Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как влияет на двигатель установка газового оборудования


Как влияет ГБО на двигатель [ОТВЕТ]

На эту тему написано очень много статей, которые описывают этот вопрос как с положительной, так и с отрицательной стороны. Отрицательное влияние ГБО на двигатель возможно, но только при несоблюдении основополагающих правил установки и использования ГБО (об этом чуть позже).

Итак, для начала определим, что в качестве газового топлива для автомобиля подходят два вида газа: пропан-бутан (СНГ) и метан (СПГ). Пропан-бутан – это сжиженный нефтяной газ, он очень схож по своим свойствам с бензином, поэтому он широко распространен на территории РФ и является основной альтернативой бензину. Именно про пропан-бутан и пойдет речь в этой статье.

Так как речь идет конкретно о влиянии газа на двигатель, не будем обсуждать общие плюсы и минусы автомобиля с ГБО, а разберем узконаправленный вопрос. Существуют мнение о вреде газового топлива на ДВС и наоборот – мнение о том, что ресурс двигателя увеличивается. Итак, предстоит немного внести ясность в столь противоречивые взгляды. Начнем с явных плюсов. Благодаря высокому октановому числу, газ в двигателе горит гораздо «мягче» бензина, тем самым оказывает меньшую ударную нагрузку на цилиндропоршневую группу и уменьшат её износ на 30-40 %. Газ попадает в двигатель в парообразном состоянии, что улучшает его смешивание с воздухом. Далее происходит более равномерное наполнение камеры сгорания и увеличивается эффективность горения. Также газ благоприятно влияет на моторное масло, которое играет большую роль в сроке службы двигателя. Во-первых, газ, попадая в камеру сгорания, не смывает маслянистую пленку со стенок цилиндра. Благодаря этому улучшается качество смазки деталей. Во-вторых, из-за отсутствия серы в составе газа значительно меньше нагружается (загрязняется) моторное масло, следовательно, оно дольше сохраняет свои чистящие и смазывающие свойства.

Теперь минусы. Основными аргументами противников ГБО являются утверждения, что двигатель создан для работы на бензине, что газ сушит двигатель и неизбежен прогар клапанов. Газ хоть и сильно похож на бензин по своим свойствам, но все же есть отличия. Во-первых, являясь чистым топливом, газ в своем составе не содержит побочных маслянистых примесей, которые создают дополнительную пленку между седлом клапана и самим клапаном. Действительно, это свойство газа ухудшает тепловой контакт клапана с седлом головы двигателя, чем затрудняет  охлаждения клапана и, видимо, именно этот эффект имеют ввиду, когда употребляют выражение «газ сушит», так как топливо (ни бензин, ни газ) не участвует в прямом процессе смазки ни резинотехнических изделий, ни механических элементов двигателя.

Во-вторых, сам процесс горения газа отличен от горения бензина. Самые главные для нас отличия это температура горения и скорость горения. Газ, благодаря высокому октановому числу, горит медленнее бензина и с большей температурой.

Теперь давайте разберемся, как это отражается на работе двигателя и его ресурсе.

Температура отработанных газов на бензине в среднем составляет 500ºС. При правильной работе двигателя на газе температура выпуска повышается на 40-50ºС, т.е. всего на 8-10 %. Эти температурные изменения несущественны, так как температурный запас прочности у цилиндропоршневой группы гораздо выше. Этот эффект нанести вред двигателю и его ресурсу не может. А вот «мягкое» и «протяженное» горение не очень хорошо сказывается на выпускных клапанах при оборотах двигателя свыше 4500 об/мин. Это обусловлено тем, что при высокой скорости вращения двигателя горение должно происходить моментально, иначе в момент выпуска отработанных газов рабочая смесь будет догорать и перегревать выпускные клапана. Такой же эффект будет и при обеднении смеси. Именно поэтому на системах ГБО первого и второго поколения не рекомендовалось развивать обороты свыше 4000-4500 об/мин. Такой же эффект неизбежен и при неправильной настройке газовой системы, а точнее при обеднении смеси. Обедненная смесь характеризуется плохим воспламенением и долгим горением. Получить обедненную смесь можно неправильной регулировкой или малой производительностью газовой системы на высоких оборотах. Но все эти проблемы были решены с появлением систем четвертого поколения. Системы четвертого поколения отличаются тем, что полностью повторяют бензиновую систему и имеют возможность точнейшей регулировки подачи газа на всех режимах работы двигателя. Также в современных системах создана функция сохранения клапанов от перегрева на высоких нагрузках. Эта функция улучшает процесс горения и заключается в добавлении бензина при больших нагрузках на двигатель. Газовый блок управления при оборотах двигателя свыше 4000 об/мин начинает добавлять бензин, а на оборотах свыше 5000 об/мин автоматически переводит двигатель на бензин с последующим возвратом на газ.

Итак, можно подвести итог. Газ и бензин, безусловно, – это разное топливо, но у каждого есть свои преимущества и недостатки. На главный вопрос «Как влияет ГБО на двигатель?», взвесив все факты, отвечаем: при правильном выборе газового оборудования, грамотной установке и своевременном обслуживании системы, ресурс работы двигателя на газе, может, и не увеличивается, но уж точно не уменьшается. При этом параметры двигателя, работающего на газе, никак не отличаются от его параметров на бензине.

Но все это так только при соблюдении трех основных правил!

  1. Правильный подбор компонентов газовой системы под конкретный автомобиль и условия эксплуатации;
  2. Грамотная установка с соблюдением правил технического регламента;
  3. Полная настройка системы, в том числе настрой в движении.

Поэтому очень важно обратиться к профессионалам, которые имеют достаточный опыт в установке газового оборудования на автомобили и несущих ответственность за свою работу.

Проблемы с двигателем | HowStuffWorks

Реклама

Итак, вы выходите однажды утром, и ваш двигатель включится, но не запустится. Что может быть не так? Теперь, когда вы знаете, как работает двигатель, вы можете понять основные вещи, которые могут помешать его работе.

Могут возникнуть три фундаментальные вещи: плохая топливная смесь, недостаточная компрессия или отсутствие искры. Помимо этого, тысячи мелких вещей могут создавать проблемы, но это «большая тройка».«Основываясь на простом движке, который мы обсуждали, вот краткое изложение того, как эти проблемы влияют на ваш движок:

Неправильная топливная смесь может происходить несколькими способами:

  • У вас нет газа, поэтому двигатель получает воздух, но нет топлива.
  • Воздухозаборник может быть забит, поэтому есть топливо, но недостаточно воздуха.
  • Топливная система может подавать слишком много или слишком мало топлива в смесь, что означает, что сгорание не происходит должным образом.
  • В топливе может быть примесь (например, вода в бензобаке), которая препятствует сгоранию топлива.

Отсутствие сжатия: Если заряд воздуха и топлива не может быть сжат должным образом, процесс сгорания не будет работать так, как должен. Отсутствие сжатия может возникнуть по следующим причинам:

  • Ваши поршневые кольца изношены (что позволяет смеси воздуха и топлива просачиваться через поршень во время сжатия).
  • Впускной или выпускной клапаны не герметизированы должным образом, что снова приводит к утечке во время сжатия.
  • В цилиндре есть отверстие.

Наиболее распространенное «отверстие» в цилиндре возникает, когда верх цилиндра (удерживающий клапаны и свечу зажигания и также известный как головка цилиндра ) присоединяется к самому цилиндру. Как правило, цилиндр и болт головки цилиндров вместе с тонкой прокладкой вдавливаются между ними для обеспечения хорошего уплотнения. Если прокладка выходит из строя, между цилиндром и головкой цилиндра образуются небольшие отверстия, и эти отверстия вызывают утечки.

Отсутствие искры: Искра может отсутствовать или быть слабой по нескольким причинам:

  • Если ваша свеча зажигания или провод, ведущий к ней, изношены, искра будет слабой.
  • Если провод обрезан или отсутствует, или если система, которая отправляет искру по проводу, не работает должным образом, искры не будет.
  • Если искра возникает либо слишком рано, либо слишком поздно в цикле (то есть, если момент зажигания выключен), топливо не будет зажигаться в нужный момент.

Многие другие вещи могут пойти не так. Например:

  • Если аккумулятор разряжен, вы не можете перевернуть двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не может вращаться, поэтому двигатель не может работать.
  • Если клапаны не открываются и не закрываются в нужное время или вообще, воздух не может попасть, а выхлоп не может выйти, поэтому двигатель не может работать.
  • Если у вас кончится масло, поршень не сможет свободно двигаться вверх и вниз в цилиндре, и двигатель закроется.

В правильно работающем двигателе все эти факторы работают нормально. Совершенство не требуется для запуска двигателя, но вы, вероятно, заметите, когда дела не идеальны.

Как видите, двигатель имеет несколько систем, которые помогают ему преобразовывать топливо в движение. Мы рассмотрим различные подсистемы, используемые в движках, в следующих нескольких разделах.

,

Как работают газовые компрессионно-воспламеняющиеся двигатели

Реклама

Летом 2017 года Mazda сделала объявление: автомобильная компания нашла способ сделать бензиновые двигатели с воспламенением от сжатия для легковых автомобилей. Mazda заявила, что ее новый двигатель может улучшить экономию топлива на 20-30 процентов, что является значительным достижением для бензинового двигателя.

Прежде чем углубиться в эту технологию, стоит отметить, что двигатель с воспламенением от сжатия не является новой концепцией.Автомобили Формулы 1 используют двигатели с воспламенением от сжатия, и несколько других автопроизводителей пытались разработать коммерчески жизнеспособную версию для легковых автомобилей. Но двигатель Mazda, получивший название Skyactiv-X, станет первым серийно выпускаемым и коммерчески доступным двигателем этого типа. Благодаря Джей Чену, инженеру по трансмиссии Mazda, HowStuffWorks удалось узнать, как был достигнут этот прорыв. Сначала, однако, мы должны взглянуть на основные функции двигателя.

Двигатель работает, зажигая топливо двумя способами: нагрев и сжатие.Двигатели с искровым зажиганием встречаются в большинстве бензиновых автомобилей. В двигателях этих типов свечи зажигания горят, чтобы зажечь топливо в камере сгорания, в то время как топливно-воздушная смесь также сжимается. Конечно, это очень упрощенная версия процесса, чтобы проиллюстрировать основное различие между двумя типами двигателей. Двигатели с искровым зажиганием следуют за циклом и требуют точной синхронизации для работы, но, как правило, надежны при различных условиях [источник: рыцарь].

Двигатели с воспламенением от сжатия работают больше как дизельные двигатели.Дизели рассчитаны на гораздо более высокое сжатие (что требует более тяжелых компонентов и более прочной конструкции) и используют свечи накаливания в качестве источника тепла, а не свечи зажигания. Свечи накаливания нагревают камеру сжатия, что, в свою очередь, увеличивает сжатие внутри камеры. Когда топливо добавляется в камеру, оно распыляется через наконечник свечи накаливания, но процесс в большей степени зависит от сжатия, чем от контакта топлива и свечи. Отсутствие «искры» помогает дизельным двигателям достигать более высоких рейтингов EPA, чем бензиновые двигатели с другими аналогичными характеристиками [источник: Стюарт].

Если мы сосредоточимся на газе, вы можете спросить, какой смысл объяснять, как работает дизельный двигатель? Просто, чтобы проиллюстрировать важность сжатия. Лучший способ улучшить газовый двигатель - выяснить, как увеличить компрессию, что позволяет двигателю более эффективно использовать запас топлива.

Бензиновый двигатель с воспламенением от сжатия сочетает в себе лучшие части этих процессов. Двигатель запрограммирован на улавливание воздуха (как правило, выхлопных газов двигателя) в цилиндре двигателя путем регулировки синхронизации выпускного и впускного клапанов.Топливные форсунки добавляют топливо в этот захваченный выхлоп, и поскольку захваченная смесь находится под очень высоким сжатием, относительно небольшое количество топлива способно воспламениться.

Двигатели с воспламенением от сжатия можно даже разбить на два разных типа [источник: Линдберг].

  • Однородное воспламенение от сжатия заряда (HCCI): Этот двигатель смешивает воздух и топливо, а затем сжимает эту смесь до тех пор, пока она не загорится. Двигатель Mazda будет первым двигателем типа HCCI, который будет массово произведен.
  • Бензиновый компрессор с непосредственным сжатием (GDCI): Этот двигатель разбрызгивает бензин в смесь воздуха и выхлопа, которые уже были сжаты.

Основное различие между этими двумя двигателями состоит в том, что в процессе добавления топлива достигается регулировка циклов и времени работы двигателей. В противном случае двигатели работают аналогично; сжатие является наиболее важным фактором.

,

Оценка работы двигателя внутреннего сгорания

Рис. 1 - Давление и температура окружающего воздуха могут влиять на мощность двигателя. Обратите внимание, что в случае более высоких температур снижение характеристик начинается уже на малых высотах. Это показывает, насколько важно использовать полную информацию об условиях сайта. (Нажмите на изображение для полного просмотра.)


Нагрузка

Очевидно, что эффективность двигателя зависит от его нагрузки.Это особенно важно для установок, которые не должны работать при полной нагрузке в течение значительного периода времени. К счастью, в случае более крупных установок, силовая установка с двигателем внутреннего сгорания позволяет достигать частичной нагрузки, отключая отдельные генераторные установки, в то же время поддерживая остальные как можно ближе к полной нагрузке. Тем не менее, иногда будет необходимо эксплуатировать двигатели при частичных нагрузках из-за других соображений (например, поддержания резерва вращения), и эффективность неизбежно будет снижаться.Тем не менее, можно отметить, что кривая эффективности двигателя, как правило, намного более плоская, чем у других машин.

Рис. 2 - Одной из выдающихся особенностей технологии двигателей внутреннего сгорания является плоская кривая эффективности нагрузки. Эта диаграмма показывает такие кривые для завода с десятью двигателями, работающего двумя различными способами. Оранжевая кривая представляет управление нагрузкой путем выключения отдельных двигателей, в то время как остальные работают при почти номинальной нагрузке.Черная кривая представляет ситуацию, когда все двигатели разгружаются вместе, как в случае с установками, которые должны поддерживать запас при вращении. (Нажмите на картинку для полного просмотра.)




Коэффициент мощности

Генератор переменного тока генерирует не только активную мощность, но и определенное количество реактивной мощности. Обычно это описывается значением, называемым коэффициентом мощности (или, п.ф.). П.Ф. это соотношение между активной мощностью и полной мощностью.Наибольшее значение p.f. 1,0 и соответствует чисто резистивной нагрузке. Это также значение, когда генератор и, следовательно, генераторная установка достигает максимальной эффективности. Во многих случаях коэффициент мощности, равный 1,0, используется в качестве точки для определения номинальных параметров, опубликованных в технических паспортах оборудования. С другой стороны, в некоторых других данных каталога производительность определяется для относительно низкого значения 0,8, что является типичным параметром конструкции генератора.

К сожалению, в реальной жизни коэффициент мощности никогда не соответствует этим идеализированным значениям.В большинстве приложений это где-то между 0,90 и 0,95. Это означает, что если номинальная эффективность для генераторной установки определена на стр. = 1.0, фактическое значение всегда будет ниже. И, если номинальное значение определено в п.ф. = 0,8, то в реальных ситуациях будет выше, чем указано в листах каталога. Здесь очевидно, что если значения для двух разных машин определены для двух разных коэффициентов мощности, они не будут сопоставимы.


Оптимизация выбросов

Как и в случае любой другой технологии сжигания топлива, двигатели внутреннего сгорания выделяют определенное количество загрязняющих веществ.В контексте производительности наиболее важной группой загрязняющих веществ являются оксиды азота или NOx.

Образование NOx является неизбежным побочным продуктом процесса сгорания и поэтому не может быть полностью устранено. Однако есть способы уменьшить его. На самом деле, самые последние экологические нормы требуют от нас принятия таких мер. Есть два способа сделать это: основной и дополнительный методы. Основные методы направлены на предотвращение образования загрязняющих веществ, а второстепенные - очистку выхлопных газов.

Современные двигатели внутреннего сгорания могут использовать как первичные, так и вторичные меры по снижению выбросов NOx. Вторичные методы не влияют на производительность генераторной установки. Первичные из них делают, поскольку оптимизация процесса сгорания для снижения выбросов несет определенную потерю эффективности.

Обычно данные каталога для генераторной установки приведены для машин, оптимизированных для достижения максимальной эффективности и, следовательно, относительно высокого выброса NOx. Газовые двигатели, как правило, рассчитаны на достижение целевого показателя NOx 500 мг / м³, определенного при эталонном содержании кислорода 5%, также иногда называемом уровнем «TA-Luft» из названия немецкого стандарта выбросов 2002 года.К сожалению, этот стандарт уже устарел, и во многих юрисдикциях необходим более жесткий контроль выбросов.

Большинство конструкций газовых двигателей могут быть оптимизированы для соответствия более строгим уровням выбросов первичными методами, как правило, вплоть до «1/2 TA-Luft» или даже ниже, до 200 мг / м³ при 5% O2 (75 мг / м³N при 15% уровень кислорода). Это соответствует действующей Директиве ЕС по промышленным выбросам. Такая оптимизация выбросов обычно приводит к снижению эффективности примерно на 1.0-1,5 процентного пункта. Конечно, также можно использовать двигатель с более высокой эффективностью и очистку дымовых газов от SCR. Или определенная комбинация обеих мер. Оптимальное решение выбирается на основе технико-экономического анализа для конкретного проекта, где увеличение стоимости генерации, вызванное оптимизацией двигателя, сопоставляется с инвестиционными и эксплуатационными затратами системы SCR.

Рис. 3 - Снижение характеристик газового двигателя связано с более низкой теплотворной способностью топливного газа.Обратите внимание, что в некоторой степени падение LHV может быть компенсировано более высоким давлением подачи газа. (Нажмите на картинку для полного просмотра.)




Износ

Как и любая другая техника, двигатели внутреннего сгорания также страдают от износа, и производительность двигателя ухудшается во время работы. К счастью, это ухудшение, в большинстве случаев, полностью обратимо во время капитальных ремонтов, когда двигатели возвращаются к своим номинальным параметрам.Здесь важно отметить, что в большинстве конструкций ухудшение качества влияет только на эффективность, а объем производства остается на номинальном уровне. Тем не менее, помните, что средняя эффективность моторного завода будет несколько ниже, чем номинальные значения, указанные для фактических условий на площадке. Величина этого ухудшения зависит от конструкции двигателя и его программы обслуживания.


Свойства топлива

Как правило, двигатели внутреннего сгорания могут выдерживать широкий спектр свойств и свойств топлива.Тем не менее, есть ограничения. Некоторые из них являются абсолютными, и в этом случае невозможно или безопасно эксплуатировать двигатель ниже или выше определенного значения. Другие условные, что означает, что превышение их разрешено, но это может вызвать некоторое снижение или снижение эффективности двигателя. Типичные случаи включают теплотворную способность или метановое число. Превышение минимальных значений приведет к определенному снижению производительности или эффективности.

Таким образом, крайне важно проверить, соответствует ли рассматриваемое топливо стандартной спецификации.В противном случае обратитесь к поставщику за показателями производительности, которые действительны для конкретного типа топлива.


Допуск

Это самая сложная проблема, с которой даже многие инженеры могут быть незнакомы. Часто в таблицах данных или каталогах среди условий, для которых указываются данные, вы можете встретить такие утверждения, как «допуск ISO», «допуск согласно ISO 3046» или «допуск 5%». Он напрямую связан со стандартом ISO 3046 «Поршневые двигатели внутреннего сгорания - рабочие характеристики».Этот стандарт предусматривает, что «если не указано иное, более высокий расход [топлива] + 5% разрешается для удельного расхода топлива, заявленного при заявленной мощности».

Это означает, что если какое-либо значение расхода топлива указано «с допуском ISO 3046», то двигатель может фактически иметь расход топлива на 5% выше и при этом технически соответствовать указанному значению. Таким образом, любая эффективность, заявленная с «допуском ISO», может быть на 5% ниже (примечание: не в процентах, а в процентах).Например, генераторная установка с заявленной эффективностью 48,0% «с допуском ISO» может фактически достигать только 48,0 / 1,05 = 45,7%. На самом деле, более чем вероятно, что он достигнет только такого значения. Исторически этот допуск действительно предоставлялся для учета различий между отдельными двигателями, покидающими производственную линию. Однако при современных методах производства эти различия по большей части остались в прошлом. Теперь, к сожалению, концепция толерантности используется для обеспечения преувеличенных значений эффективности во многих публикациях.К сожалению, это также подводный камень для тех, кто не знаком с особенностями моторного бизнеса. Это также создает угрозу сравнения яблок с апельсинами, когда один лист данных содержит 5% допуска, а другой - нет. Таким образом, всякий раз, когда значение допуска явно не указано, рекомендуется попросить поставщика предоставить явное заявление о допусках, как разница 5% (то есть около 2,0-2,5 процентных пункта, в зависимости от конструкции). далеко не незначительный.

Рис.4 - Некоторые более крупные конструкции двигателей, такие как Wärtsilä 50SG или другие конструкции Wärtsilä, оснащены масляными и водяными насосами, приводимыми в движение непосредственно от вала двигателя. В некоторых других конструкциях, где насосы приводятся в действие электрическим током, это приводит к увеличению внутреннего расхода топлива установки.




Чистая мощность и оборудование с приводом от двигателя

В случае с двигателем технология собственного потребления электроэнергии не очень велика. Однако значительные различия могут быть вызваны разными конструкциями.Это в основном из-за насосов. Каждый двигатель нуждается в некоторых насосах для работы: обычно это насосы смазочного масла, насосы охлаждающей воды и - если топливо жидкое - топливные насосы. Разница заключается в том, что в некоторых конструкциях двигателей, как правило, более крупных среднеоборотных двигателей, насосы приводятся в движение механически валом двигателя. Это означает, что об их потреблении энергии «заботятся» еще до выработки электроэнергии. Но для некоторых других двигателей, особенно для небольших высокоскоростных конструкций, в которых используются электрические насосы, это увеличит собственное потребление установки.

На собственное потребление также могут влиять условия окружающей среды. Это связано с тем, что на большинстве силовых установок отработанное тепло выбрасывается через радиаторы, приводимые в действие электрическими вентиляторами. Те вентиляторы, которые обычно являются крупнейшими потребителями электроэнергии на такой установке, управляют скоростью, чтобы обеспечить надлежащее охлаждение охлаждающей воды. Чем выше температура окружающего воздуха, тем выше необходимый поток воздуха, что также увеличивает потребление электроэнергии. Поскольку фактическое потребление зависит от конкретных условий на месте и конфигурации установки, обычно это не параметр, указанный в каталогах.Поэтому рекомендуется запрашивать оценочную стоимость у поставщиков.


Заключение

Суть в том, что «номинальные» параметры, взятые прямо из каталога, почти никогда не представляют значения, которые достижимы в реальных условиях объекта, даже когда все оборудование новое.

Хотя в некоторых случаях (умеренный климат, работа при полной нагрузке, нет необходимости в оптимизации выбросов процесса сгорания), относительно легко преобразовать параметры каталога в значения, достижимые в условиях объекта без дополнительных знаний.В других приложениях это будет невозможно без обращения к поставщикам за дополнительной информацией.

Это означает, что более высокая эффективность каталога определенного типа двигателя не обязательно означает, что эффективность проекта сайта будет выше, чем у его конкурентов, даже если параметры каталога выражены для идентичных условий.

В конце концов, производительность должна быть определена для конкретных условий эксплуатации. Поэтому рекомендуется запросить дополнительные данные на стадии технико-экономического обоснования электростанции.Это обеспечит реалистичность ожидаемой производительности оборудования для рассматриваемой площадки.

Отказ от ответственности

Все значения, приведенные в этой статье, особенно на диаграммах, предназначены только для иллюстрации определенных явлений. Они не представляют какой-либо конкретный продукт или дизайн.


Автор: Адам Раевски , Менеджер по развитию бизнеса, Отдел продаж в Европе, Wärtsilä Energy Solutions mail: [email protected]

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.