Какая мощность двигателя передается приводному агрегату электропривода
На современном автомобиле установлено большое число агрегатов, требующих для приведения в действие затрат механической энергии. Эту энергию они получают в большинстве случаев от электродвигателей. Электродвигатель с механизмом передачи механической энергии и схемой управления электродвигателем образуют систему электропривода автомобиля. Для передачи энергии в автомобильном электроприводе используются зубчатые и червячные передачи, кривошипно-шатунные механизмы. Часто электродвигатель и механизм передачи механической энергий объединяют в моторедуктор или электродвигатель совмещают с исполнительным элементом. Электроприводы автомобиля приводят в действие вентиляторы отопителей и системы охлаждения двигателя, стеклоподъемники, устройства выдвижения антенн, стеклоочистители, насосы омывателей, фароочистители, подогреватели, топливные насосы и т.п. Расмотрим требования предъявляемые к электродвигателям и типы электрических двигателей используемых в системах электропривода агрегатов автомобиля. Электродвигатели приводов агрегатов автомобиляТребования, предъявляемые к электродвигателям, весьма разнообразны. Электродвигатели отопителей и вентиляторов автомобиля имеют продолжительный режим работы и малый пусковой момент; электродвигатели стеклоподъемника обладают большим пусковым моментом, но работают кратковременно; электродвигатели стеклоочистителей воспринимают переменные нагрузки и, следовательно, должны обладать жесткой выходной характеристикой, частота вращения вала не должна существенно меняться при перемене нагрузки; электродвигатели предпусковых подогревателей должны нормально работать при очень низких температурах окружающего воздуха. В приводах агрегатов автомобиля применяют электродвигатели только постоянного тока. Их номинальные мощности должны соответствовать ряду 6, 10, 16, 25, 40, 60, 90, 120, 150, 180, 250, 370 Вт, а номинальные частоты вращения валов ряду 2000, 3000, 4000, 5000, 6000, 8000, 9000 и 10 000 об/мин. Электродвигатели с электромагнитным возбуждением в системе электропривода агрегатов автомобиля имеют последовательное, параллельное или смешанное возбуждение. Реверсивные электродвигатели снабжены двумя обмотками возбуждения. Однако применение электродвигателей с электромагнитным возбуждением в настоящее время сокращается. Более широко распространены электродвигатели с возбуждением от постоянных магнитов. Конструкции электродвигателей чрезвычайно разнообразны.
На рис. 2 показано устройство электродвигателя отопителя. Постоянные магниты 2 закреплены на корпусе 12 электродвигателя пружинами 10. Вал якоря 11 установлен в металлокерамических подшипниках 1 и 5, расположенных в корпусе и в крышке 8. Крышка крепится к корпусу винтами, ввернутыми в пластины 9. Ток к коллектору 6 подводится через щетки 4, помещенные в щеткодержатель 3. Траверса 7 из изоляционного материала, объединяющая все щеткодержатели в общий узел, прикреплена к крышке 8. На электродвигателях мощностью до 100 Вт общим является применение подшипников скольжения с металлокерамическими вкладышами, щеткодержателей коробчатого типа и коллекторов, штампованных из медной ленты с опрессовкой пластмассой. Применяют и коллекторы, изготовленные из трубы, имеющей на внутренней поверхности продольные пазы. Крышки и корпус изготовляют цельнотянутыми из листовой стали. В электродвигателях стеклоомывателей крышки и корпус — пластмассовые. Статор электродвигателей электромагнитного возбуждения набирают из пластин; причем оба полюса и ярмо штампуют как одно целое из листовой стали. Постоянные магниты типов 1 и 2 (см. табл. ниже) устанавливают в магнитопровод, залитый в пластмассовый корпус. Магниты типов 3, 4 и 5 прикрепляют к корпусу плоскими стальными пружинами или приклеивают. Магнит типа 6 устанавливают и приклеивают в магнитопровод, который размещается в крышке электродвигателя. Якорь набирают из пластин электротехнической стали толщиной 1-1,5 мм. Технические данные основных типов электродвигателей с возбуждением от постоянных магнитовтаблица 1. Основные типы электродвигателей в электроприводах отечественных автомобилей.
Технические данные основных типов электродвигателей с электромагнитным возбуждениемтаблица 2. Основные типы электродвигателей в электроприводах отечественных автомобилей.
Электродвигатели мощностью более 100 Вт близки по конструкции к генераторам постоянного тока. Они имеют корпус, изготовленный из полосовой малоуглеродистой стали или из трубы, на котором винтами закреплены полюса с обмоткой возбуждения. Крышки стянуты между собой болтами. В крышках расположены шариковые подшипники. Реактивные щеткодержатели обеспечивают стабильную работу щеток на коллекторе. Двухскоростные двигатели с электромагнитным возбуждением имеют выводы каждой катушки возбуждения, электродвигатели с постоянными магнитами оборудованы третьей дополнительной щеткой, при подаче питания на которую частота вращения вала увеличивается. Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов представлены в табл. 1, а с электромагнитным возбуждением в табл. 2. |
Что такое электропривод? - Определение, детали, преимущества, недостатки и применение
Определение : Система, которая используется для управления движением электрической машины, такая система называется электрическим приводом. Другими словами, привод, в котором используется электродвигатель, называется электроприводом. В качестве основного источника энергии в электроприводе используются любые первичные двигатели, такие как дизельный или бензиновый двигатель, газовые или паровые турбины, паровые двигатели, гидромоторы и электродвигатели.Этот первичный двигатель обеспечивает механическую энергию для привода для управления движением.
Блок-схема электропривода показана на рисунке ниже. Электрическая нагрузка, такая как вентиляторы, насосы, поезда и т. Д., Состоит из электродвигателя. Требование электрической нагрузки определяется относительно скорости и крутящего момента. Двигатель, который соответствовал возможностям нагрузки, выбирается для привода нагрузки.
Части электропривода
Основными частями электроприводов являются силовой модулятор, двигатель, блок управления и сенсорные блоки.Их части подробно описаны ниже.
Power Modulator - Модулятор мощности регулирует выходную мощность источника. Он управляет мощностью от источника к двигателю таким образом, что двигатель передает характеристику скорости-крутящего момента, требуемую нагрузкой. Во время переходных процессов, таких как запуск, торможение и изменение скорости вращения чрезмерного тока, поступающего от источника. Этот чрезмерный ток, потребляемый от источника, может перегрузить его или может вызвать падение напряжения.Следовательно, модулятор мощности ограничивает источник и ток двигателя.
Модулятор мощности преобразует энергию в соответствии с требованиями двигателя, например, если источником является постоянный ток и используется асинхронный двигатель, то силовой модулятор преобразует постоянный ток в переменный. Также выбирается режим работы двигателя, то есть двигатель или торможение.
Блок управления - Блок управления управляет модулятором мощности, который работает при небольших уровнях напряжения и мощности. Блок управления также управляет силовым модулятором по желанию.Он также генерирует команды для защиты силового модулятора и двигателя. Сигнал команды ввода, который регулирует рабочую точку привода от входа к блоку управления.
Сенсорный блок - Он определяет определенные параметры привода, такие как ток и скорость двигателя. Это в основном требуется либо для защиты, либо для работы в замкнутом контуре.
Преимущества электропривода
Ниже приведены преимущества электрического привода.
- Электропривод имеет очень большой диапазон крутящего момента, скорости и мощности.
- Их работа не зависит от условий окружающей среды.
- Электроприводы свободны от загрязнения.
- Электроприводы работают на всех квадрантах скоростного крутящего момента плоскости.
- Привод легко запускается и не требует дозаправки.
- Эффективность приводов высока, потому что на них меньше потерь.
Электроприводы имеют много преимуществ, показанных выше. Единственный недостаток привода состоит в том, что иногда механическая энергия, производимая первичным двигателем, сначала преобразуется в электрическую энергию, а затем в механическую работу с помощью двигателя.Это может быть сделано с помощью электрической связи, которая связана с первичным двигателем и нагрузкой.
Из-за следующих преимуществ механическая энергия, уже доступная от неэлектрического первичного двигателя, иногда сначала преобразуется в электрическую энергию генератором и обратно в механическую энергию электрического двигателя. Таким образом, электрическая связь обеспечивает между неэлектрическим первичным двигателем и воздействием нагрузки гибкую характеристику управления приводом.
Например, - Тепловоз производит дизельное топливо с помощью дизельного двигателя.Механическая энергия преобразуется в электрическую энергию с помощью генератора. Эта электрическая энергия используется для управления другим локомотивом.
Недостатки электропривода
Сбой питания полностью отключил всю систему.
- Применение привода ограничено, поскольку его нельзя использовать в местах, где нет источника питания.
- Это может вызвать шумовое загрязнение.
- Первоначальная стоимость системы высока.
- имеет плохой динамический отклик.
- Выходная мощность, полученная от привода, низкая.
- При поломке проводников или коротком замыкании система может быть повреждена из-за нескольких проблем.
Применение электропривода
Используется в большом количестве промышленных и бытовых приложений, таких как транспортные системы, прокатные станы, бумагоделательные машины, текстильные фабрики, станки, вентиляторы, насосы, роботы, стиральные машины и т. Д.
,Starter (двигатель) - Википедия
Автомобильный стартер (больший цилиндр). Меньший объект сверху - это соленоид стартера, который управляет питанием стартера.Стартер (также , самозапуск , , коленчатый двигатель или , стартер ) - это устройство, используемое для вращения (проворачивания) двигателя внутреннего сгорания, чтобы инициировать работу двигателя от его собственной мощности. Стартеры могут быть электрическими, пневматическими или гидравлическими. В случае очень больших двигателей стартером может быть даже другой двигатель внутреннего сгорания.
Двигатели внутреннего сгорания - это системы обратной связи, которые после запуска полагаются на инерцию каждого цикла для запуска следующего цикла. В четырехтактном двигателе третий такт высвобождает энергию из топлива, приводя в действие четвертый (выпускной) такт, а также первые два такта (впуск, сжатие) следующего цикла, а также приводя в действие внешнюю нагрузку двигателя. Чтобы начать первый цикл в начале любого конкретного сеанса, первые два такта должны быть приведены в действие другим способом, чем от самого двигателя.Для этого используется стартер, и он не требуется, когда двигатель начинает работать, а его цепь обратной связи становится самоподдерживающейся.
Электростартер эпохи 1920-х годов для двигателя дирижабля Типичный электрический стартер, установленный снизу и сзади двигателяДо появления стартера двигатели запускались различными способами, включая заводные пружины, цилиндры пороха, а также технику, приводимую в действие человеком, такую как съемная рукоятка кривошипа, которая зацепляла переднюю часть коленчатого вала, натягивая пропеллер самолета или тянуть шнур, который был намотан вокруг шкива с открытым лицом.
Для запуска двигателей обычно использовался метод ручного запуска, но он был неудобным, сложным и опасным. Поведение двигателя во время запуска не всегда предсказуемо. Двигатель может откинуться назад, вызывая внезапное обратное вращение Многие ручные пускатели включали однонаправленное скольжение или разблокировку, чтобы после начала вращения двигателя стартер отключался от двигателя. В случае отдачи обратное вращение двигателя может внезапно зацепить стартер, что приведет к неожиданному и резкому рывку кривошипа, что может привести к травме оператора.Для пускателей с намоткой шнура отдача может потянуть оператора к двигателю или машине или повернуть шнур стартера и с большой скоростью перемещать его вокруг шкива стартера. Даже при том, что у кривошипов был механизм выбега, когда двигатель запускался, кривошип мог начать вращаться вместе с коленвалом и потенциально ударить человека, проворачивающего двигатель. Кроме того, необходимо было позаботиться о том, чтобы задержать искру, чтобы предотвратить обратную реакцию; с расширенной установкой искры двигатель может отбросить (запустить в обратном направлении), потянув за себя кривошип, потому что механизм защиты от выбега работает только в одном направлении.
Несмотря на то, что пользователям было рекомендовано сложить пальцы и большой палец под рукояткой и потянуть вверх, для операторов было естественным захватывать рукоятку пальцами с одной стороны, а большой палец - с другой. Даже простой ответный удар может привести к поломке большого пальца; можно было получить перелом запястья, вывих плеча или еще хуже. Более того, все более крупные двигатели с более высокими степенями сжатия сделали ручной запуск двигателя более требовательным физически.
Первый электрический стартер был установлен на Арнольде, приспособлении Benz Velo, построенном в 1896 году в Восточном Пекхэме, Англия, инженером-электриком Х.J. Dowsing. [1]
В 1903 году Клайд Дж. Коулман изобрел и запатентовал первый в Америке электрический стартер США. Патент США 0,745,157. [2]
В 1911 году Чарльз Ф. Кеттеринг совместно с Генри М. Леландом из компании Дейтон Инжиниринг Лабораториз (DELCO) изобрел и подал патент США 1 150 523 на электрический стартер в Америке. (Кеттеринг заменил ручную рукоятку на кассовых аппаратах NCR электродвигателем пять лет назад.)
Один аспект изобретения заключается в осознании того, что относительно небольшой двигатель, приводимый в действие с более высоким напряжением и током, чем это было бы возможно для непрерывной работы, мог бы обеспечивать достаточную мощность для запуска двигателя для запуска.При требуемом уровне напряжения и тока такой двигатель может сгореть за несколько минут непрерывной работы, но не за несколько секунд, необходимых для запуска двигателя. Стартеры были впервые установлены Cadillac на серийные модели в 1912 году, и в том же году Ланчестер применил ту же систему. [3] Эти стартеры также работали как генераторы, когда двигатель работал, концепция, которая сейчас возрождается в гибридных транспортных средствах.
Хотя электродвигатель стартера должен был доминировать на автомобильном рынке, в 1912 году было несколько конкурирующих типов стартера, [3] с Adams, S.КОШКА. и автомобили Wolseley, имеющие прямые воздушные пускатели, и Sunbeam, представляющие воздушный пусковой двигатель с подходом, подобным тому, который используется для электрических стартеров Delco и Scott-Crossley (то есть с зубчатым кольцом на маховике). Автомобили Star и Adler имели пружинные двигатели (иногда называемые часовыми двигателями), которые использовали энергию, запасенную в пружине, проходящей через редуктор. Если автомобиль не запустился, ручку стартера можно использовать для перемотки пружины для дальнейшей попытки.
Одним из нововведений в первом автомобиле Dodge, моделью 30/35, представленной в 1914 году, был электрический стартер и электрическое освещение с 12-вольтовой системой (против шести вольт, которые были обычными в то время) в качестве стандарта. подгонка на том что был относительно недорогой автомобиль. Dodge использовал комбинированный стартер-генераторный блок с динамо постоянного тока, постоянно связанным шестернями с коленчатым валом двигателя. Система электрических реле позволяла приводить его в действие как двигатель, чтобы вращать двигатель для запуска, и после отпускания кнопки стартера управляющее распределительное устройство возвращало устройство в работу в качестве генератора.Поскольку стартер-генератор был напрямую соединен с двигателем, ему не требовался метод включения и выключения привода двигателя. Таким образом, он подвергся незначительному механическому износу и практически не работал. Стартер-генератор оставался особенностью автомобилей Dodge до 1929 года. Недостатком конструкции было то, что, будучи устройством двойного назначения, устройство было ограничено как по мощности двигателя, так и по мощности генератора, что стало проблемой. так как размер двигателя и электрические требования к автомобилям увеличились.Для управления переключением между режимами двигателя и генератора требуется специальное и относительно сложное распределительное устройство, которое более подвержено отказу, чем сверхпрочные контакты специального стартера. Несмотря на то, что к 30-м годам стартер-генератор потерял популярность для автомобилей, эта концепция все еще была полезна для небольших транспортных средств и была принята немецкой фирмой SIBA Elektrik, которая создала аналогичную систему, предназначенную главным образом для использования на мотоциклах, скутерах, экономичных автомобилях (особенно это будут двухтактные двигатели малой мощности]] и морские двигатели.Они продавались под названием «Династарт». Поскольку у мотоциклов обычно были небольшие двигатели и ограниченное электрооборудование, а также ограниченное пространство и вес, Dynastart был полезной функцией. Обмотки для стартера-генератора обычно включались в маховик двигателя, поэтому вообще не требуется отдельного блока.
Ford T модели полагались на ручные рукоятки до 1919 года; в течение 1920-х годов электрические стартеры стали почти универсальными на большинстве новых автомобилей, что облегчает вождение для женщин и пожилых людей.В 1960-е годы все еще было обычным делом поставлять автомобили с ручками стартера, и это продолжалось гораздо позже для некоторых марок (например, Citroën 2CV до конца производства в 1990 году). Во многих случаях кривошипы использовались для установки времени, а не для запуска двигателя, поскольку растущие смещения и степени сжатия делали это непрактичным. Автомобили коммунистического блока, такие как «Ладас», часто еще начинали заводиться, начиная с 1980-х годов.
Для первых примеров производства немецких турбореактивных двигателей во второй мировой войне Норберт Ридель разработал небольшой двухтактный бензиновый двигатель с оппозитным сдвоенным двигателем для запуска авиационных газовых турбин Junkers Jumo 004 и BMW 003 в качестве вспомогательной энергии. устройство для вращения центрального шпинделя каждой конструкции двигателя - они обычно устанавливались в самом передней части турбореактивного двигателя и сами запускались с помощью тросовой тяги для запуска их во время процедуры запуска реактивных двигателей, на которые они были установлены.
До изобретения компанией Chrysler 1949 года комбинированного переключателя зажигания и стартера с ключом, [4] стартером часто управлял водитель, нажимая кнопку, установленную на полу или приборной панели. У некоторых автомобилей в полу была педаль, которая вручную приводила в движение ведущую шестерню стартера с помощью зубчатого венца маховика, а затем замыкала электрическую цепь к стартеру, как только педаль достигла конца своего хода. Тракторы Ferguson 1940-х годов, в том числе Ferguson TE20, имели дополнительное положение на рычаге переключения передач, который включал переключатель стартера, обеспечивая безопасность, предотвращая запуск тракторов на передаче. [5]
Электрический стартер , или , коленчатый двигатель - наиболее распространенный тип, используемый на бензиновых двигателях и небольших дизельных двигателях. Современный пусковой двигатель представляет собой электродвигатель постоянного тока с постоянным магнитом или последовательно-параллельный намоткой с установленным на нем соленоидом стартера (аналог реле). Когда на соленоид подается питание постоянного тока от стартовой батареи, обычно через управляемый ключом («выключатель зажигания»), соленоид включает рычаг, который выталкивает ведущую шестерню на карданный вал стартера и сцепляет шестерню со стартером зубчатый венец на маховике двигателя.
Соленоид также замыкает сильноточные контакты для стартера, который начинает вращаться. Как только двигатель запускается, управляемый ключом выключатель размыкается, пружина в узле соленоида отводит ведущую шестерню от кольцевой шестерни, и стартер останавливается. Шестерня стартера сцеплена с ведущим валом через обгонную муфту, что позволяет шестерне передавать передачу только в одном направлении. Таким образом, привод передается через шестерню на зубчатый венец маховика, но если шестерня остается включенной (например, из-за того, что оператор не отпускает ключ, как только запускается двигатель, или если имеется короткое замыкание и соленоид). остается включенным), шестерня будет вращаться независимо от своего приводного вала.Это предотвращает движение двигателя стартером, так как при таком обратном движении стартер будет вращаться так быстро, что разлетится на части.
Компоновка муфты сцепления исключает использование стартера в качестве генератора, если используется в гибридной схеме, упомянутой выше, если только не были внесены изменения. Стандартный стартер обычно предназначен для периодического использования, что исключает его использование в качестве генератора. Электрические компоненты стартера рассчитаны на работу в течение, как правило, менее 30 секунд перед перегревом (из-за слишком медленного отвода тепла от омических потерь), чтобы сэкономить вес и стоимость.В большинстве инструкций для владельцев автомобилей оператор должен делать паузу не менее десяти секунд после каждых десяти или пятнадцати секунд запуска двигателя, при попытке запустить двигатель, который запускается не сразу.
Эта шестерня с обгонной муфтой была введена в эксплуатацию в начале 1960-х годов; до этого времени использовался привод Bendix. Система Bendix размещает ведущую шестерню стартера на валу с винтовой нарезкой. Когда стартер начинает вращаться, инерция узла ведущей шестерни заставляет его двигаться вперед по спирали и таким образом зацепляться с зубчатым венцом.Когда двигатель запускается, обратный ход от зубчатого колеса приводит к тому, что ведущая шестерня превышает вращательную скорость стартера, и в этот момент ведущая шестерня выталкивается обратно вниз по спиральному валу и, таким образом, выходит из зацепления с зубчатым колесом. [6] Недостатком является то, что шестерни отключаются, если двигатель кратковременно запускается, но не продолжает работать.
Folo-Thru driveEdit
Промежуточное развитие между приводом Bendix, разработанным в 1930-х годах, и конструкциями с обгонной муфтой, представленными в 1960-х годах, был привод Bendix Folo-Thru.Стандартный привод Bendix отключается от зубчатого колеса, как только двигатель запускается, даже если он не продолжает работать. Привод Folo-Thru содержит защелкивающийся механизм и набор грузиков в корпусе приводного устройства. Когда стартер начинает вращаться, и приводной блок по инерции движется вперед по винтовому валу, он фиксируется в положении зацепления. Только после того, как приводной узел вращается со скоростью, превышающей скорость, достигаемую самим стартерным двигателем (т.е. он приводится в движение задним ходом от работающего двигателя), маховики вытягиваются в радиальном направлении наружу, освобождая защелку и позволяя вращающемуся приводному узлу, вращающемуся с перегрузкой, вращаться помолвки.Таким образом, предотвращается нежелательное отключение стартера до успешного запуска двигателя.
Редуктор редуктора
В 1962 году Крайслер представил стартер, включающий зубчатое соединение между двигателем и приводным валом. Вал двигателя содержал неразрезные зубья зубчатого колеса, образуя шестерню, которая входит в зацепление с соседней ведомой шестерней большего размера, чтобы обеспечить передаточное число 3,75: 1. Это позволило использовать более высокоскоростной, слаботочный, более легкий и более компактный узел двигателя при одновременном увеличении крутящего момента. [7] Варианты этой конструкции стартера использовались на большинстве заднеприводных и полноприводных транспортных средств, выпускаемых корпорацией Chrysler с 1962 по 1987 годы. При запуске двигателя двигатель издает уникальный, отчетливый звук, из-за чего его прозвали «Колибри Хайленд Парк» - ссылка на штаб-квартиру Крайслер в Хайленд Парк, штат Мичиган. [8]
Пусковой редуктор Chrysler послужил концептуальной основой для пусковых редукторов, которые в настоящее время преобладают в транспортных средствах на дороге.Многие японские автопроизводители начали использовать редукторы в 1970-х и 1980-х годах. [ цитирование необходимо ] Легкие авиационные двигатели также широко использовали этот вид стартера, потому что его легкий вес давал преимущество.
В тех пускателях, в которых не используются офсетные зубчатые передачи, такие как Chrysler, обычно вместо этого используются планетарные эпициклические зубчатые передачи. Пускатели с прямым приводом практически полностью устарели из-за их больших размеров, более тяжелого веса и более высоких требований к току. [ цитирование необходимо ]
Подвижная опора для обувиEdit
Ford выпустил нестандартный стартер, конструкцию «башмак с подвижным шестом» с прямым приводом, которая обеспечила снижение затрат, а не электрических или механических преимуществ. Этот тип стартера исключил соленоид, заменив его подвижным полюсным башмаком и отдельным реле стартера. Этот стартер работает следующим образом: водитель поворачивает ключ, активируя переключатель стартера. Небольшой электрический ток протекает через электромагнитное реле стартера, замыкая контакты и передавая большой ток батареи на стартер.Одна из полюсных колодок, шарнирная в передней части, соединенная с приводом стартера и подпружиненная от обычного рабочего положения, поворачивается в положение магнитным полем, создаваемым электричеством, протекающим через его полевую катушку. Это перемещает привод стартера вперед для включения зубчатого венца маховика и одновременно замыкает пару контактов, подающих ток на остальную часть обмотки стартера. Как только двигатель запускается и водитель отпускает выключатель стартера, пружина втягивает полюсный башмак, который вытягивает привод стартера из зацепления с зубчатым колесом.
Этот стартер использовался на автомобилях Ford с 1973 по 1990 год, когда его заменил редуктор, концептуально похожий на Chrysler.
Инерционный стартерEdit
Вариантом электродвигателя стартера является инерционный стартер (не путать с описанным выше стартером типа Bendix). Здесь стартер не вращает двигатель напрямую. Вместо этого, когда двигатель находится под напряжением, он вращает тяжелый маховик, встроенный в его корпус (а не основной маховик двигателя).Как только маховик / моторный блок достигнет постоянной скорости, ток к двигателю отключается, и привод между двигателем и маховиком отключается механизмом свободного хода. Вращающийся маховик затем соединяется с главным двигателем, и его инерция переворачивает его, чтобы запустить его. Эти этапы обычно автоматизируются с помощью электромагнитных переключателей, при этом оператор машины использует двухпозиционный переключатель управления, который удерживается в одном положении для вращения двигателя, а затем перемещается в другое, чтобы отключить ток от двигателя и включить маховик на двигатель.
Преимущество инерционного стартера состоит в том, что, поскольку двигатель не управляет двигателем напрямую, он может иметь значительно меньшую мощность, чем стандартный стартер для двигателя такого же размера. Это позволяет использовать двигатель гораздо меньшего веса и меньшего размера, а также более легкие кабели и аккумуляторы меньшего размера для питания двигателя. Это сделало инерционный стартер распространенным выбором для самолетов с большими радиально-поршневыми двигателями. Недостатком является увеличение времени, необходимого для запуска двигателя - вращение маховика до необходимой скорости может занять от 10 до 20 секунд.Если двигатель не запускается к тому времени, когда маховик потерял свою инерцию, то процесс должен быть повторен для следующей попытки.
PneumaticEdit
В некоторых газотурбинных двигателях и дизельных двигателях, особенно на грузовых автомобилях, используется пневматический самозапуск. В наземных транспортных средств система состоит из редукторного турбины, воздушный компрессор и резервуар высокого давления. Сжатый воздух, выпущенный из бака, используется для вращения турбины и через набор редукторов приводит в зацепление зубчатый венец на маховике, как электрический стартер.Двигатель, когда он работает, приводит в действие компрессор, чтобы перезарядить бак.
Самолеты с большими газотурбинными двигателями обычно запускаются с использованием большого объема сжатого воздуха низкого давления, подаваемого от очень маленького двигателя, называемого вспомогательной силовой установкой, расположенной в другом месте самолета. Альтернативно, авиационные газотурбинные двигатели могут быть быстро запущены с использованием мобильного наземного пневматического пускового двигателя, называемого стартовой тележкой , или воздушной стартовой тележкой .
На более крупных дизельных генераторах, установленных в крупных береговых установках и особенно на судах, используется пневматический пусковой механизм. Воздушный двигатель обычно приводится в действие сжатым воздухом при давлении 10–30 бар. Пневматический двигатель состоит из центрального барабана размером с банку для супа с прорезанными в нем четырьмя или более прорезями, позволяющими размещать лопасти радиально на барабане, образуя камеры вокруг барабана. Барабан смещен внутри круглого корпуса, так что входящий воздух для пуска поступает в область, где барабан и лопасти образуют небольшую камеру по сравнению с другими.Сжатый воздух может расширяться только при вращении барабана, что позволяет маленькой камере увеличиваться в размерах и помещает еще одну камеру в отверстие для впуска воздуха. Пневматический двигатель вращается слишком быстро, чтобы его можно было использовать непосредственно на маховике двигателя; вместо этого используется большая передача, например, планетарная передача, чтобы снизить выходную скорость. Механизм Bendix используется для зацепления маховика.
Осторожно, громкий звук. Пара воздушных пусковых двигателей на дизельном резервном генераторе мощностью 3300 кВт.Поскольку в больших грузовиках обычно используются пневматические тормоза, система выполняет двойную функцию, подавая сжатый воздух в тормозную систему.Пневматические пускатели обладают такими преимуществами, как высокий крутящий момент, механическая простота и надежность. Они устраняют необходимость в сверхмощных, [ количественно ] тяжелых аккумуляторных батареях в электрических системах с первичными двигателями.
Большие дизельные генераторы и почти все дизельные двигатели, используемые в качестве основных двигателей судов, используют сжатый воздух, воздействующий непосредственно на головку цилиндров. Это не идеально для небольших дизелей, так как обеспечивает слишком большое охлаждение при запуске. Кроме того, на головке цилиндров должно быть достаточно места для поддержки дополнительного клапана для системы воздушного запуска.Система воздушного запуска концептуально очень похожа на распределитель в автомобиле. Распределитель воздуха предназначен для распределительного вала дизельного двигателя; на верхней части воздухораспределителя находится один лепесток, похожий на то, что находится на распределительном валу. Радиально вокруг этого лепестка расположены следы роликовых наконечников для каждого цилиндра. Когда лепесток распределителя воздуха ударяет по одному из последователей, он посылает воздушный сигнал, который воздействует на заднюю часть воздушного пускового клапана, расположенного в головке цилиндра, вызывая его открытие.Сжатый воздух подается из большого резервуара, который подается в коллектор, расположенный вдоль двигателя. Как только клапан запуска воздуха открывается, сжатый воздух поступает, и двигатель начинает вращаться. Может использоваться на двухтактных и четырехтактных двигателях и реверсивных двигателях. На больших двухтактных двигателях для запуска требуется менее одного оборота коленчатого вала.
HydraulicEdit
Некоторые дизельные двигатели от шести до 16 цилиндров запускаются с помощью гидравлического двигателя.Гидравлические пускатели и связанные с ними системы обеспечивают беспроблемный, надежный метод запуска двигателя в широком диапазоне температур. [9] Обычно гидравлические пускатели используются в таких областях, как дистанционные генераторы, двигатели спасательных шлюпок, морские пожарные насосы и установки гидроразрыва пласта. Система, используемая для поддержки гидравлического стартера, включает клапаны, насосы, фильтры, резервуар и поршневые аккумуляторы. Оператор может вручную зарядить гидравлическую систему; это невозможно сделать с помощью электрических пусковых систем, поэтому гидравлические пусковые системы предпочтительнее в тех случаях, когда требуется аварийный пуск.
В различных конфигурациях гидравлические пускатели могут быть установлены на любой двигатель. Гидравлические пускатели используют высокую эффективность концепции аксиально-поршневого двигателя, которая обеспечивает высокий крутящий момент при любой температуре и окружающей среде и гарантирует минимальный износ зубчатого венца и шестерни двигателя. [10]
Non-motorEdit
Пружинный стартерEdit
Пусковое устройство использует потенциальную энергию, запасенную в пружине, заведенной рукояткой, для запуска двигателя без аккумулятора или генератора переменного тока.Вращение рукоятки приводит к смещению шестерни в зацепление с зубчатым венцом двигателя, а затем заводная пружина. Затем, потянув за рычаг освобождения, натяните пружину на шестерню, повернув зубчатое колесо, чтобы запустить двигатель. Шестерня автоматически отключается от маховика после работы. Предусмотрено также, чтобы двигатель мог медленно переворачиваться вручную для технического обслуживания двигателя. Это достигается с помощью рычага отключения сразу после зацепления шестерни с маховиком. Последующее вращение рукоятки обмотки во время этой операции не будет загружать стартер.Пружинные пускатели можно найти в двигателях-генераторах, гидравлических силовых агрегатах и в двигателях спасательных шлюпок, причем наиболее распространенным применением является резервная система запуска на морских судах.
Топливо пусковое Edit
Некоторые современные бензиновые двигатели с двенадцатью или более цилиндрами всегда имеют по крайней мере один или несколько поршней в начале рабочего хода и могут запускаться, впрыскивая топливо в этот цилиндр и зажигая его. Если двигатель остановлен в правильном положении, процедура может быть применена к двигателям с меньшим количеством цилиндров.Это один из способов запуска двигателя автомобиля с системой остановки и запуска. [11]
ReferencesEdit
Внешние ссылки Редактировать
Патенты Редактировать
,Передача энергии - Википедия
Передача энергии - это движение энергии от места ее генерации к месту, где она применяется для выполнения полезной работы.
Мощность определяется формально как единицы энергии за единицу времени. В единицах СИ:
- ватт = джоулесекунда = ньютон × метрсекунда {\ displaystyle {\ text {watt}} = {\ frac {\ text {joule}} {\ text {second}}} = {\ frac {{\ text {newton}} \ times {\ text {meter}}} {\ text {second}}}}
С тех пор, как разработка технологий, системы передачи и хранения стали представлять огромный интерес для технологов и пользователей технологий.
Электроэнергия [править]
Передача электроэнергии по воздушной линии.С широко распространенным созданием электрических сетей передача энергии обычно больше всего связана с передачей электроэнергии. Переменный ток обычно предпочтителен, так как его напряжение может быть легко увеличено трансформатором, чтобы минимизировать резистивные потери в проводниках, используемых для передачи энергии на большие расстояния; другой набор трансформаторов требуется, чтобы понизить его до более безопасных или более полезных уровней напряжения в месте назначения.
Передача электроэнергии с подземным кабелем. Здесь (1) - проводник для больших токов и (3) изоляция для высоких напряжений.Передача энергии обычно выполняется по воздушным линиям, так как это наиболее экономичный способ сделать это. Подземная передача по высоковольтным кабелям выбирается в многолюдных городских районах и в подводных соединениях высокого напряжения постоянного тока (HVDC).
Мощность может также передаваться путем изменения электромагнитных полей или радиоволн; СВЧ-энергия может эффективно переноситься на короткие расстояния волноводом или в свободном пространстве посредством беспроводной передачи энергии.
Механическая сила [править]
Механическая передача мощностиПередача электроэнергии заменила механическую передачу на всех расстояниях, кроме самых коротких.
С 16-го века через промышленную революцию до конца 19-го века передача механической энергии была нормой. Самая старая технология передачи электроэнергии на большие расстояния предусматривала системы толкателей или линий толкателя ( stängenkunst или feldstängen ), соединяющих водяные колеса с удаленными шахтными дренажными и рассольными насосами. [1] В Бад-Кёзене существует сохранившийся пример 1780 года, который передает мощность примерно в 200 метрах от водяного колеса в соляную скважину, а оттуда еще 150 метров - в испаритель рассола. [2] Эта технология дожила до 21-го века на нескольких нефтяных месторождениях в США, передавая мощность от центрального насоса на многочисленные насосные домкраты на нефтяном месторождении. [3]
Механическая мощность может передаваться напрямую с использованием твердой конструкции, такой как карданный вал; передаточные механизмы могут регулировать величину крутящего момента или силы по сравнению сСкорость почти так же, как электрический трансформатор регулирует напряжение против тока. Заводы были оснащены воздушными валами, обеспечивающими вращающуюся мощность. Агрикола описала системы коротких линейных валов, соединяющих водяное колесо с многочисленными машинами для обработки руды. [4] В то время как машины, описанные Агриколой, использовали зубчатые соединения от валов к машинам, к 19 веку приводные ремни стали нормой для соединения отдельных машин с линейными валами. Одна фабрика середины 19-го века имела 1948 футов линейного вала с 541 шкивом. [5]
Гидравлические системы используют жидкость под давлением для передачи энергии; Каналы и гидроэлектростанции используют природную воду для подъема судов или выработки электроэнергии. Перекачивание воды или выталкивание массы в гору (ветряные насосы) является одним из возможных способов накопления энергии. У Лондона была гидравлическая сеть, питаемая пятью насосными станциями, эксплуатируемыми Лондонской гидравлической энергетической компанией, с общей мощностью 5 МВт.
Пневматические системы используют газы под давлением для передачи энергии; Сжатый воздух обычно используется для работы пневматического инструмента на фабриках и ремонта гаражей.Пневматический ключ (например) используется для снятия и установки автомобильных шин гораздо быстрее, чем это можно сделать с помощью стандартных ручных инструментов. Сторонники постоянного тока Эдисона предложили пневматическую систему в качестве основы энергосистемы. Сжатый воздух, генерируемый на Ниагарском водопаде, будет приводить в движение генераторы постоянного тока. Война токов закончилась переменным током (AC) как единственным средством передачи энергии на большие расстояния.
Тепловая мощность [править]
Тепловая энергия может транспортироваться в трубопроводах, содержащих жидкость с высокой теплоемкостью, таких как масло или вода, которые используются в системах централизованного теплоснабжения, или посредством физической транспортировки материальных предметов, таких как вагоны-бутылки, или в торговле льдом. Журнал «Наука, искусство, производство, сельское хозяйство, торговля и коммерция», вып. 2, 1856, стр. 164. ,