Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как влияет второй лямбда зонд на работу двигателя


Неисправность датчика кислорода. Признаки и причины

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Содержание:

Неисправность датчика кислорода

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

  • Ухудшение тяги и снижение динамических характеристик автомобиля.
  • Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
  • Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
  • Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

  • Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
  • Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
  • Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
  • Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
  • Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
  • Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
  • Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
  • Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
  • Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.

Процедура по восстановлению выполняется по следующему алгоритму:

  • Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
  • Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
  • Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

  • Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
  • Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
  • Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Спрашивайте в комментариях. Ответим обязательно!

Лямбда-зонд - как они работают, что они обслуживают

Ни один современный двигатель внутреннего сгорания со всей мощью его электроники не стоил бы почти зерна, без электрических сигналов, полученных от крошечного электромеханического элемента, размещенного в выхлопной трубе. машины. Не забудьте угадать, что это за элемент, это лямбда-зонд…

Задача лямбда-зонда - отправить электронный блок управления (ЭБУ) определенного сигнала напряжения, который распознает текущий состав топливовоздушной смеси.Для того, чтобы лямбда-зонд функционировал должным образом, его необходимо предварительно нагреть энергией, получаемой из потока горячих, сгоревших газов, до определенной температуры, необходимой для его правильной работы во всем рабочем диапазоне двигателя.

Принцип работы

Лямбда-зонд расположен в потоке выхлопных газов и сконструирован таким образом, что внешний электрод окружен выхлопными газами, а внутренний электрод доступен атмосферному воздуху.Основание лямбда-зонда состоит из специального керамического элемента, поверхность которого покрыта пористым платиновым электродом. Работа зонда основана на том факте, что керамический материал является пористым и обеспечивает диффузию (проникновение) кислорода, присутствующего в воздухе. При более высоких температурах он становится проводящим, и если концентрация кислорода на одной стороне отличается от концентрации кислорода на другой, то это создает напряжение между электродами. В области стехиометрической смеси воздуха и топлива (l = 1,00) наблюдается скачок на кривой выходного напряжения энкодера. Это напряжение является измерительным сигналом.

Строительство

Корпус керамического лямбда-зонда помещен в полый корпус с защитным колпачком и электрическим соединением. Поверхность керамического корпуса лямбда-зонда имеет микропористый платиновый слой, который, с одной стороны, точно влияет на характеристики зонда, а с другой - служит электрическим контактом. Сильно адгезивное и высокопористое керамическое покрытие наносится поверх платинового слоя на конце керамического корпуса, подверженного воздействию выхлопных газов.Этот защитный слой защищает платиновый слой от эрозии твердых частиц из выхлопных газов. Со стороны электрической розетки (снаружи выхлопной трубы) над лямбда-зондом установлена ​​защитная металлическая оболочка, которая ввинчивается в корпус. Эта оболочка имеет отверстие для компенсации давления внутри лямбда-зонда, а также служит опорой для дисковой пружины. Соединительные провода намотаны на контактный элемент и пропущены через изолирующую оболочку снаружи лямбда-зонда.Чтобы удерживать отложения сгорания в выхлопных газах вдали от керамического корпуса, конец лямбда-зонда, проникающий в поток выхлопных газов, защищен специальной защитной трубкой, имеющей отверстия, разработанные так, чтобы выхлопные газы и твердые частицы в нем не закрывались. вступить в прямой контакт с керамикой (ZrO2). ) по тел.

В дополнение к предоставленной механической защите, эффективное изменение температуры лямбда-зонда при переходе от одной рабочей формы к другой было успешно уменьшено.

Выходное напряжение датчика λ, а также его внутреннее сопротивление зависят от температуры. Надежная работа лямбда-зонда возможна только при температуре выхлопа выше 350 градусов по Цельсию (без подогрева) и выше 200 по Цельсию (с подогревом).

Лямбда-зонд с подогревом

Конструкция нагретого лямбда-зонда в значительной степени идентична конструкции не нагретого лямбда-зонда. Активная керамика лямбда-зонда нагревается внутри керамическим нагревательным элементом, благодаря которому температура керамического тела всегда остается выше функционального предела в 250 градусов по Фаренгейту.Нагреваемый лямбда-зонд снабжен защитным колпачком, который имеет меньшие отверстия. Помимо прочего, он защищает керамический лямбда-зонд от охлаждения, когда выхлопные газы холодные. Среди преимуществ нагреваемого лямбда-зонда: надежное и эффективное управление при низкой температуре (например, на холостом ходу), минимальное влияние изменений температуры выхлопных газов, быстрое воздействие лямбда-контроля после запуска двигателя, быстрая реакция датчика, предотвращающая большие отклонения от идеального выхлопа. Состав, независимость положения энкодера на выхлопе, поскольку он не зависит от потепления окружающей среды.

Блок управления лямбда с замкнутым контуром

Управление лямбда-замкнутым контуром - это, фактически, наличие обратной связи от лямбда-зонда к двигателю, то есть к блоку управления, и с его помощью соотношение воздух-топливо может поддерживаться очень точно при λ = 1, 00. При использовании блока управления с обратной связью, образованного указанным лямбда-зондом, отклонения от заданного соотношения воздух-топливо могут быть обнаружены и исправлены. Этот принцип управления основан на путем измерения содержания кислорода в лямбда-зонде в выхлопе.

Кислород в выхлопе является мерой состава смеси воздуха и топлива, которая до двигателя. Лямбда-зонд работает, посылая информацию (электрические импульсы), является ли смесь богаче или беднее, чем λ = 1,00. В случае отклонения от этого значения напряжение выходного сигнала датчика резко изменяется. Это изменение обрабатывается в центральном компьютерном блоке (ЭБУ), оборудованном для этой цели замкнутым контуром управления.

Впрыск топлива в двигатель контролируется системой управления впрыском и в соответствии с информацией лямбда-зонда о составе топливовоздушной смеси.Это управление таково, что достигается воздушно-топливное отношение λ = 1. Напряжение лямбда-зонда на самом деле является мерой корректировки количества топлива в смеси воздуха и топлива, поступающего в цилиндр.

Прежде чем подавать надежный сигнал, лямбда-зонд должен достичь температуры выше 350 градусов. До тех пор, пока эта температура не будет достигнута, управление замкнутым контуром прекращается, и смесь топлива и воздуха образуется на среднем уровне посредством управления разомкнутым контуром, следовательно, без обратной связи.Здесь возникает логичный вопрос: всегда ли значение лямбда-коэффициента при достижении рабочей температуры всегда равно единице в общем режиме работы двигателя? Конечно это не так. В зависимости от текущих пожеланий и потребностей водителя это значение может составлять от 0,8 до 1,2. Например, если внезапное и резкое ускорение требует, чтобы центральный компьютер переключал впрыск топлива в режим разомкнутого контура и впрыскивал столько топлива, сколько необходимо для достижения желаемой работы двигателя (λ <1). То же самое верно в тех случаях, когда требуется торможение двигателем, что характерно для длинных уклонов вниз, тогда количество впрыскиваемого в двигатель топлива будет меньше, чем обычно для ряда оборотов (λ> 1).

Хотя лямбда-зонд работает с очень высокой точностью ± 1%, допуски и старение двигателя не влияют на управление лямбда-регулятора с обратной связью.

Подготовлено: Душан Кович
Получено с: www.motorna-vozila.com


Датчик кислорода был изобретен в 1975 году инженерами Роберта Боша в ответ на требования США по охране окружающей среды для контроля выбросов автомобилей. Первоначально лямбда-зонды устанавливались только на бензиновые автомобили с системами впрыска.

Первое поколение лямбда-зондов выдержало 20.000 километров. И первым автомобилем, в котором зонд был установлен в 1977 году, была модель Volvo 244.

Второе поколение лямбда-зондов появилось в 1982 году. Эти датчики уже выдержали более высокие температуры и более длительный срок службы.

Основные производители лямбда-зондов: Bosch (Германия), Denso (Япония), NGK (Япония), Delphi (Великобритания)…

Зависит от материала керамического наконечника, наличия нагревательного зонда и др. факторы.В среднем, современный лямбда-зонд имеет срок службы от 60 до 000 км, но эксперты советуют проверять его каждые 80 км.

Лямбда-зонд является одним из самых чувствительных датчиков в автомобиле.

Однако это довольно расплывчатые симптомы, потому что индикатор проверки двигателя загорается, когда в компьютере много разных сбоев, в том числе некачественного топлива. Только диагностика на месте может дать правильный ответ, который не следует откладывать. Дело в том, что неисправный лямбда-зонд может значительно уменьшить ресурс катализатора и отключить другие компоненты и детали.В результате ремонт будет дороже.

Оценка работы двигателя внутреннего сгорания

Рис. 1 - Давление и температура окружающего воздуха могут влиять на мощность двигателя. Обратите внимание, что в случае более высоких температур снижение характеристик начинается уже на малых высотах. Это показывает, насколько важно использовать полную информацию об условиях сайта. (Нажмите на изображение для полного просмотра.)


Нагрузка

Очевидно, что эффективность двигателя зависит от его нагрузки.Это особенно важно для установок, которые не должны работать при полной нагрузке в течение значительного периода времени. К счастью, в случае более крупных установок, силовая установка с двигателем внутреннего сгорания позволяет достигать частичной нагрузки, отключая отдельные генераторные установки, в то же время поддерживая остальные как можно ближе к полной нагрузке. Тем не менее, иногда будет необходимо эксплуатировать двигатели при частичных нагрузках из-за других соображений (например, поддержания резерва вращения), и эффективность неизбежно будет снижаться.Тем не менее, можно отметить, что кривая эффективности двигателя, как правило, намного более плоская, чем у других машин.

Рис. 2 - Одной из выдающихся особенностей технологии двигателей внутреннего сгорания является плоская кривая эффективности нагрузки. Эта диаграмма показывает такие кривые для завода с десятью двигателями, работающего двумя различными способами. Оранжевая кривая представляет управление нагрузкой путем выключения отдельных двигателей, в то время как остальные работают при почти номинальной нагрузке.Черная кривая представляет ситуацию, когда все двигатели разгружаются вместе, как в случае с установками, которые должны поддерживать запас при вращении. (Нажмите на картинку для полного просмотра.)




Коэффициент мощности

Генератор переменного тока генерирует не только активную мощность, но и определенное количество реактивной мощности. Обычно это описывается значением, называемым коэффициентом мощности (или, п.ф.). П.Ф. это соотношение между активной мощностью и полной мощностью.Наибольшее значение p.f. 1,0 и соответствует чисто резистивной нагрузке. Это также значение, когда генератор и, следовательно, генераторная установка достигает максимальной эффективности. Во многих случаях коэффициент мощности, равный 1,0, используется в качестве точки для определения номинальных параметров, опубликованных в технических паспортах оборудования. С другой стороны, в некоторых других данных каталога производительность определяется для относительно низкого значения 0,8, что является типичным параметром конструкции генератора.

К сожалению, в реальной жизни коэффициент мощности никогда не соответствует этим идеализированным значениям.В большинстве приложений это где-то между 0,90 и 0,95. Это означает, что если номинальная эффективность для генераторной установки определена на стр. = 1.0, фактическое значение всегда будет ниже. И, если номинальное значение определено в п.ф. = 0,8, то в реальных ситуациях будет выше, чем указано в листах каталога. Здесь очевидно, что если значения для двух разных машин определены для двух разных коэффициентов мощности, они не будут сопоставимы.


Оптимизация выбросов

Как и в случае любой другой технологии сжигания топлива, двигатели внутреннего сгорания выделяют определенное количество загрязняющих веществ.В контексте производительности наиболее важной группой загрязняющих веществ являются оксиды азота или NOx.

Образование NOx является неизбежным побочным продуктом процесса сгорания и поэтому не может быть полностью устранено. Однако есть способы уменьшить его. На самом деле, самые последние экологические нормы требуют от нас принятия таких мер. Есть два способа сделать это: основной и дополнительный методы. Основные методы направлены на предотвращение образования загрязняющих веществ, а второстепенные - очистку выхлопных газов.

Современные двигатели внутреннего сгорания могут использовать как первичные, так и вторичные меры по снижению выбросов NOx. Вторичные методы не влияют на производительность генераторной установки. Первичные из них делают, поскольку оптимизация процесса сгорания для снижения выбросов несет определенную потерю эффективности.

Обычно данные каталога для генераторной установки приведены для машин, оптимизированных для достижения максимальной эффективности и, следовательно, относительно высокого выброса NOx. Газовые двигатели, как правило, рассчитаны на достижение целевого показателя NOx в 500 мг / м3, определенного при эталонном содержании кислорода 5%, также иногда называемом уровнем «TA-Luft» из названия немецкого стандарта выбросов 2002 года.К сожалению, этот стандарт уже устарел, и во многих юрисдикциях необходим более жесткий контроль выбросов.

Большинство конструкций газовых двигателей могут быть оптимизированы для соответствия более строгим уровням выбросов первичными методами, как правило, вплоть до «1/2 TA-Luft» или даже ниже, до 200 мг / м³ при 5% O2 (75 мг / м³N при 15% уровень кислорода). Это соответствует действующей Директиве ЕС по промышленным выбросам. Такая оптимизация выбросов обычно приводит к снижению эффективности примерно на 1.0-1,5 процентного пункта. Конечно, также можно использовать двигатель с более высокой эффективностью и очистку дымовых газов от SCR. Или определенная комбинация обеих мер. Оптимальное решение выбирается на основе технико-экономического анализа для конкретного проекта, где увеличение стоимости генерации, вызванное оптимизацией двигателя, сопоставляется с инвестиционными и эксплуатационными затратами системы SCR.

Рис. 3 - Снижение характеристик газового двигателя связано с более низкой теплотворной способностью топливного газа.Обратите внимание, что в некоторой степени падение LHV может быть компенсировано более высоким давлением подачи газа. (Нажмите на картинку для полного просмотра.)




Износ

Как и любая другая техника, двигатели внутреннего сгорания также страдают от износа, и производительность двигателя ухудшается во время работы. К счастью, это ухудшение, в большинстве случаев, полностью обратимо во время капитальных ремонтов, когда двигатели возвращаются к своим номинальным параметрам.Здесь важно отметить, что в большинстве конструкций ухудшение качества влияет только на эффективность, а объем производства остается на номинальном уровне. Тем не менее, помните, что средняя эффективность моторного завода будет несколько ниже, чем номинальные значения, указанные для фактических условий на площадке. Величина этого ухудшения зависит от конструкции двигателя и его программы обслуживания.


Свойства топлива

Как правило, двигатели внутреннего сгорания могут выдерживать широкий спектр свойств и свойств топлива.Тем не менее, есть ограничения. Некоторые из них являются абсолютными, и в этом случае невозможно или безопасно эксплуатировать двигатель ниже или выше определенного значения. Другие условные, что означает, что превышение их разрешено, но это может вызвать некоторое снижение или снижение эффективности двигателя. Типичные случаи включают теплотворную способность или метановое число. Превышение минимальных значений приведет к определенному снижению производительности или эффективности.

Таким образом, крайне важно проверить, соответствует ли рассматриваемое топливо стандартной спецификации.В противном случае обратитесь к поставщику за показателями производительности, которые действительны для конкретного типа топлива.


Допуск

Это самая сложная проблема, с которой даже многие инженеры могут быть незнакомы. Часто в таблицах данных или каталогах среди условий, для которых указываются данные, вы можете встретить такие утверждения, как «допуск ISO», «допуск согласно ISO 3046» или «допуск 5%». Он напрямую связан со стандартом ISO 3046 «Поршневые двигатели внутреннего сгорания - рабочие характеристики».Этот стандарт предусматривает, что «если не указано иное, более высокий расход [топлива] + 5% разрешается для удельного расхода топлива, заявленного при заявленной мощности».

Это означает, что если какое-либо значение расхода топлива указано «с допуском ISO 3046», то двигатель может фактически иметь расход топлива на 5% выше и при этом технически соответствовать указанному значению. Таким образом, любая эффективность, заявленная с «допуском ISO», может быть на 5% ниже (примечание: не в процентах, а в процентах).Например, генераторная установка с заявленной эффективностью 48,0% «с допуском ISO» может фактически достигать только 48,0 / 1,05 = 45,7%. На самом деле, более чем вероятно, что он достигнет только такого значения. Исторически этот допуск действительно предоставлялся для учета различий между отдельными двигателями, покидающими производственную линию. Однако при современных методах производства эти различия по большей части остались в прошлом. Теперь, к сожалению, концепция толерантности используется для обеспечения преувеличенных значений эффективности во многих публикациях.К сожалению, это также подводный камень для тех, кто не знаком с особенностями моторного бизнеса. Это также создает угрозу сравнения яблок с апельсинами, когда один лист данных содержит 5% допуска, а другой - нет. Таким образом, всякий раз, когда значение допуска явно не указано, рекомендуется попросить поставщика предоставить явное заявление о допусках, как разница 5% (то есть около 2,0-2,5 процентных пункта, в зависимости от конструкции). далеко не незначительный.

Рис.4 - Некоторые из более крупных конструкций двигателей, такие как Wärtsilä 50SG или другие конструкции Wärtsilä, оснащены масляными и водяными насосами, приводимыми в движение непосредственно от вала двигателя. В некоторых других конструкциях, где насосы приводятся в действие электрическим током, это приводит к увеличению внутреннего расхода топлива установки.




Чистая мощность и оборудование с приводом от двигателя

В случае с двигателем технология собственного потребления электроэнергии не очень велика. Однако значительные различия могут быть вызваны разными конструкциями.Это в основном из-за насосов. Каждый двигатель нуждается в некоторых насосах для работы: обычно это насосы смазочного масла, насосы охлаждающей воды и - если топливо жидкое - топливные насосы. Разница заключается в том, что в некоторых конструкциях двигателей, как правило, более крупных среднеоборотных двигателей, насосы приводятся в движение механически валом двигателя. Это означает, что об их потреблении энергии «заботятся» еще до выработки электроэнергии. Но для некоторых других двигателей, особенно для небольших высокоскоростных конструкций, в которых используются электрические насосы, это увеличит собственное потребление установки.

На собственное потребление также могут влиять условия окружающей среды. Это связано с тем, что на большинстве силовых установок отработанное тепло выбрасывается через радиаторы, приводимые в действие электрическими вентиляторами. Те вентиляторы, которые обычно являются крупнейшими потребителями электроэнергии на такой установке, управляют скоростью, чтобы обеспечить надлежащее охлаждение охлаждающей воды. Чем выше температура окружающего воздуха, тем выше необходимый поток воздуха, что также увеличивает потребление электроэнергии. Поскольку фактическое потребление зависит от конкретных условий на месте и конфигурации установки, обычно это не параметр, указанный в каталогах.Поэтому рекомендуется запрашивать оценочную стоимость у поставщиков.


Заключение

Суть в том, что «номинальные» параметры, взятые прямо из каталога, почти никогда не представляют значения, которые достижимы в реальных условиях объекта, даже когда все оборудование новое.

Хотя в некоторых случаях (умеренный климат, работа при полной нагрузке, нет необходимости в оптимизации выбросов в процессе сгорания), относительно легко преобразовать параметры каталога в значения, достижимые в условиях объекта без дополнительных знаний.В других приложениях это будет невозможно без обращения к поставщикам за дополнительной информацией.

Это означает, что более высокая эффективность каталога определенного типа двигателя не обязательно означает, что эффективность проекта сайта будет выше, чем у его конкурентов, даже если параметры каталога выражены для идентичных условий.

В конце концов, производительность должна быть определена для конкретных условий эксплуатации. Поэтому рекомендуется запросить дополнительные данные на стадии технико-экономического обоснования электростанции.Это обеспечит реалистичность ожидаемой производительности оборудования для рассматриваемой площадки.

Отказ от ответственности

Все значения, приведенные в этой статье, особенно на диаграммах, предназначены только для иллюстрации определенных явлений. Они не представляют какой-либо конкретный продукт или дизайн.


Автор: Адам Раевски , Менеджер по развитию бизнеса, Отдел продаж в Европе, Wärtsilä Energy Solutions mail: [email protected]

,

Лямбда-метр Измерение параметра λ (Лямбда) соотношение воздух / топливо (AFR)

СТОИХОМЕТРИЯ ГОРЕНИЯ

СТОИХИОМЕТРИЯ ОСНОВАНИЙ ГОРЕНИЯ: моли и километры Масса атомной единицы: 1/12 126 C ~ 1.66 10-27 кг Масса атомов и молекул определяется в атомных единицах массы: что определяется в отношении 1/12

Дополнительная информация

Двигатели внутреннего сгорания (IC)

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ (ДВС) ДВС - это двигатель, в котором передача тепла рабочей жидкости происходит внутри самого двигателя, обычно путем сжигания топлива с кислородом воздуха. Во внешнем

Дополнительная информация

A.Паннирсельвам *, М.Рамаджаям, В.Гурумани, С.Арулсельван и Г.Картикеян * (факультет машиностроения, Университет Аннамалай)

A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, выпуск 2, март-апрель 212, стр.19-27 Экспериментальные исследования характеристик и характеристик выбросов

Дополнительная информация

Электронное управление дизелем EDC 16

Обслуживание.Программа самообучения 304 Электронное управление дизельным двигателем EDC 16 Конструкция и функционирование Новая система управления двигателем EDC 16 от Bosch дебютировала в двигателях V10-TDI и R5-TDI. Растущие потребности

Дополнительная информация

E - ТЕОРИЯ / РАБОТА

E - ТЕОРИЯ / ЭКСПЛУАТАЦИЯ 1995 Volvo 850 1995 РАБОТА ДВИГАТЕЛЯ Volvo - Теория и эксплуатация 850 ВВЕДЕНИЕ В этой статье рассматривается основное описание и работа систем и компонентов, связанных с эксплуатационными характеристиками двигателя.

Дополнительная информация

Nissan Figaro - Расход топлива

Nissan Figaro - Расход топлива Прежде всего, какой расход топлива вы должны достичь в Figaro? ... Реалистичная общая цифра составляет 32 35 миль на галлон, но есть, конечно, много факторов, которые будут влиять на

Дополнительная информация

ГЛАВА 3 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

ГЛАВА 3 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА 3.1 ВВЕДЕНИЕ Испытания на выбросы проводились на испытательной установке четырехтактного 4-цилиндрового бензинового двигателя Izusu с гидравлической динамометрической системой загрузки. Технические характеристики

Дополнительная информация

Инструкция по эксплуатации Dräger MSI ALV

Dräger Safety MSI GmbH Rohrstraße 32 D - 58093 Hagen Тел .: 049-2331 / 9584-0 Факс: 049-2331 / 9584-29 e-mail: [email protected] D 914; Выпуск 2005-12-16 Содержание 1. Подсказки стр. 2 2.Испытание на герметичность трубы, страница

Дополнительная информация

Список деталей. навигация

Описание количества деталей 1 Дисплей LCD-200 1 Кабель дисплея LCD-200 1 CD-ROM 2 двойной замок или липучка 1 SD-карта 1 ГБ (опция) 1 Терминальный штекер CAN Навигация Главное меню Начало Журнала / Стоп Журнал страница 4 Журнал

Дополнительная информация

Особенности программного обеспечения Auto Gas Gas Analyzer Особенности HC, CO, CO2, Lambda, Air Fuel, NOx.Имеются дополнительные обороты и температура масла.

Ультимативная модель Auto Gas, показанная выше программного обеспечения Особенности Auto Gas Gas Analyzer Особенности HC, CO, CO2, Lambda, Air Fuel, NOx. Имеются дополнительные обороты и температура масла. Прочный высокопрочный алюминиевый корпус со всеми

Дополнительная информация

Руководство по настройке котла

Руководство по настройке котлов Национальные стандарты по выбросам опасных загрязнителей воздуха для местных источников: промышленные, коммерческие и институциональные котлы Что такое настройка котлов? 40 CFR часть 63 подраздел JJJJJJ

Дополнительная информация

Калибровка коммерческого учета газа

Калибровка коммерческого учета газа Для калибровки расходомера используется несколько калибраторов температуры / давления с переменным давлением 2013 Введение Компьютеры с постоянным расходом газа требуют специальной калибровки для выполнения

Дополнительная информация

Turbo Tech 101 (Basic)

Turbo Tech 101 (Базовый) Как работает Turbo System Мощность двигателя пропорциональна количеству воздуха и топлива, которые могут попасть в цилиндры.При прочих равных, большие двигатели пропускают больше воздуха и, как

Дополнительная информация

Типичный алюминиевый массовый расходомер GFM

ИЗМЕРЕНИЯ МАССОВОГО ПОТОКА n Особенности жесткой металлической конструкции. Максимальное давление 1000 фунтов на кв. дюйм (70 бар). n Утечка целостности 1 х 10-9 гелия. NIST прослеживаемая сертификация. n Встроенный наклонный ЖК-дисплей.

Дополнительная информация

Тепловые массовые расходомеры

Тепловые массовые расходомеры для мониторинга выбросов парниковых газов Измерение природного газа для расчетов выбросов Мониторинг факельных газов Мониторинг сбросных газов Мониторинг биогаза и варочного газа Свалка

Дополнительная информация

Система охлаждения открытого цикла

Глава 9 Система охлаждения открытого цикла Авторские права: Томас Т.С. Ван 温 到 祥 著 3 сентября 2008 г. Все права защищены. Система охлаждения открытого цикла состоит в том, что в системе нет традиционного испарителя.

Дополнительная информация

Проблемы с сажей и накипью

Доктор Альбрехт Каупп Page 1 Проблемы с сажей и окалина Проблема Сажа и окалина не только увеличивают потребление энергии, но и являются основной причиной разрушения труб. Цели обучения Понимание последствий

Дополнительная информация

Сверхмощный флот США - экономия топлива

Сверхмощный флот США - экономия топлива февраль22, 2006 Энтони Грезслер Вице-президент по передовым технологиям VOLVO POWERTRAIN CORPORATION Драйверы для FE в дизельном топливе HD Ожидается нехватка нефти Быстрое повышение цен на нефть

Дополнительная информация

Урок: альтернативные виды топлива

Drexel-SDP GK-12 УРОК: Альтернативные виды топлива Предметная область (ы) Окружающая среда, альтернативные виды топлива, топливо, загрязнение автомобилей Окружающая среда, связанная с модулем, модуль 4 Название урока Уровень 6 (4-8) Урок

Дополнительная информация

Блок 8Конверсионные Системы

Блок 8. Конверсионные системы Задачи: После завершения этого блока учащиеся должны быть в состоянии: 1. Описать базовые конверсионные системы 2. Описать основные типы конверсионных комплектов. 3. Опишите, как работает CNG

Дополнительная информация

Для многопараметрических метров см. Mvx

БЮЛЛЕТЕНЬ БЮЛЛЕТЕНЬ EM20607 СИГНАЛИЗАТОРЫ ВНУТРЕННЕГО РАСХОДА VORTEX Особенности конструкции Многопараметрических расходомеров см. M Принципы работы n Отсутствие движущихся частей для износа или выхода из строя.n Электроника может быть удаленно установлена ​​до

Дополнительная информация

Дизель: устранение неисправностей

Дизель: поиск и устранение неисправностей Возможная причина Двигатель не запускается Неисправный запуск двигателя Работает неровно на низких оборотах. Недостаток мощности Дизельный стук / розовение Черный Белый Синий Низкое сжатие X X X Низкое давление топлива X X

Дополнительная информация

Прямой впрыск топлива

Типы схем впрыска топлива Прямой (цилиндровый) впрыск Порт впрыска Впускной коллектор GDI (прямой впрыск бензина) Прямой впускной впрыск топлива и впускной трубопровод коллектора Эти термины

Дополнительная информация ,

Смотрите также


avtovalik.ru © 2013-2020