Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Как выглядит двигатель самолета


Газотурбинный двигатель самолета. Фото. Строение. Характеристики.

 

Авиационные газотурбинные двигатели.

 

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

 

Принцип работы газотурбинного двигателя.

 

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

 

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  •  выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

 

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

 

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс». 

 

Газотурбинные двигатели имеют классификацию также по другим признакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  •  по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

 

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

 

 

Газотурбинный двигатель. Видео.

 

Полезные статьи по теме.

 

Ещё узлы и агрегаты

 

Как работают самолеты | наука о полете

Реклама

Крис Вудфорд. Последнее обновление: 16 июня 2019 года.

Мы считаем, что можем летать с одной стороны света. другому в считанные часы, но столетие назад это удивительное способность мчаться по воздуху была только что обнаружена. какой братья Райт - пионеры активного полета - из возраст, когда около 100 000 самолетов каждый день взлетают в небо в одних только Соединенных Штатах? Они были бы поражены, конечно, и тоже в восторге.Благодаря их успешным экспериментам с самолет по праву признан одним из величайших изобретения всех времен. Давайте подробнее рассмотрим, как это работает!

Фото: вам нужны большие крылья, чтобы поднять большой самолет, такой как Globemaster ВВС США. Ширина крыльев 51,75 м (169 футов) - это чуть меньше длины тела самолета 53 м (174 фута). Максимальный взлетный вес составляет 265 352 кг (585 000 фунтов), примерно 40 взрослых слонов! Фото Джереми Локка любезно предоставлено ВВС США.

Как летают самолеты?

Если вы когда-нибудь видели, как реактивный самолет взлетает или входит в земля, первое, что вы заметили, это шум двигатели. Реактивные двигатели, которые представляют собой длинные металлические трубы, горящие непрерывно прилив топлива и воздуха намного шумнее (и гораздо мощнее), чем традиционные пропеллерные двигатели. Вы можете подумать, что двигатели являются ключом к летать самолетом, но ты ошибаешься. Вещи могут летать довольно счастливо без двигателей, как планеры (самолеты без двигателей), бумажные самолеты, и действительно скользящие птицы охотно показывают нам.

Фото: четыре силы действуют на самолет в полете. Когда самолет летит горизонтально с постоянной скоростью, подъем с крыльев точно уравновешивает вес самолета, а тяга точно уравновешивает сопротивление. Однако во время взлета или когда самолет пытается подняться в небо (как показано здесь), тяга от двигателей, толкающих самолет вперед, превышает сопротивление (сопротивление воздуха), оттягивающее его назад. Это создает подъемную силу, превышающую вес самолета, который приводит самолет выше в небо.Фото Натанаэля Каллона любезно предоставлено ВВС США.

Если вы пытаетесь понять, как летают самолеты, вам нужно быть ясно о разнице между двигателями и крыльями и разные работы, которые они делают. Двигатели самолета предназначены для его перемещения вперед на высокой скорости. Это делает воздушный поток быстро через крылья, которые сбрасывают воздух к земле, создавая подъемную силу, называемую подъемной силой, которая преодолевает вес и держит его в небе. Так что двигатели движут самолет вперед, в то время как крылья двигают его вверх.

Фото: третий закон движения Ньютона объясняет, как двигатели и крылья работают вместе, чтобы заставить самолет двигаться по небу. Сила горячего выхлопного газа, стреляющего назад от реактивного двигателя, толкает самолет вперед. Это создает движущийся поток воздуха над крыльями. Крылья толкают воздух вниз, и это толкает самолет вверх. Фото Сэмюэля Роджерса (с добавленными аннотациями объяснением от thatstuff.com) любезно предоставлено ВВС США. Подробнее о работе двигателей читайте в нашей подробной статье о реактивных двигателях.

Как крылья делают подъем?

В одном предложении крылья поднимаются, изменяя направление и давление воздуха, который в них врезается, когда двигатели стреляют по небу.

Перепад давления

Хорошо, значит, крылья - это ключ к тому, чтобы что-то летало, но как они работают? Большинство крыльев самолета имеют изогнутую верхнюю поверхность и более плоскую нижнюю поверхность, что делает форма поперечного сечения, называемая аэродинамическим профилем (или аэродинамическим профилем, если вы британец):


Фото: крыло аэродинамического профиля обычно имеет изогнутую верхнюю поверхность и плоскую нижнюю поверхность.Это крыло на самолет Центурион НАСА на солнечной энергии. Фото Тома Чида любезно предоставлено Центром летных исследований НАСА им. Армстронга.

Во многих научных книгах и на веб-страницах вы прочтете неправильное объяснение того, как аэродинамический профиль, подобный этому, вызывает подъем. Это выглядит так: когда воздух проникает через изогнутую верхнюю поверхность крыла, он должен перемещаться на дальше на , чем воздух, который проходит под ним, поэтому он должен идти на быстрее на (чтобы преодолеть большее расстояние в то же время). По принципу аэродинамики называется Бернулли закон, быстро движущийся воздух находится под более низким давлением, чем медленно движущийся воздух, поэтому давление над крылом ниже, чем давление ниже, и это создает подъемную силу, которая приводит самолет в движение вверх.

Хотя это объяснение того, как работают крылья, часто повторяется, оно неверно: оно дает правильный ответ, но по совершенно неправильным причинам! Подумайте об этом на мгновение, и вы увидите, что если бы это было правдой, акробатические самолеты не могли бы летать с ног на голову. Если перевернуть самолет, произойдет «сброс» и он рухнет на землю. Не только это, но вполне возможно проектировать самолеты с аэродинамическими поверхностями, которые являются симметричными (смотрящими прямо вниз по крылу), и они все еще производят подъемную силу.Например, бумажные самолеты (и сделанные из тонкого бальсового дерева) создают подъемную силу, даже если у них плоские крылья.

" Популярное объяснение лифта является общим, быстрым, звучит логично и дает правильный ответ, но также вводит в заблуждение, использует бессмысленные физический аргумент и вводит в заблуждение уравнение Бернулли ".

Профессор Хольгер Бабинский, Кембриджский университет

Но стандартное объяснение подъема проблематично и по другой важной причине: воздушный выстрел над крылом не должен идти в ногу с воздухом, идущим под ним, и ничто не говорит о том, что он должен преодолевать большее расстояние в том же направлении. время.Представьте, что две молекулы воздуха достигают передней части крыла и разделяются, так что одна стреляет вверх, а другая свистит прямо под дном. Нет никаких причин, по которым эти две молекулы должны прибыть в одно и то же время на заднем конце крыла: вместо этого они могут встретиться с другими молекулами воздуха. Этот недостаток стандартного объяснения аэродинамического профиля носит техническое название «теория равного транзита». Это просто причудливое название для (неправильной) идеи, согласно которой воздушный поток распадается на передней части аэродинамического профиля и снова аккуратно встречается сзади.

Так каково реальное объяснение? Когда изогнутое крыло аэродинамического профиля летит по небу, оно отклоняет воздух и изменяет давление воздуха над и под ним. Это интуитивно очевидно. Подумайте, каково это, когда вы медленно идете по бассейну и чувствуете силу воды, толкающей ваше тело: ваше тело отвлекается поток воды, когда он проталкивается через него, и аэродинамическое крыло делает то же самое (гораздо более резко - потому что это то, для чего оно предназначено).Когда самолет летит вперед, изогнутая верхняя часть крыла понижает давление воздуха непосредственно над ним, поэтому оно движется вверх.

Почему это происходит? Когда воздух течет по изогнутой верхней поверхности, его естественная склонность - двигаться по прямой линии, но изгиб крыла тянет его назад и вниз. По этой причине воздух эффективно растягивается в больший объем - такое же количество молекул воздуха вынуждено занимать больше места - и это то, что снижает его давление. По совершенно противоположной причине давление воздуха под крылом возрастает: продвигающееся крыло сдавливает молекулы воздуха перед ним в меньшее пространство.Разница в давлении воздуха между верхней и нижней поверхностями вызывает большую разницу в скорости воздуха (не наоборот, как в традиционной теории крыла). Разница в скорости (наблюдаемая в реальных экспериментах в аэродинамической трубе) намного больше, чем можно было бы предсказать из простой теории (равного транзита). Таким образом, если две наши молекулы воздуха отделяются спереди, то, что проходит через верх, попадает в хвостовую часть крыла гораздо быстрее, чем то, что идет под дном. Независимо от того, когда они прибудут, обе эти молекулы будут ускоряться на вниз, а не на - и это помогает произвести подъем вторым важным способом.

Как крылья аэродинамического профиля создают подъем № 1: аэродинамический профиль разделяет поступающий воздух, понижает давление верхнего воздушного потока и ускоряет оба воздушных потока вниз. Когда воздух ускоряется вниз, крыло (и самолет) движутся вверх. Чем больше аэродинамический профиль отклоняет путь встречного воздуха, тем больший подъем он создает.

Промывка

Если вы когда-либо стояли возле вертолета, вы точно знаете, как он стоит в небе: он создает огромный «поток вниз» (нисходящий поток) воздуха, который уравновешивает его вес.Роторы вертолетов очень похожи на аэродинамические поверхности самолетов, но вращаются по кругу, а не движутся вперед по прямой линии, как те, что на самолете. Несмотря на это, самолеты создают поток воды точно так же, как и вертолеты - просто мы этого не замечаем. Промывка не так очевидна, но она так же важна, как и с вертолетом.

Этот второй аспект подъема намного легче понять, чем перепады давления, по крайней мере, для физика: согласно третьему закону движения Исаака Ньютона, если воздух придает силу, направленную вверх, самолет должен давать (равный и противоположный) вниз сила в воздух.Таким образом, самолет также создает подъемную силу, используя свои крылья для выталкивания воздуха вниз за собой. Это происходит потому, что крылья не идеально горизонтальны, как вы могли бы предположить, но слегка отклонены назад таким образом, они взлетели в воздух под углом атаки . Наклоненные крылья толкают вниз как ускоренный воздушный поток (сверху над ними), так и более медленный движущийся воздушный поток (снизу над ними), и это вызывает подъем. Поскольку изогнутая верхняя часть аэродинамического профиля отклоняет (отталкивает) больше воздуха, чем прямая нижняя часть (другими словами, намного более резко изменяет траекторию поступающего воздуха), она производит значительно большую подъемную силу.

Как крылья аэродинамического профиля вызывают подъем № 2: изогнутая форма крыла создает область низкого давления над ним (красная), которая создает подъемную силу. Низкое давление заставляет воздух ускоряться над крылом, а изогнутая форма крыла (и более высокое давление воздуха значительно выше потока измененного воздуха) заставляет этот воздух в мощный поток воды, также поднимая самолет вверх. Эта анимация показывает, как различные углы атаки (угол между крылом и входящим воздухом) изменяют область низкого давления над крылом и подъемную силу, которую он делает.Когда крыло плоское, его изогнутая верхняя поверхность создает скромную область низкого давления и небольшую подъемную силу (красная). По мере увеличения угла атаки подъем также резко возрастает - до некоторой точки, когда увеличение сопротивления приводит к срыву плоскости (см. Ниже). Если мы наклоним крыло вниз, мы создадим более низкое давление под ним, и самолет упадет. Основанный на Аэродинамике, общедоступном учебном фильме Военного департамента 1941 года.

Вам может быть интересно, почему воздух вообще падает за крыло.Почему, например, он не попадает в переднюю часть крыла, не изгибается сверху, а затем продолжается горизонтально? Почему есть обратная промывка, а не просто горизонтальная «промывка»? Вспомните наше предыдущее обсуждение давления: крыло понижает давление воздуха непосредственно над ним. Выше, намного выше плоскости, воздух все еще находится под нормальным давлением, которое выше, чем воздух непосредственно над крылом. Таким образом, воздух нормального давления значительно выше крыла выталкивает воздух более низкого давления непосредственно над ним, эффективно «впрыскивая» воздух вниз и позади крыла при обратной промывке.Другими словами, разность давлений, создаваемая крылом, и поток воздуха за ним - это не две отдельные вещи, а все неотъемлемая часть одного и того же эффекта: наклонное крыло аэродинамического профиля создает разницу давлений, которая создает поток вниз, и это приводит к лифт.

Теперь мы можем видеть, что крылья - это устройства, предназначенные для выталкивания воздуха вниз, легко понять, почему самолеты с плоскими или симметричными крыльями (или перевернутые каскадеры) все еще могут безопасно летать. Пока крылья создают нисходящий поток воздуха, самолет будет испытывать равную и противоположную силу - подъемную силу - которая будет удерживать его в воздухе.Другими словами, перевернутый пилот создает определенный угол атаки, который создает достаточно низкое давление над крылом, чтобы держать самолет в воздухе.

Сколько лифта вы можете сделать?

Обычно воздух, проходящий через верх и низ крыла, очень близко повторяет изгиб поверхностей крыла - так же, как вы могли бы следовать ему, если бы вы обводили его контур пером. Но с увеличением угла атаки плавный поток воздуха за крылом начинает разрушаться и становится более турбулентным, что снижает подъемную силу.Под определенным углом (как правило, около 15 °, хотя он и меняется), воздух больше не плавно обтекает крыло. Есть большое увеличение сопротивления, большое снижение подъемной силы, и у самолета, как говорят, есть , остановленный . Это немного запутанный термин, потому что двигатели продолжают работать, а самолет продолжает летать; киоск просто означает потерю подъема.

Фото: как самолет глохнет: Вот аэродинамическое крыло в аэродинамической трубе, обращенное к встречному воздуху под крутым углом атаки.Вы можете видеть линии наполненного дымом воздуха, приближающиеся справа и отклоняющиеся вокруг крыла, когда они движутся влево. Обычно линии воздушного потока очень близко соответствуют форме (профилю) крыла. Здесь из-за крутого угла атаки воздушный поток отделился позади крыла, и турбулентность и сопротивление значительно возросли. Самолет, летящий таким образом, испытал бы внезапную потерю подъемной силы, которую мы называем «сваливание». Фото любезно предоставлено NASA Langley Research Center.

Самолеты могут летать без крыльев в форме крыльев; вы будете знать, что если вы когда-либо делали бумажный самолетик - и это было доказано 17 декабря 1903 года братьями Райт.Из их оригинального патента «Flying Machine» (патент США № 821393) ясно, что слегка наклоненные крылья (которые они называли «самолетами») являются ключевыми частями их изобретения. Их «самолеты» были просто кусочками ткани, натянутой на деревянный каркас; у них не было профиль аэродинамического профиля. Райтс понял, что угол атаки имеет решающее значение: «В летательных аппаратах того типа, к которому относится данное изобретение, аппарат поддерживается в воздухе из-за контакта воздуха с нижней поверхностью одного или нескольких самолетов, контакт -поверхность, представленная под небольшим углом падения к воздуху.«[Акцент добавлен]. Хотя Райтс были блестящими учеными-экспериментаторами, важно помнить, что им не хватало наших современных знаний аэродинамики и полного понимания того, как именно работают крылья.

Неудивительно, что чем больше крылья, тем больше подъемная сила, которую они создают: удвоение площади крыла (это плоская область, которую вы видите сверху вниз) удваивает и подъем, и его сопротивление. Вот почему гигантские самолеты (как C-17 Globemaster в нашем верхнее фото) есть гигантские крылья.Но маленькие крылья могут также сильно поднять, если они движутся достаточно быстро. Для обеспечения дополнительной подъемной силы при взлете самолеты имеют закрылки на крыльях, которые они могут выдвинуть, чтобы толкать больше воздуха вниз. Подъем и сопротивление варьируются в зависимости от квадрата вашей скорости, поэтому, если самолет движется в два раза быстрее, чем встречный воздух, его крылья производят в четыре раз больше подъема (и сопротивления). Вертолеты производят огромную подъемную силу, быстро вращая лопасти винта (по существу тонкие крылья, которые вращаются по кругу).

Крыло вихрей

Теперь самолет не выбрасывает воздух за собой полностью чистым способом. (Например, вы можете себе представить, как кто-то выталкивает большой ящик с воздухом из задней двери военного транспортера, чтобы он упал прямо вниз. Но это не работает так!) Каждое крыло фактически направляет воздух вниз, делая Прямо за ним вращается вихря (разновидность мини-торнадо). Это немного похоже на то, когда вы стоите на платформе на железнодорожной станции, и высокоскоростной поезд несется мимо, не останавливаясь, оставляя после себя ощущение всасывающего вакуума.На плоскости вихрь имеет довольно сложную форму, и большая его часть движется вниз, но не все. В центре движется огромный поток воздуха, но некоторое количество воздуха фактически циркулирует вверх по обе стороны от кончиков крыльев, уменьшая подъемную силу.


Фото: законы Ньютона заставляют летать самолеты: самолет генерирует восходящую силу (подъем), толкая воздух вниз к земле. Как показывают эти фотографии, воздух движется вниз не в аккуратном и чистом потоке, а в вихре. Среди прочего, вихрь влияет на то, насколько близко один самолет может лететь за другим, и это особенно важно вблизи аэропортов, где постоянно движется множество самолетов, создавая сложные турбулентные структуры в воздухе.Слева: цветной дым показывает вихри крыльев, созданные настоящим самолетом. Дым в центре движется вниз, но поднимается за концы крыльев. Справа: как выглядит вихрь снизу. Белый дым показывает тот же эффект в меньшем масштабе в тесте аэродинамической трубы. Обе фотографии любезно предоставлено NASA Langley Research Center.

Как самолеты управляют?

Что такое рулевое управление?

Управлять всем - от скейтборда или велосипеда до автомобиля или гигантский реактивный самолет - означает, что вы меняете направление движения.С научной точки зрения, изменение чего-то направление движения означает, что вы изменяете его скорость на , то есть скорость, которую он имеет в определенном направлении. Четный если он движется с той же скоростью, если вы меняете направление движения, вы меняете скорость. Менять что-то Скорость (включая направление движения) означает, что вы ускоряете ее . Опять же, не имеет значения, останется ли скорость то же самое: смена направления всегда на означает изменение скорости и ускорения.Законы движения Ньютона говорят нам, что Вы можете только ускорить что-то (изменить его скорость или направление движения), используя силу, другими словами, толкать или тянуть это как-то. Короче говоря, если вы хотите управлять чем-то, вам нужно приложить силу к Это.

Фото: управлять самолетом, наклонившись под крутым углом. Фото Бена Блокера любезно предоставлено ВВС США.

Другой способ взглянуть на рулевое управление - думать о нем как о том, чтобы заставить что-то перестать двигаться по прямой и начать движение по кругу.Это означает, что вы должны дать ему то, что называется центростремительная сила. Вещи, которые движутся по кругу (или поворот по кривой, которая является частью круга) всегда что-то действует на них, чтобы дать им центростремительную силу. Если вы управляете автомобилем за поворотом, центростремительная сила возникает из-за трения между четырьмя шинами и дорогой. Если вы ездите на велосипеде по кривой скорости, часть вашей центростремительной силы исходит от шин, а часть от опираясь на поворот. Если вы на скейтборде, вы можете наклонить колоду и наклониться, чтобы ваш вес помог центростремительная сила.В каждом случае вы движетесь по кругу, потому что что-то обеспечивает центростремительную силу, которая тянет вас путь от прямой линии и закруглить в кривой.

Рулевое управление в теории

Если вы находитесь в самолете, вы, очевидно, не соприкасаетесь с землей, откуда же берется центростремительная сила? чтобы помочь вам объехать круг? Точно так же, как велосипедист наклоняется в повороте, самолет «наклоняется» в поворот. Рулевое управление включает в себя и , где самолет наклоняется в одну сторону, а одно крыло опускается ниже другого.Самолет Общий лифт наклонен под углом и, хотя большая часть лифта все еще действует вверх, некоторые теперь действуют вбок. Это боком часть подъема обеспечивает центростремительную силу, которая заставляет самолет вращаться по кругу. Так как есть меньше лифта действуя вверх, есть меньше, чтобы уравновесить вес самолета. Вот почему поворот самолета по кругу сделает он теряет подъемную силу и высоту (высоту), если пилот не делает что-то еще для компенсации, например, используя лифты (поверхности управления полетом в задней части самолета), чтобы увеличить угол атаки и, следовательно, снова поднять подъемную силу.

Рисунок: Когда самолет наклоняется, подъем, созданный его крыльями, наклоняется под углом. Большая часть подъемной силы все еще действует вверх, но некоторые наклоняются в одну сторону, обеспечивая центростремительную силу, которая заставляет самолет поворачиваться по кругу. Чем круче угол крена, тем больше подъемная сила наклонена в сторону, тем меньше направленная вверх сила, чтобы уравновесить вес, и тем больше потеря высоты (если пилот не компенсирует это).

Управление на практике

В кабине есть рулевое управление, но это единственное, что у самолета общего с автомобилем.Как вы управляете чем-то, что летит по воздуху на высокой скорости? Просто! Вы заставляете поток воздуха по-разному проходить мимо крыльев с каждой стороны. Самолеты перемещаются вверх и вниз, управляются из стороны в сторону и останавливаются комплексом Совокупность движущихся закрылков называется управляющими поверхностями на передней и задней кромках крыльев и хвоста. Это так называемые элероны, лифты, рули, спойлеры и воздушные тормоза. Сейчас полет на самолете очень сложен, и я не пишу здесь руководство для пилота: это просто очень базовое введение в науку о силах и движении, поскольку они применимы к самолетам.Для простого обзора всех различных органов управления самолетом и как они работают, взгляните на статью Википедии о поверхностях управления. Базовое введение НАСА в полет имеет хороший рисунок управление кабиной самолета и как вы используете их для управления самолетом. Вы найдете гораздо больше подробностей в официальном FAA Справочник пилота по авиационным знаниям (глава 6 посвящена управлению полетом).

Один из способов понять управляющие поверхности - это построить себе бумажную плоскость и экспериментировать. Первый, создайте себе базовый бумажный самолетик и убедитесь, что он летит по прямой линии.Затем отрежьте или разорвите заднюю часть крыльев, чтобы сделать некоторые элероны. Наклоните их вверх и вниз и посмотрите, какой эффект они в разных позициях. Наклоните один вверх и один вниз и посмотрите, какая разница. Затем попробуйте сделать новый самолет с одним крылом больше другого (или тяжелее, добавив скрепки). Чтобы заставить бумажный самолет управлять рулем, нужно, чтобы одно крыло создавало большую подъемную силу, чем другое - и вы можете делать это разными способами!

Больше деталей самолета

Фото: братья Райт проявили очень научный подход к полету, дотошно проверяя каждую особенность своих самолетов.Здесь они изображены во время одного из их первых полетов на самолете 17 декабря 1903 года. Предоставлено NASA / Интернет-архив.

Вот некоторые другие ключевые части самолетов:

  • Топливные баки : Вам нужно топливо для питания самолета - его много. Airbus A380 вмещает более 310 000 литров (82 000 галлонов) топлива, что примерно в 25 000 раз больше, чем у обычной машины! Топливо безопасно упакованы в огромные крылья самолета.
  • Шасси : Самолеты взлетают и садятся на прочные колеса и шины, которые быстро втягиваются в ходовую часть (самолет днище) с помощью гидравлических цилиндров для уменьшения сопротивления (сопротивления воздуха) при они в небе.
  • Радио и радар : братья Райт должны были Первопроходец самолета Китти Хок целиком на виду. Это не имеет значения потому что он летел около земли, оставался в воздухе всего 12 секунд, и не было другие самолеты, о которых нужно беспокоиться! В эти дни небо упаковано самолеты, которые летают днем, ночью и в любую погоду. Радио, радар и спутниковые системы имеют важное значение для навигации.
  • Кабины под давлением : давление воздуха падает с высотой над поверхностью Земли - именно поэтому альпинисты должны использовать кислород цилиндры для достижения экстремальных высот.Вершина горы Эверест чуть менее 9 км над уровнем моря, но реактивные самолеты обычно летать на больших высотах, чем это, и военные самолеты летали почти в три раза выше! Вот почему пассажирские самолеты имеют герметичные кабины: те, в которые постоянно подается нагретый воздух чтобы люди могли дышать правильно. Военные летчики избегают проблемы путем носить маски для лица и герметичные костюмы.

Благодарности

Я очень благодарен Стиву Носковичу за неоценимую помощь в уточнении и улучшении моего объяснения о том, как крылья производят подъем.

Узнайте больше

На этом сайте

На других сайтах

  • Руководство для начинающих по аэронавтике: отличное введение в науку о полете (особенно для студентов) из Исследовательского центра имени Гленна при НАСА. Рассказывает, как работают самолеты и двигатели, аэродинамические трубы, гиперзвуковые системы, аэродинамика, воздушные змеи и модельные ракеты.
  • Документы Уилбура и Орвиля Райта в Библиотеке Конгресса. Довольно много интересных работ и фотографий Райта доступны в Интернете.
  • Flying Machine: Оригинальный патент братьев Райт (поданный 22 марта 1903 г. и выданный 22 мая 1906 г.) заслуживает прочтения, поскольку он дает представление о полете собственными словами изобретателей. Поскольку в этом патенте описана машина без двигателя, легко понять решающее значение крыльев в «летающей машине» - то, что мы обычно упускаем из виду в эпоху реактивного двигателя!
  • Справочник пилота по авиационным знаниям: Министерство транспорта США / FAA, 2016. К сожалению, даже в этом официальном руководстве приводятся неверные объяснения Бернулли / равных транзитов подъема.

Книги

Для пожилых читателей
Для младших читателей
    Летная школа
  • : Как шаг за шагом летать на самолете Ник Барнард. Темза и Гудон, 2012. Хорошо иллюстрированный обзор из 48 страниц для детей 8–12 лет.
  • Свидетель: Полет Эндрю Наума. Дорлинг Киндерсли, 2011. Визуальное руководство по истории и технологиям самолетов и других летательных аппаратов.
  • Воздушное и космическое путешествие Криса Вудфорда. Факты по делу, 2004 год. Одна из моих собственных книг, эта история об истории полета на воздушных шарах, самолетах и ​​космических ракетах.Подходит для детей от 10 до 10 лет.

Статьи

  • [PDF] Как работают крылья? Профессор Хольгер Бабинский. Physics Education, Volume 38, Number 6, 2003. Более подробное объяснение того, почему традиционное бернуллиевское объяснение подъема неверно, и альтернативное объяснение того, как крылья действительно работают.

Видео

  • Воздушный поток через крыло и Как работают крылья: Эти короткие научные фильмы Хольгера Бабинского показывают движение воздуха через аэродинамическую поверхность (аэродинамический профиль) при изменении угла атаки и доказывают, что классическое простое объяснение Бернулли, основанное на равном времени прохождения, неверно.
  • Как крылья на самом деле работают ?: Краткое описание проекта Bloodhound SSC охватывает ту же тему, что и моя статья, но всего за полторы минуты!
  • Как летают самолеты: длинное (18,5 минуты) видео 1968 года Федерального управления гражданской авиации, в котором объясняются основы полета пилотов.
  • Аэродинамика: в этом старом и неопрятном учебном фильме военного министерства США 1941 года объясняется теория аэродинамических профилей и то, как они производят различную подъемную силу при изменении угла атаки.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2009, 2017. Все права защищены. Полное уведомление об авторских правах и условия использования.

Следуйте за нами

Поделиться этой страницей

Сохраните эту страницу на потом или поделитесь ею с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2017) Самолеты. Получено с https://www.explainthatstuff.com/howplaneswork.html. [Доступ (Введите дату здесь)]

Подробнее на нашем сайте ...

,

Что определяет срок службы самолета? | Нужно знать

Читатель спрашивает: «В двух статьях в выпуске « Air & Space »за за февраль 2007 года был задан вопрос. Одна была о последних летающих примерах ряда классических самолетов (« А потом был один »). Другой рассказывал о более новых реактивных лайнерах, слишком старых, чтобы летать, их рубили для изготовления скейтбордов и банок с безалкогольными напитками («Мы перерабатываем»). Мне показалось странным, что старые самолеты все еще пригодны для полетов, в то время как реактивные лайнеры подходят только для куча лома.Почему некоторые самолеты, по-видимому, продолжают летать вечно, а другие, более новые, уже израсходованы? »

Срок службы самолета измеряется не в годах, а в циклах повышения давления. Каждый раз, когда самолет находится под давлением во время полета, его фюзеляж и крылья находятся в напряженном состоянии. Оба изготовлены из крупных пластинчатых деталей, соединенных крепежом и заклепками, и со временем вокруг отверстий крепежа появляются трещины из-за усталости металла.

«Срок службы воздушных судов устанавливается производителем, - объясняет Джон Петракис из Федерального управления гражданской авиации, - и обычно основан на циклах взлета и посадки. Фюзеляж наиболее подвержен усталости, но крылья тоже, особенно на коротких рейсах, где самолет проходит цикл повышения давления каждый день ". Самолеты, используемые на дальних рейсах, испытывают меньшее количество циклов наддува и могут прослужить более 20 лет. «Есть 747, которым 25 или 30 лет», - говорит Петракис.

Как авиакомпании определяют, развилась ли усталость металла в их пассажирских лайнерах? Боб Истин, специалист FAA по усталости самолетов, говорит: «[Авиакомпании] действительно полагаются на программы технического обслуживания производителя. Производители планируют бесперебойную работу самолета в течение определенного периода времени. Существуют меры по техническому обслуживанию, чтобы исключить любую катастрофу. отказы, но это не значит, что самолет может не испытывать [усталость металла] до тех пор… Когда вы достигаете определенной точки [в течение срока службы самолета], вам необходимо осмотреть или заменить определенные детали."

Проверки неразрушающего контроля (NDE) используются как во время производства (чтобы гарантировать, что компоненты начинаются без дефектов), так и в течение срока службы самолета для обнаружения трещин размером всего 0,04 дюйма. Инспекторы могут, например, внимательно посмотреть на отверстия для крепежа, расположенные на стыке крыла и лонжерона.

Мы связались с экспертами NDE Деборой Хопкинс из Национальной лаборатории им. Лоуренса Беркли и Гийомом Но из Bercli, LLC, которые вместе ответили по электронной почте: «Задача в разработке более простой и менее дорогой стратегии проверки заключается в разработке метода, который можно используется со стороны кожи (крыла), которая не требует снятия крепежа и которая обеспечивает такое же или лучшее разрешение, чем обычный метод снятия крепежа.«Отсутствие необходимости снимать крепеж - большая экономия денег.

Одним из наиболее часто используемых методов NDE является ультразвуковое тестирование с фазированной решеткой, которое анализирует эхо-сигналы от ультразвуковых волн для выявления дефектов внутри материала. Используя несколько ультразвуковых лучей вместо одного, а затем изменяя временные задержки между лучами, инспекторы могут заглядывать внутрь материала в разных местах и ​​на разных глубинах, определяя таким образом размер и форму любых дефектов.

В настоящее время роботизированные системы контроля за миллионы долларов, оборудованные фазированными решетками, используются для проверки крыльев и составных фюзеляжей крупных коммерческих самолетов и реактивных истребителей перед их полетом.«Большинство производителей самолетов и поставщиков услуг - например, Dassault Aviation, Airbus и Boeing - обеспечивают качество своей продукции с помощью крупномасштабных систем неразрушающего контроля», - написал Ной в электронном письме. И хотя миллион долларов может показаться большим, «если смотреть в перспективе, их число не так велико», говорит он. «Если производители обнаруживают проблему после сборки, стоимость демонтажа и повторного использования детали или отходов утилизации намного выше стоимости проверки».

,

Как летают самолеты: тяга и сопротивление - как работают самолеты

Бросьте камень в океан, и он погрузится в бездну. Забрось камень со стороны горы, и он тоже резко упадет. Конечно, стальные корабли могут плавать, и даже очень тяжелые самолеты могут летать, но для достижения полета вы должны использовать четыре основные аэродинамические силы: подъемную силу, вес, тягу и сопротивление. Вы можете думать о них, как о четырех руках, удерживающих самолет в воздухе, каждая из которых движется со своего направления.

Сначала давайте рассмотрим тягу и сопротивление. Тяга , вызванная пропеллером или реактивным двигателем, - это аэродинамическая сила, которая толкает или тянет самолет вперед через пространство. Противодействующая аэродинамическая сила составляет , сопротивление , или трение, которое сопротивляется движению объекта, движущегося через жидкость (или неподвижного в движущейся жидкости, как это происходит, когда вы летите на воздушном змее).

Если вы высунете руку из окна автомобиля во время движения, вы увидите очень простую демонстрацию сопротивления на работе.Уровень сопротивления, который создает ваша рука, зависит от нескольких факторов, таких как размер вашей руки, скорость автомобиля и плотность воздуха. Если бы вы замедлились, вы бы заметили, что сопротивление на вашей руке уменьшится.

Мы видим еще один пример снижения сопротивления, когда наблюдаем за лыжниками на Олимпиаде. Всякий раз, когда они получают шанс, они сжимаются в тесном приседе. Делая себя «меньше», они уменьшают сопротивление, которое они создают, что позволяет им быстрее прыгать вниз по склону.

Пассажирский реактивный самолет всегда убирает свое шасси после взлета по той же причине: чтобы уменьшить сопротивление. Так же, как горнолыжник, пилот хочет сделать самолет как можно меньше. Величина сопротивления, создаваемого шасси реактивного самолета, настолько велика, что на крейсерских скоростях механизм будет разорван прямо с самолета.

Для выполнения полета тяга должна быть равна или превышать сопротивление. Если по какой-либо причине величина сопротивления станет больше тяги, самолет замедлится.Если тяга увеличивается так, что она превышает сопротивление, самолет ускоряется.

На следующей странице мы обсудим вес и подъем.

,

Смотрите также


avtovalik.ru © 2013-2020