждения.

Как только это произойдет, двигатель в конечном итоге потеряет свою мощность, и общая функциональность транспортного средства будет нарушена. Замена вашего топливного фильтра является самым простым решением.

# 3 - Bad Air Filter (Gas & Diesel Engine)

Камера внутреннего сгорания двигателя отвечает за смешивание бензина и воздуха для выработки энергии, необходимой для работы вашего автомобиля.Прежде чем воздух сможет попасть в камеру, он должен пройти через воздушный фильтр, который экранирует жуки, мусор и другие виды примесей, которые могут в ней существовать.

Попадание этих загрязнений в двигатель может привести к серьезным повреждениям. Однако воздушные фильтры имеют тенденцию засоряться после того, как они использовались некоторое время.

После того, как воздушный фильтр засорен, он ограничит количество воздуха, которое может попасть в камеру внутреннего сгорания. Это отрицательно скажется на функциональности транспортного средства, поскольку двигатель не сможет генерировать достаточное количество энергии для работы автомобиля.Замените ваш воздушный фильтр, и вы должны быть как новый. Если у вас есть многоразовый воздушный фильтр, такой как K & N, просто очистите его в соответствии с указаниями производителя.

# 4 - Засоренная выхлопная труба (бензиновый и дизельный двигатель)

В системе выпуска имеется два фильтра; глушитель и каталитический нейтрализатор. Работа преобразователя катализатора заключается в уменьшении количества загрязнений, образующихся в выхлопных газах.

Что касается глушителя, его работа состоит в том, чтобы просто уменьшить количество производимого шума.Если бы выхлопная труба или какой-либо из ее фильтров были засорены, это ослабило бы функциональность двигателя, уменьшив его мощность и замедлив движение при попытке разогнаться.

Засоренная система выпуска отработавших газов вредна для любого транспортного средства, но еще хуже для автомобиля с турбонаддувом.

# 5 - Неисправность датчика положения распределительного вала (бензиновый и дизельный двигатель)

Датчик положения распределительного вала автомобиля отвечает за сбор информации о частоте вращения распределительного вала автомобиля и затем отправляет ее в электронный модуль управления (ECM).

Этот модуль представляет собой компьютер, который сегодня используется в большинстве автомобилей на дорогах. Как только информация о частоте вращения распределительного вала будет отправлена ​​в ECM, компьютер будет управлять синхронизацией впрыска топлива и зажигания на основе этой информации.

Однако, если имеется неисправность с датчиком положения распределительного вала, и он не может отправить эту информацию в ECM, то это сильно повлияет на производительность двигателя и, вероятно, не сможет функционировать должным образом.

# 6 - Неисправность датчика MAF (газовый двигатель)

Основная обязанность датчика массового расхода воздуха заключается в измерении количества воздуха, поступающего в двигатель, а затем сообщении об этом количестве в модуль управления силовой трансмиссией. Оттуда модуль будет использовать эту информацию для расчета нагрузки, которая накладывается на двигатель.

Если бы были какие-то неисправности с датчиками, то производительность двигателя была бы снижена.

# 7 - Неисправность датчика кислорода (газовый и дизельный двигатель)

Когда выхлопные газы покидают двигатель вашего автомобиля, количество выделяющихся газов измеряется датчиком кислорода.Затем электронный модуль управления использует эту информацию, чтобы вычислить соотношение воздуха и топлива в реальном времени, которое существует в двигателе транспортного средства.

Датчик кислорода расположен внутри потока выхлопных газов. Это позволяет системе газораспределения и впрыска топлива эффективно выполнять свою работу. Датчик кислорода даже обеспечивает поддержку с контролем выбросов.

Но если бы произошла неисправность с датчиком кислорода, то он не смог бы точно отправить информацию о соотношении воздух-топливо в электронный модуль управления.Это может привести к тому, что двигатель начнет работать плохо и в конечном итоге окажет негативное влияние на окружающую среду.

# 8 - Неисправные топливные инжекторы (бензиновый и дизельный двигатель Common Rail)

Топливные инжекторы являются важным компонентом управления двигателем транспортного средства. Они расположены в топливной системе транспортного средства, и их основной задачей является распыление топлива внутри двигателя.

Компьютер двигателя - это то, что управляет топливной форсункой и конкретными временными интервалами и схемами, в которых инжектор распыляет топливо в двигатель.Таким образом, двигатель может работать наилучшим образом при различных условиях движения.

Вы обнаружите, что в большинстве автомобилей на дорогах в эти дни есть топливные форсунки. Если топливная форсунка будет повреждена или неисправна каким-либо образом, то двигатель не сможет генерировать достаточное количество энергии для работы транспортного средства. Вы можете ожидать возникновения всевозможных проблем с работой двигателя, поскольку топливная форсунка является важной частью топливной системы.

# 9 - Неисправный или слабый топливный насос (газовый двигатель)

Ответственность за топливный насос состоит в том, чтобы взять топливо из бензобака и перенести его в двигатель автомобиля.Мало того, топливный насос обеспечивает подачу топлива под нужным давлением, чтобы он мог удовлетворить требования двигателя к максимальной производительности.

Если что-то будет работать со сбоями или выйдет из строя с топливным насосом, возникнут проблемы с ускорением транспортного средства, и в конечном итоге будет поставлена ​​под угрозу производительность двигателя.

Читайте также: Признаки неисправного датчика положения дроссельной заслонки

# 10 - Неисправные свечи зажигания (газовый двигатель)

Свечи зажигания являются важным компонентом двигателя внутреннего сгорания автомобиля.После того, как катушка зажигания посылает электрический сигнал к свечам зажигания, они передают этот сигнал в камеру сгорания, так что его воздушно-топливная смесь может воспламениться электрической искрой.

Если свечи зажигания когда-нибудь выйдут из строя, то производительность двигателя снизится и в конечном итоге выйдет из строя.

Читайте также: Причины высокого расхода топлива автомобиля в дизельных и бензиновых двигателях

# 11 - Катушка плохого зажигания (газовый двигатель)

Катушки зажигания служат в качестве электронного элемента управления двигателем, который отвечает за преобразование 12 вольт мощности, генерируемой автомобилем, в 20 000 вольт.Это количество напряжения необходимо для создания электрической искры, которая может воспламенить смесь воздуха и топлива двигателя.

Если катушка зажигания выйдет из строя, транспортное средство не сможет разогнаться, и его мощность будет потеряна.

Другие причины отсутствия питания при ускорении

  • Неисправное турбонаддувное устройство
  • Неисправный клапан рециркуляции отработавших газов
  • Неисправность нагнетательного клапана впрыскивающего насоса (обычный дизельный двигатель)
.

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.