Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Какое давление наддува турбины дизельного двигателя


О турбонаддуве

Нагнетание воздуха при помощи турбокомпрессора

Мощность, которую может развивать двигатель внутреннего сгорания, зависит от количества воздуха и топлива, которые поступают в двигатель. Таким образом, добиться повышения мощности можно, увеличив количество этих компонентов. Увеличение количества топлива совершенно бессмысленно, если одновременно не увеличивается количество воздуха для его сгорания. Поэтому одним из решений проблемы повышения мощности двигателя является увеличение количества воздуха, поступающего в цилиндры; при этом можно сжечь больше топлива и получить, соответственно, большую энергию. Это подразумевает, что необходимый для сгорания топлива воздух должен быть сжат перед подачей в цилиндры. 

Увеличение мощности атмосферного двигателя может быть достигнуто путём увеличения либо его рабочего объёма, либо оборотов. Увеличение рабочего объёма сразу же увеличивает вес, размеры двигателя и, в конечном итоге, его стоимость. Увеличение оборотов проблематично из-за возникающих при этом технических проблем, особенно в случае двигателя со значительным рабочим объёмом. Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора). Это означает, что подающийся в двигатель воздух сжимается перед его впуском в камеру сгорания. 

Турбокомпрессор был впервые сконструирован швейцарским инженером Бюши ещё в 1905 году, но только много лет спустя он был доработан и использован на серийных двигателях с большим рабочим объёмом. В принципе, любой турбокомпрессор состоит из центробежного воздушного насоса и турбины, связанных при помощи общей жесткой оси между собой. Оба этих элемента вращаются в одном направлении и с одинаковой скоростью. Энергия потока отработавших газов, которая в обычных двигателях не используется, преобразуется здесь в крутящий момент, приводящий в действие компрессор. Происходит это так: выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление, они разгоняются до большой скорости и вступают в контакт с лопатками турбины, которая и преобразует их кинетическую энергию в механическую энергию вращения (крутящий момент).


 

Это преобразование энергии сопровождается снижением температуры газов и их давления. Компрессор засасывает воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать большую мощность. Кроме того, улучшается процесс сгорания, что позволяет увеличить характеристики двигателя в широком диапазоне оборотов.

Между двигателем и турбокомпрессором существует связь только через поток отработавших газов. Частота вращения турбокомпрессора напрямую не зависит от числа оборотов двигателя и характеризуется некоторой инерционностью, т.е. сначала увеличивается подача топлива и энергия потока отработавших газов, а затем уже увеличиваются обороты турбины и давление нагнетания, и в цилиндры двигателя поступает ещё больше воздуха, что даёт возможность увеличить подачу топлива. 

Характеристики мотора напрямую зависят от давления наддува: чем больше воздуха удастся загнать в цилиндры, тем мощнее будет двигатель. При определенном стиле вождения появляются и другие плюсы – снижается расход топлива, мотор не боится горных дорог, где обычные двигатели буквально задыхаются от нехватки кислорода в разреженной атмосфере.

Все современные автомобили оснащены системой турбонаддува, которая позволяет повысить мощность двигателя на 20-35% при этом двигатель, оснащенный турбонаддувом, обладает более высоким крутящим моментом на средних и высоких оборотах, что делает автомобиль более динамичным и экономичным при движении. Но при торможении двигателем автомобиль останавливается медленней, за счет пониженной степени сжатия в цилиндрах. Турбина начинает эффективно работать на дизельном авто при 2200-2500 об/мин, на бензиновом при 2800 - 3500 об/мин. Промежуток оборотов двигателя от холостых оборотов до включения турбины называется турбо-яма. Современные системы управления турбиной позволяют минимизировать эффект турбо-ямы.

Показателем эффективности работы турбины является давление наддува, которое на дизельных двигателях обычно достигает до 0.6-0.7 бар а на бензиновых от 0.6-1.0 бар. Качество сгораемого топлива зависит от процентного содержания смеси топливо-воздух и определяет состояние выхлопных газов двигателя.

Все турбонаддувы можно условно разделить на два типа – низкого (0,20 бара) и высокого давления (0,82 бара). Первый, как показала практика, может вообще обходиться без регуляторов. К примеру, на мотор Saab 95 V6 Ecopower Turbo объемом 3,0 л установлена относительно маломощная, поэтому и менее «задумчивая» турбина Garrett. Интересно, что для достижения максимального давления 0,25 бара она использует энергию отработавших газов лишь трех цилиндров из шести. На больших оборотах турбонагнетатель не может как следует разогнаться, что и обеспечивает низкое давление наддува. Электронно управляемая заслонка в этой турбине тут же открывается при любом нажатии на педаль газа. Это позволяет турбине немедленно получать необходимое количество отработавших газов для того, чтобы закачивать в цилиндры больше воздуха. Как только «воздушный насос» раскрутился, заслонка возвращается в положение, соответствующее заданному числу оборотов двигателя. В результате максимальный момент 310 Нм этот мотор выдает при 2100 об/мин.

Но это исключение из правил. Обычно в качестве регуляторов давления в турбодвигателях используют предохранительные клапаны – механические, либо с электронным управлением. Первые открываются избыточным давлением наддуваемого воздуха, вторые имеют исполнительные механизмы, как правило, электромагнитные. Команду открыть-закрыть клапану дает ЭБУ двигателя, руководствуясь информацией целой группы датчиков: давления во впускном коллекторе, детонации, расходомера воздуха и т. д. Первым подобную систему применил Saab в 1981 году.

Давление наддува обычно регулируется с помощью клапанных систем, которые перепускают требуемое количество отработавших газов. Хотя встречаются модели, в которых избыточный воздух сбрасывается прямо под капот, что не совсем выгодно с точки зрения экономичности. Впрочем, и первый способ не идеален, ведь значительное количество отработавших газов не выполняет никаких полезных действий. Вот если бы объединить две турбины в одной! Тогда бы одна использывалась для малых оборотов двигателя, а другая – для максимальных. При этом перепускной клапан использовался бы эпизодически.

Что такое VTG?

Турбонагнетатель с изменяемой геометрией VTG (Variable Turbo Geometry) – это вовсе не турбина с поворотными крыльчатками. Реализовать подобное затруднительно. Но зато ничто не мешает сделать подвижным направляющий аппарат, который в зависимости от нагрузки дозировал бы количество и скорость поступающих на «горячую крыльчатку» отработавших газов. Самый простой вариант использовали в роторном моторе Mazda RX7 в конце 80х. Здесь струя выхлопных газов была разделена на два потока. На малых оборотах они воздействовали только на верхнюю часть турбинного колеса. При достижении определенной частоты вращения коленвала срабатывал клапан, после чего отработавшие газы подавались уже на всю поверхность крыльчаток. Правда, оказалось, что данная система хорошо работала только в паре с роторнопоршневым двигателем Ванкеля.

Более удачной оказалась идея с несколькими поворотными лопатками, закрепленными в специальной обойме. Они регулировали скорость и давление потока отработавших газов в зависимости от режима работы. В грузовых автомобилях первой удачно применила этот метод фирма Mitsubishi в середине 80х, а в легковых – Audi и Volkswagen – фирма Allied Signal (Garrett) в 1995 году. Позже VTG-нагнетатетелями обзавелись легковые дизели BMW и MercedesBenz, а также AlfaRomeo. К слову, нечто подобное устанавливалось на советские танковые дизели с середины 60х.

Но пока, к сожалению, такая система прижилась только на дизельных моторах. Дело в том, что нежный направляющий аппарат теряет подвижность после долгой работы при высоких температурах выхлопных газов. Сравним 1050°С для бензинового двигателя и всего 600°С для дизеля. Кроме того, турбина с переменной геометрией дороже, чем обычная. А ее надежность и долговечность все-таки поменьше. Поэтому в ближайшее время вопрос о том, каким должен быть идеальный наддув, остается открытым. Один из перспективных путей – применение комбинированного наддува. К примеру, на малых оборотах воздух в цилиндры нагнетает приводной компрессор, а уже со средних в дело вступает турбонаддув.

Дизельный насос (ТНВД) имеет турбо-корректор, который подает топливо относительно поступаемого в камеру сгорания воздуха. Такая же коррекция происходит и в инжекторных системах. Окружная скорость вращения вала турбо-корректора достигает 50-70 м/с, что в несколько раз выше скорости движения автомобиля и на порядок выше окружной скорости коленчатого вала, если эти данные перевести в об/мин то ротор турбо-корректора вращается с 150000 - 210000 об/мин а коленвал с 5000-7000 об/мин. При этой скорости малейший дисбаланс превращает ротор в вибратор большего размера, что приводит к механичекому и акустическому шуму, утечке масла через уплотнения и неэффективной работы турбины, а в конечном итоге к заклиниванию вала и обрыву горячей крыльчатки. Вот зачем необходима балансировка вала до сборки турбокомпрессора и после. Особую роль нужно отдать диагностике работы двигателя и топливной системы.

Для проверки эффективности работы турбокомпрессора используется вакуумметр-манометр. Для проверки давления картерных газов используем напоромер. Данный прибор позволяет диагностировать состояние двигателя в целом. Ведь работа турбины на 99% зависит от состояния двигателя, а повышенный расход масла и топлива ошибочно указывает на изношенное состояние турбокомпрессора. Что касается диагностики топливной системы автомобиля, то лучше это сделать на специализированной СТО, но некоторые неисправности очевидны. Так средний пробег распылителей форсунок составляет 100 тыс. км. пробега, работа свечей накала 50 тыс. км., свечей зажигания обычных 25 тыс. км. а платиновых 60 тыс. км. Периодическая профилактическая чистка топливной системы составляет около 25 тыс. км. км пробега. Клиенты к нам обращаются как в плане консультации при покупке автомобиля, так и с просьбой диагностики турбины и двигателя для определения реального состояния цилиндро-поршневой группы и ремонта.

Преимущества турбокомпрессорного двигателя

Двигатель, оснащённый турбокомпрессором, обладает техническими и экономическими преимуществами по сравнению с атмосферным (безнаддувным) двигателем:

  • Соотношение «масса/мощность» у двигателя с турбокомпрессором выше, чем у атмосферного двигателя.
  • Двигатель с турбокомпрессором менее громоздок, чем атмосферный двигатель той же мощности.
  • Кривая крутящего момента двигателя с турбокомпрессором может быть лучше адаптирована к специфическим условиям эксплуатации. При этом, водитель тяжёлого грузовика должен намного реже переключать передачи на горной дороге, и само вождение будет более «мягким». 

Кроме того, можно на базе атмосферных двигателей создавать версии, оснащённые турбокомпрессором и различающиеся по мощности. Ещё более ощутимы преимущества двигателя с турбокомпрессором на высоте. Атмосферный двигатель теряет мощность из-за разрежения воздуха, а турбокомпрессор, обеспечивая повышенную подачу воздуха, компенсирует снижение атмосферного давления, почти не ухудшая характеристики двигателя. Количество нагнетаемого воздуха станет лишь ненамного меньше, чем на более низкой высоте, то есть двигатель практически сохраняет свою обычную мощность. Кроме того:

  • Двигатель с турбокомпрессором обеспечивает лучшее сгорание топлива.Подтверждением тому служит уменьшение потребления топлива грузовиками на больших пробегах.
  • Поскольку турбокомпрессор улучшает сгорание, он также способствует уменьшению токсичности отработавших газов.
Ремонт турбин дизельных двигателей

Турбированный дизельный двигатель с неисправным компрессором теряет от 30 до 60 процентов своей мощности. К сожалению, вывести этот агрегат из строя довольно легко: достаточно несколько раз после холодного пуска дать двигателю высокие обороты. Если к тому же моторное масло не соответствует типу двигателя или засорен фильтр, ремонт турбокомпрессора придется делать почти наверняка.

Рекомендации по эксплуатации автомобиля с турбиной

Очевидно, что классическое обслуживание автомобиля — ещё не гарантия того, что Турбина и двигатель может пройти 500 000 км до капремонта. В регламентное обслуживание необходимо вводить такие работы: очистка топливной системы, диагностика-регулировка топливо-воздушной системы, проверка на загрязнение катализатора в выхлопной системе.

    • При запуске двигателя используйте минимальный газ и не меньше минуты держите двигатель на холостых оборотах. Газовать на двигателе, который лишь несколько секунд назад завелся, значит, заставлять турбину вращаться на высоких скоростях в условиях ограниченной смазки.
    • После больших оборотов и нагрузки двигателя не выключайте зажигание, дайте двигателю поработать на холостых оборотах от 15 до 30секунд (в зависимости от режима работы двигателя). При нагруженном двигателе крыльчатка турбины вращается на очень высоких оборотах. Быстрое же выключение зажигания приводит к прекращению подачи масла в то время когда крыльчатка ещё вращается с большой скоростью...
    • Избегайте длительной работы на холостых оборотах. При этом давление масла в турбине больше, чем воздуха в компрессорной части. Масло может вытекать в улитки и появится сизый дым.
    • Масло, на котором эксплуатируется ваш автомобиль - это действительно самая главная деталь в работоспособности турбонаддува.
Практические советы по обслуживанию, диагностике

Сегодня многие СТО «боятся» автомобилей с турбокомпрессорами. Это происходит из-за нехватки информации с одной стороны и нежелании механиков получать дополнительные знания по автодиагностике. Предлагаем Вам ознакомиться с подходом к турбокомпрессору. Не нужно бояться турбин, нужно технически грамотно представлять процесс проверки турбокомпрессора. 

Если автомобиль нуждается в ремонте, а признаки указывают, что неисправность связана с турбокомпрессором, важно точно установить, поврежден он или нет. Это можно сделать, пользуясь таблицей, приведенной ниже. Если точно установлено, что турбокомпрессор неисправен, нужно обязательно отыскать причину этого. Если её не устранить, новый компрессор, установленный взамен неисправного, тоже выйдет из строя, иногда это происходит в первые же секунды после запуска двигателя.

Методика диагностирования турбокомпрессора на двигателе
 
  1. Необходимо подсоединиться к системе впускного коллектора с помощью тройника, так как система должна быть герметична.
  2. Произвести запуск двигателя, дать возможность прогреться двигателю до температуры 70°С.
  3. Статическая проверка турбонаддува:
    • на инжекторных автомобилях показания прибора при холостых оборотах должны быть в секторе вакуумирования (левая зелёная зона). На дизельных автомобилях показания прибора колеблются около "0";
    • для дизельных автомобилей: при холостых оборотах стрелка на приборах находится в "0", при резком и кратковременном нажатии на педаль газа может быть в пределах 0,5 – 0,8 бар при 2200 –3500 об/мин, нагнетание становится эффективным от 2200 об/мин;
    • на инжекторных автомобилях при плавном нажатии на педаль акселератора на оборотах двигателя 2000 об/мин показания прибора достигают 0 – 0,2 бар. При резком нажатии на педаль акселератора показания прибора достигают 0,3 – 0,5 бар, и происходит сброс давления, т.к. двигатель не нагружен. Поэтому инжекторный автомобиль необходимо диагностировать в движении. Эффективность нагнетания происходит от 2800 об/мин двигателя.

4. Динамическая проверка турбонаддува:

    • необходимо вывести прибор в салон автомобиля;
    • произвести измерение на 2-й передаче с максимальным ускорением, при этом показания прибора на инжекторных автомобилях достигают 0,8 – 1,0 бар, а на дизельных – 0,6 – 0,8 бар.

5. После измерения турбонаддува необходимо все соединения вернуть в начальное состояние.

Внимание!!! Если давление турбонаддува для дизеля ниже 0,5 бар, то необходимо уделить серьёзное внимание топливной аппаратуре. Если ниже 0,3 бар при исправном двигателе, то турбокомпрессор требует ремонта. 

Внимание!!! Если давление турбонаддува превышает максимально допустимые параметры, то существует большая вероятность выхода из строя цилиндропоршневой группы (прогар поршня).
Вопреки распространенному мнению, можно починить практически любой компрессор. Однако сам процесс ремонта турбин очень сложен, и кроме опыта требует специального оборудования.

 Сначала агрегат разбирается и проводится тщательная ревизия состояния всех его деталей. После этого делается собственно ремонт турбокомпрессора, для чего применяются лишь фирменные запчасти, а все подшипники и компрессионные кольца заменяются новыми. Затем турбину тщательно балансируют и картридж собирают. Далее на стенде добиваются идеальной балансировки уже самого картриджа, после чего турбину можно устанавливать на двигатель.

Замена турбокомпрессора

При самостоятельной установке турбины следует выполнять приведённые указания:

  1. Проверить сливные маслопроводы, снять и полностью их прочистить. Убедиться в отсутствии вмятин, повреждений, пережатий. Случается, что шланги и резиновые патрубки через некоторое время разбухают изнутри, что затрудняет движение масла. В случае сомнений рекомендуется заменить резиновые части новыми деталями.
  2. Проверить сапун двигателя, снять и полностью очистить его. Нужно следовать тем же указаниям, что и для маслопроводов. Проверить, при необходимости заменить клапаны (если они есть). На сапуне часто устанавливают небольшой конденсатор масла, его также нужно очистить и проверить. Одним словом, давление картерных газов не должно превышать 50 кг/м2.
  3. Пред установкой турбокомпрессора (далее ТКР) заглушить патрубок маслоподачи и слива на ТКР.
  4. Прогреть двигатель до рабочей температуры, произвести замер давления масла в патрубке подачи масла на ТКР ( не менее 0,8 кг/см2 ) на холостых оборотах и (не более 6,5 кг/см2) на максимальных оборотах.
  5. Слить отработанное масло с двигателя.
  6. Произвести замену всех фильтров (масляного, воздушного, топливного). Очистить внутренние полости корпуса воздушного фильтра от инородных частиц и мусора.
  7. Залить масло, соответствующее требованиям завода-изготовителя для данного типа двигателя (смотреть инструкцию по эксплуатации автомобиля).
  8. Произвести чистку и проверить герметичность воздушных патрубков подачи и слива масла (патрубки трубопроводов должны соответствовать требованию завода-изготовителя).
  9. При наличии интеркулера промыть его от остатков масла.
  10. При наличии катализатора в выхлопной системе необходимо проверить сопротивление противовыхлопа (не более 0,2кг/см2 на оборотах).
    При завышенном давлении, или если автомобиль имеет пробег более 100 тыс. км, катализатор нужно заменить или удалить.
  11. Снять заглушку с маслоподающего патрубка. На стартерном режиме произвести прокачивание маслом подающей трубки, слить в ёмкость примерно 100 г масла.
  12. Произвести монтаж ТКР, не подключая патрубки всасывания и наддува воздуха.
  13. Подключить маслоподающую трубку к ТКР.
  14. На стартерном режиме произвести прокачивание масла через ТКР в ёмкость примерно 100 г, контролируя появление масла на сливной трубке.
  15. Подсоединить маслосливную трубку к ТКР.
  16. Запустить двигатель, не пользуясь педалью акселератора. Дать поработать двигателю 5–10 минут на холостых оборотах, при этом контролировать температуру патрубка подачи масла (50–60°С), контролировать герметичность всех соединений.
  17. Увеличить обороты двигателя до 2500/3000 об/мин. При этом отслеживать выброс масла из нагнетающего патрубка улитки ТКР.
  18. Убедившись, что ТКР не выбрасывает через нагнетающий патрубок улитки масло, произвести монтаж воздушных патрубков.
  19. Запустить двигатель, проверить герметичность всех соединений.
  20. Замерить давление во всасывающем тракте после турбины.

Методика диагностирования турбокомпрессораЕсли обнаружены неисправности, конечно же следует их устранить.

С уважением СТО «Ковш»

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Крис Вудфорд. Последнее обновление: 6 января 2020 г.

Нет такого понятия, как совершенное изобретение: мы всегда можем сделать что-то лучше, дешевле, более эффективный или более экологичный. Возьми внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приведенный в действие жидкостью может швырнуть Вас по шоссе или ускорить Вас через небо во много раз быстрее, чем вы могли бы путешествовать.Но это всегда можно построить двигатель, который будет двигаться быстрее, дальше или использовать меньше топлива. Один из способов улучшить двигатель - это использовать турбокомпрессор -a. пара вентиляторов, которые используют отработанную выхлопную мощность в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше "ооо", чем вы в противном случае получить. Мы все слышали о турбинах, но как именно они работают? Давайте присмотрись!

Фото: типичный автомобильный турбонагнетатель использует пару вентиляторов в форме улитки, как это.Здесь вы видите Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делькора любезно предоставлено ВМС США.

Что такое турбокомпрессор?

Фото: два вида безмасляного турбонагнетателя, разработанного НАСА. Фото предоставлено Исследовательский центр Гленна НАСА (NASA-GRC).

Вы когда-нибудь видели, как мимо вас проносятся машины с дымящимися выхлопными газами? Очевидно, что выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше Очевидно, что они тратят энергию в то же время.Выхлоп есть смесь горячих газов, откачивающихся со скоростью и всей энергии содержит - тепло и движение (кинетическая энергия) - исчезают бесполезно в атмосферу. Не было бы аккуратно, если бы двигатель Можно ли использовать эту затраченную энергию для ускорения движения машины? Это именно то, что делает турбокомпрессор.

Автомобильные двигатели получают мощность, сжигая топливо в прочных металлических банках, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, поворачивая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается назад, он откачивает отработанный воздух и топливная смесь из цилиндра в качестве выхлопа. Количество силы автомобиль может производить напрямую связан с тем, насколько быстро он сжигает топливо. Чем больше у вас баллонов и чем они больше, тем больше топлива автомобиль может гореть каждую секунду и (теоретически, по крайней мере) быстрее можешь идти.

Один из способов сделать машину быстрее, это добавить больше цилиндров. Вот почему супер-быстрые спортивные автомобили как правило, имеют четыре и двенадцать цилиндров вместо четырех или шести цилиндры в обычной семейной машине.Другой вариант заключается в использовании турбокомпрессор, который каждую секунду нагнетает больше воздуха в цилиндры, они могут сжигать топливо с большей скоростью. Турбокомпрессор простой, относительно дешевый, дополнительный немного комплекта, который может получить больше мощности от того же двигателя!

Как работает турбокомпрессор?

Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбокомпрессора автомобиля. реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выбрасывает горячий воздух из спины.Так как горячий воздух уходит, он ревет мимо турбины (немного похоже на очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который выталкивает воздух в двигатель заставить топливо гореть правильно. Турбокомпрессор на автомобиль наносит очень принцип, аналогичный поршневому двигателю. Он использует выхлопные газы для водить турбину. Это раскручивает воздушный компрессор, который выталкивает дополнительный воздух (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать "больше энергии в секунду").Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбонагнетатель, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он питается от вращающегося коленчатого вала автомобиля. Обычно это недостаток: если турбонагнетатель работает от ненужной энергии в выхлопе, нагнетатель фактически крадет энергию от собственного источника питания автомобиля (коленчатого вала), что, как правило, бесполезно.

Фото: сущность турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой поворачивается тоже. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Как работает турбонаддув на практике? Турбокомпрессор - фактически два маленьких воздушных вентилятора (также названный рабочими колесами или газовые насосы) сидят на одном металлическом валу так, что оба вращаются вокруг все вместе. Один из этих вентиляторов, называемый турбиной , находится в поток выхлопных газов из цилиндров. Как цилиндры дуют горячий газ мимо лопасти вентилятора, они вращаются и вал, к которому они подключены (технически называется вращающийся узел центральной ступицы или CHRA) вращается также.Второй вентилятор называется компрессором и, поскольку он сидит на одном валу с турбиной, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, поэтому при вращении он притягивает воздух в машину и выталкивает его в цилиндры.

Теперь здесь есть небольшая проблема. Если вы сжимаете газ, вы делаете его горячее (вот почему велосипедный насос прогревается, когда вы начинаете накачивать шины). Hotter воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше помогает сжигать топливо, поэтому было бы гораздо лучше, если бы воздух, поступающий из компрессора, охлаждался до его поступления цилиндры.Чтобы охладить его, выход компрессора проходит через теплообменник, который удаляет дополнительный нагрев и каналы это в другом месте.

Как работает турбокомпрессор - внимательнее

Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который направляет воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вот как это все работает:

  1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
  2. Вентилятор компрессора помогает всасывать воздух.
  3. Компрессор сжимает и нагревает поступающий воздух и снова выдувает его.
  4. Горячий сжатый воздух из компрессора проходит через теплообменник, который охлаждает его.
  5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре с большей скоростью.
  6. Поскольку цилиндр сжигает больше топлива, он вырабатывает энергию быстрее и может передавать больше энергии колесам через поршень, валы и шестерни.
  7. Отработанный газ из цилиндра выходит через выпускное отверстие.
  8. Горячие выхлопные газы, проходящие мимо вентилятора турбины, заставляют его вращаться с высокой скоростью.
  9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показана здесь бледно-оранжевой линией). Таким образом, когда турбина вращается, компрессор тоже вращается.
  10. Выхлопные газы покидают автомобиль, тратя меньше энергии, чем в противном случае.

На практике компоненты могут быть подключены примерно так.Турбина (красная справа) забирает отработанный воздух через воздухозаборник, приводя в действие компрессор (синяя слева), который забирает чистый наружный воздух и закачивает его в двигатель. Эта конкретная конструкция оснащена электрической системой охлаждения (зеленого цвета) между турбиной и компрессором.

Artwork: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США №7946118: охлаждение турбонагнетателя с электрическим управлением, выполненного Уиллом Хиппеном и др., Ecomotors International, выданным 24 мая 2011 года.Произведение любезно предоставлено Управлением по патентам и товарным знакам США.

Откуда берется дополнительная сила?

Турбокомпрессоры дают автомобилю большую мощность, но эта дополнительная мощность не поступают непосредственно из отработанного выхлопного газа - и это иногда смущает людей. С турбокомпрессором, мы используем часть энергии в выхлопе для привода компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо, где автомобиль имеет дополнительную мощность происходит от. Все выхлопные газы питают турбокомпрессор и, потому что турбокомпрессор не связан с коленчатым валом или колесами автомобиля, это не непосредственно , добавляя к движущей силе автомобиля любым способом.Это просто позволяет Тот же двигатель для сжигания топлива с большей скоростью, что делает его более мощным.

Сколько дополнительной мощности вы можете получить?

Если турбокомпрессор даст двигателю большую мощность, больший и лучший турбокомпрессор даст это еще большая сила. Теоретически, вы можете продолжать улучшать турбокомпрессор сделать ваш двигатель все более и более мощным, но в конечном итоге вы достигнете предела. Цилиндры очень большие, и они могут сжечь столько топлива. Там только столько воздуха, что вы можете нагнетать в них через впуск определенного размера, и только столько выхлопных газов, которые вы можете выбросить, что ограничивает энергию, которую вы можете использовать для управления турбонагнетателем.Другими словами, в игру вступают другие ограничивающие факторы, которые вы должны принять во внимание. счет также; Вы не можете просто турбировать свой путь в бесконечность!

Преимущества и недостатки турбокомпрессоров

Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и на более или менее любых тип транспортного средства (автомобиль, грузовик, корабль или автобус). Основное преимущество использования турбокомпрессора заключается в том, что вы получаете больше мощности для двигателя одинакового размера (каждый такт поршня в каждом цилиндре вырабатывает больше энергии, чем в противном случае).Тем не менее, чем больше мощность, тем больше энергии и выработки в секунду, и закон сохранения энергии говорит нам, что это означает, что вам также нужно вкладывать больше энергии, поэтому вы должны сжигать соответственно больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него. Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, вырабатывающий ту же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении.Производители теперь часто могут сойти с рук, установив гораздо меньший двигатель на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндровый двигатель с турбонаддувом вместо V6). И здесь автомобили с турбонаддувом получают свое преимущество: работая хорошо, они могут сэкономить до 10 процентов вашего топлива. Поскольку они сжигают топливо с большим количеством кислорода, они имеют тенденцию сжигать его более тщательно и чисто, производя меньше загрязнения воздуха.

« Большинство экспертов отрасли ожидают, что к 2027 году более половины автомобилей, продаваемых в Соединенных Штатах, будут оснащены одним.

Нью-Йорк Таймс, 2018

Больше мощности для двигателя того же размера звучит замечательно, так почему же не все двигатели с турбонаддувом? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как того требовали производители (стремящиеся использовать любые маркетинговые преимущества над своими конкурентами). В одном из исследований Consumer Reports 2013 года были обнаружены небольшие двигатели с турбонаддувом, обеспечивающие значительно более низкую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и сделан вывод: «Не принимайте эко-хвасту от двигателей с турбонаддувом по номинальной стоимости.Существуют более эффективные способы экономии топлива, в том числе гибриды, дизели и другие передовые технологии ». Надежность также часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности обычному двигателю - короче говоря, есть еще немало вещей, которые можно Неправильно. Это может сделать обслуживание турбин значительно дороже. По определению, турбонаддув - это все, что нужно для получения большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к преждевременному выходу деталей из строя; поэтому, вообще говоря, двигатели с турбонаддувом не работают так долго.Даже вождение может быть другим с турбинами: поскольку турбонагнетатель работает на выхлопных газах, часто существует значительная задержка («турбо-лаг») между тем, когда вы ставите ногу на акселератор, и когда включается турбина, и это может привести к турбо автомобили очень разные (а иногда и очень сложные) для вождения. В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывали частично или полностью электрические турбонагнетатели для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Borg - eBooster®.

Кто изобрел турбокомпрессор?

Кого мы благодарим за турбокомпрессоры? Альфред Дж. Бючи (1879–1959), автомобильный инженер, работающий в компании Gebrüder Sulzer Engine Company, Винтертур, Швейцария. Как и турбокомпрессор, который я проиллюстрировал выше, его оригинальная конструкция использовала вал турбины с приводом от выхлопа для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя. Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

Однако

Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугальд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с использованием двух отдельных цилиндров. Это работало как наддув, увеличивая как поток воздуха в цилиндре, так и количество топлива, которое можно было сжечь. Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.

Произведение искусства: один из проектов турбокомпрессора Альфреда Бучи, выпущенный в конце 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопной газ из цилиндра подается вокруг трубы (зеленого цвета), которая приводит в движение турбину. Это связано с оранжевым «нагнетателем» (компрессор) и охладителем (синяя коробка), который выталкивает воздух в цилиндр через синюю трубу.Существуют и другие сложные элементы, но я не буду вдаваться во все детали; если вам интересно, взгляните на патент США №1955620: двигатель внутреннего сгорания (подается через патенты Google). Произведение любезно предоставлено Управлением по патентам и товарным знакам США.

,

Что такое помпаж турбокомпрессора?

Турбокомпрессор

является одной из важнейших частей главной двигательной установки корабля. Помпаж турбокомпрессора - это явление, которое влияет на производительность турбокомпрессора и снижает его эффективность. В этой статье мы узнаем все о помпаже турбокомпрессора.

Помпаж турбокомпрессора можно определить как сильную вибрацию звукового уровня, поступающую со стороны нагнетателя или со стороны компрессора турбокомпрессора. Это часто встречается в низкоскоростных дизельных двигателях, и морской инженер должен был слышать этот воющий звук, издаваемый двигателем, по крайней мере, один раз за свою морскую карьеру.

См. Также: 8 общих проблем, обнаруженных в судовых 2-тактных судовых двигателях

Всякий раз, когда в турбокомпрессоре происходит нарушение потока газа, происходит обратный выброс продувочного воздуха через лопасти диффузора и рабочего колеса в сторону воздуходувки, что вызывает помпаж , Проще говоря, большая масса колеблющегося воздушного потока может вызывать вибрацию рабочего колеса турбокомпрессора и его лопастей, что делает компрессор неспособным нормально работать, создавая высокий уровень шума в качестве реакции, которая называется скачком компрессора.

Кредиты: abb.com

Другие терминологии, такие как турбонагнетатель или помпаж двигателя, также могут использоваться для описания этого явления, но непосредственным компонентом помпажа является компрессор турбонагнетателя или турбокомпрессор. Сторона турбины или сторона выхлопного газа турбокомпрессора не играет прямой роли в процессе помпажа. Это, несомненно, может повлиять на производительность всего турбокомпрессора, что может привести к скачкам турбокомпрессора.

Во время работы двигателя в море может произойти небольшое количество скачков напряжения, поскольку это также зависит от внешних факторов, таких как состояние моря, погода, резкое маневрирование, остановка при аварии и т. Д.Такие случаи помпажа компрессора являются приемлемыми. Однако инженер на судне должен убедиться, что состояние подшипника турбокомпрессора и смазочного масла находятся в хорошем рабочем состоянии.

См. Также: Общие сведения о подшипниках и смазке турбокомпрессора на судах

Если помпаж возникает во время нормальной работы двигателя, а частота помпажа двигателя высокая, это может привести к повреждению подшипника и, в некоторых случаях, к механическому отказу. ротора компрессора.Следовательно, помпаж турбокомпрессора является результатом того, что различные детали двигателя не работают синхронно. Изношенный цилиндр двигателя или топливная система могут привести к проблемам в двигателе и турбокомпрессоре. Это приведет к уменьшению потока воздуха в компрессор по сравнению с более высоким противодавлением, что приведет к помпажу компрессора.

Поэтому турбокомпрессоры должны быть согласованы с нормой расхода воздуха двигателя и давлением во всем рабочем диапазоне двигателя и не должны попадать в пределы помпажа.

Линия помпажа

Как показано на графике, рабочая линия двигателя должна поддерживать давление и объем всасываемого воздуха в точке A, чтобы поддерживать равновесие и эффективную работу турбонагнетателя. Предположим, происходит увеличение объема всасываемого воздуха, давление на линии постоянной скорости будет снижаться. Чтобы поддерживать равновесие, то есть находиться на рабочей линии, объем должен уменьшаться.

Однако, если в точке B наблюдается небольшое уменьшение объема (при том же давлении, что и у A), это приведет к снижению давления в линии постоянной скорости.На этом этапе компрессор не сможет поддерживать требуемое давление, и объем будет дополнительно уменьшаться, что приведет к помпажу компрессора.

Термины, связанные с выбросом турбокомпрессора

Падение скачка давления: Цикл помпажа имеет определенный перепад давления, и если цикл продолжается без изменения рабочей точки, размер перепада давления сохранится.

Время цикла помпажа: Время, когда начинается помпаж, пока рабочая точка не изменится, чтобы снова достичь равновесия, т.е.е. конец помпажа двигателя.

Поведение при температуре помпажа: При возникновении помпажа будет происходить изменение направления воздушного потока, что приведет к изменению температуры на входе.

Изменения частоты вращения помпажного вала: Вал турбокомпрессора, содержащий компрессор и колесо турбины, также будет испытывать изменения скорости во время помпажа компрессора. двигателя, и не должны попадать в пределы помпажа.

Image Credits - Wikimedia / Sunil Chaudhari

Категория турбокомпрессора Импульс:

Умеренный всплеск: Всплески, происходящие в мягких условиях, незначительны. Они могут расти из-за отсутствия реверса потока и небольших колебаний давления.

Классический скачок: Классический скачок, который происходит из-за низкочастотных колебаний с большими колебаниями давления.

Глубокая помпаж: Это критическое состояние, когда в компрессоре происходит изменение массового расхода, которое приводит к помпажу.

Каковы причины помпажа турбокомпрессора?

Ниже приведены причины помпажа турбокомпрессора:

Неправильное распределение мощности: Неадекватное распределение мощности между цилиндрами главного двигателя может вызвать скачок турбонагнетателя, поскольку один блок вырабатывает больше энергии, а другой - меньше. Из-за этого расход воздуха, требуемый обоими турбокомпрессорами, различается, что приводит к помпажу.

Компоновка двигателя и турбокомпрессора и связанные с ними детали

Детали загрязненного турбокомпрессора:

  • Если впускной фильтр для компрессора со стороны турбины загрязнен, то для сгорания не может подаваться достаточное количество воздуха, что приводит к помпажу.
  • Аналогично, если сторона турбины также загрязнена, i. форсунка, лопасти и т. д. не может быть произведено достаточно воздуха для сгорания.
  • Поврежденный глушитель
  • Изношенные подшипники турбокомпрессора

См. также: Как очистить стороны турбонагнетателя и турбины на судне?

Проблемы в системе очистки воздуха:

Связанные чтения: Как морская система зарядки воздуха для двигателей изменилась с течением времени

Проблемы в системе выпуска: Выхлопы с сильным загрязнением i.е. Экономайзер, если он установлен, может вызвать обратное давление в турбонагнетателе и, таким образом, привести к скачкам напряжения. Другая проблема выхлопа может быть следующей:

  • Неисправность выпускного клапана и его неправильное открытие
  • Поврежденная или заблокированная защитная решетка перед турбокомпрессором
  • Пульсация давления после турбонагнетателя и внутри приемника выхлопных газов
  • Поврежденный компенсатор, установленный на линии входа турбокомпрессора

См. Также: Компоненты и конструкция системы выхлопных газов главного двигателя на судне

Проблема в топливной системе: Если топливная система работает неэффективно, это может быть вызвано следующими причинами: проблемы:

  • Низкое давление циркуляционного или подающего насоса
  • Воздух или вода в мазуте
  • Низкая температура подогрева топлива
  • Неисправен всасывающий клапан топливного насоса
  • Заклинило поршень топливного насоса и шпиндель клапана из-за отложений углерода
  • Повреждено сопло топливного клапана
  • Неисправная система распределения нагрузки m

См. также: 10 баллов за эффективную работу турбокомпрессора на судах

Прочие факторы:

  • Из-за плохой погоды двигатель неожиданно начинает работать и происходит внезапное изменение нагрузки.Это происходит потому, что во время плохой погоды или качки гребной винт движется внутрь и наружу из воды, вызывая изменение нагрузки на двигатель.
  • Плохо согласованная настройка двигателя и турбокомпрессора, которая может происходить в старом двигателе из-за изоляции одного из них. или более блока или неисправной детали двигателя
  • Изменение условий окружающей среды, т. е. изменение давления и температуры

Как предотвратить выброс турбокомпрессора?

Ниже приведены способы предотвращения выброса турбокомпрессора.Однако следует отметить, что некоторые моменты могут отличаться в зависимости от конструкции и конструкции турбокомпрессора.

  • Содержите впускной фильтр турбокомпрессора в чистоте.
  • Промойте водой турбину и сторону компрессора турбокомпрессора.
  • Периодически следует проводить надлежащее техническое обслуживание и проверки для различных частей турбокомпрессора. Если есть какие-либо проблемы, ремонт турбокомпрессора должен быть выполнен как можно скорее без нагрузки на двигатель.
  • Время от времени следует наносить удар копотью в случае экономайзера или выхлопного котла.

Связанные чтения: Что можно и чего нельзя делать для эффективной работы котла на судах

  • Карточки-указатели для оценки цилиндра и распределения мощности отдельных агрегатов
  • Убедитесь, что вспомогательные агрегаты двигателя и детали, которые влияют на турбонагнетатель, обслуживаются надлежащим образом
  • Эффективное обслуживание системы воздушного охлаждения
  • Регулярная очистка и проверка экономайзера
  • Регулярная очистка и проверка выпускного коллектора

Модификация конструкции для противодавления:

Существует несколько мер и модификаций конструкции, которые можно использовать как антипомпажную для уменьшения вероятности всплескаЭтому можно временно противодействовать, выпуская воздух из клапана, расположенного в верхней части ресивера. Однако это приведет к повышению температуры выхлопных газов, и необходимо соблюдать осторожность, чтобы не превысить предельные значения.

Помимо вышеупомянутой модификации, предотвращающей помпаж, на рынке доступны различные типы турбонагнетателей, которые испытывают меньшие помехи, чем обычные турбокомпрессоры:

Гибридный турбокомпрессор : Гибридный турбокомпрессор обеспечивает лучший крутящий момент для турбины компрессора. двигатель, который снижает риск помпажа турбокомпрессора.Узнайте больше о гибридном турбокомпрессоре.

Турбокомпрессор с изменяемой геометрией: VGT практически не испытывает классического помпажа, поскольку он работает намного ближе к запасу по помпажу для достижения максимального давления. Подробнее о турбокомпрессоре с переменной геометрией.

Двухступенчатый турбокомпрессор: Двухступенчатые компрессоры также имеют байпасы, предназначенные для подавления помпажа компрессора. Подробнее о двухступенчатом турбокомпрессоре

Отказ от ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают взгляды Marine Insight. Данные и диаграммы, если они используются, в статье получены из доступной информации и не были аутентифицированы никаким установленным законом органом. Автор и Marine Insight не утверждают, что он является точным, и не несут никакой ответственности за это. Мнения представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно каких-либо действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

Теги: турбокомпрессор главного двигателя компрессора

.

Как это работает: турбонаддув | Вождение

Раньше турбокомпрессоры использовались в основном на спортивных автомобилях с высокими эксплуатационными характеристиками. Они по-прежнему дают быстродействующим автомобилям дополнительный прирост мощности, но все чаще автопроизводители используют их на двигателях меньшего размера для повышения мощности при необходимости, но с большей общей экономией топлива. Они также используются практически на всех дизельных двигателях для увеличения мощности.

Турбокомпрессор - это, по сути, воздушный насос, который подает дополнительный кислород в двигатель по мере необходимости, так что он может сжигать больше топлива для увеличения мощности.

Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они поворачивают тяжелый центральный коленчатый вал, так же, как ваши ноги двигаются вверх и вниз, приводя в движение велосипед. Вращательное движение коленчатого вала используется для поворота колес автомобиля.

Двигатель Audi 3.0-L V6 с двумя турбонагнетателями, установленными последовательно.

Что заставляет все это двигаться, так это пары воздуха и бензина в верхней части поршня. Когда это зажигается свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть рукоятку.Сгоревшие газы затем удаляются в виде выхлопных газов.

Каждый поршень смещается вниз в начале своего цикла, создавая вакуум. В нетурбинном двигателе, известном как безнаддувный, воздух приливается, когда открывается впускной клапан, но он может заполнять цилиндр только при атмосферном давлении. Сжигание большего количества топлива приводит к большей мощности, но поскольку топливно-воздушная смесь должна быть точной, чтобы двигатель работал правильно, добавление большего количества бензина не будет работать, и цилиндр не сможет втянуть дополнительный воздух.

В двигателе с турбонаддувом турбонагнетатель нагнетает больший объем воздуха под давлением, и компьютер автомобиля отвечает, добавляя правильное количество дополнительного топлива.

Турбо работает от выхлопных газов. Одна сторона турбины расположена у выпускного коллектора, другая - у воздухозаборника двигателя и содержит два небольших вентилятора, соединенных валом. Когда выхлоп проходит через турбо, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, приводит в движение второй вентилятор, называемый компрессором, который всасывает свежий воздух, создает давление в нем и нагнетает его в двигатель. Разница между атмосферным давлением и величиной давления воздуха, которое обеспечивает турбонагнетатель, называется повышением и измеряется в фунтах на квадратный дюйм (фунт / кв. Дюйм).

Вместо турбонаддува некоторые автомобили используют нагнетатель, который также нагнетает воздух, но механически движется от коленчатого вала двигателя вместо потока выхлопных газов.

Вырез турбокомпрессора, показывающий вентиляторы турбины и компрессора, соединенные валом.

Одна из проблем, связанных с турбонаддувом, заключается в том, что воздух нагревается при сжатии, а это противоположно тому, что вы хотите. Холодный воздух более насыщен кислородом, поэтому его можно смешивать с большим количеством топлива и правильно сжигать в цилиндре.Автопроизводители добавляют теплообменник, называемый интеркулером, к турбосистеме, которая поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.

Вентиляторы Turbo вращаются очень быстро - до 250 000 оборотов в минуту или более - и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке. Если это произойдет, откроется клапан, называемый перепускным клапаном, который отводит некоторые выхлопные газы от турбины.

Турбокомпрессор не поддерживает двигатель все время.Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как атмосферный. Когда вы нажимаете на газ, двигатель работает тяжелее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, повышает мощность двигателя, который, в свою очередь, получает больше топлива - вот почему эти двигатели небольшого объема могут внезапно стать намного жаждущими, чем ожидалось, когда вы жестко управляете ими. (С другой стороны, дополнительный кислород способствует более полному сгоранию топлива в цилиндре, что повышает эффективность двигателя и снижает вредные выбросы.)

Турбокомпрессор также создает головную боль для инженеров, потому что он не сразу работает на полную мощность. Существует небольшая задержка между моментом, когда вы опускаете ногу, и когда турбонагнетатель разворачивается на достаточную скорость, чтобы обеспечить ускорение и дать вам желаемый всплеск ускорения. Это известно как турбо лаг.

Раньше это было гораздо более заметно на старых автомобилях, но сегодня автопроизводители используют разные методы, чтобы уменьшить его. Используются легкие лопатки турбин, поэтому для их вращения требуется меньше давления.Турбокомпрессоры меньшего размера вращаются быстрее, и некоторые автопроизводители ставят два из них на двигатель, комбинируя маленький для быстрого начального ускорения с большим, который может обеспечить большую мощность при более высоких оборотах двигателя. Для достижения этого несколько автопроизводителей, включая Volvo, используют как нагнетатель с механическим приводом, так и турбонагнетатель с выхлопом.

Другая технология - это изменяемая геометрия, которая автоматически регулирует поток выхлопных газов в колесо турбины в зависимости от частоты вращения двигателя и требований к мощности.

Двигатели с турбонаддувом

, как правило, не требуют дополнительного обслуживания, за исключением случаев, когда автомобиль выполняет замену масла и замену свечи зажигания. Некоторые более новые турбодвигатели работают нормально на бензине обычного качества, но проверьте руководство своего владельца на предмет требований премиум-класса.

Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют фирменные названия, такие как TFSI от Audi (для многослойного впрыска с турбонаддувом) или Ford EcoBoost. Если вы не уверены, спросите, если это турбо, прежде чем купить.


Смотрите также


avtovalik.ru © 2013-2020