Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Какой двигатель имеет большую степень сжатия


Компрессия и степень сжатия двигателя. Что это такое?

Начинающие автолюбители, которые только недавно обзавелись машиной, очень часто пытаются разобраться в том, что находится внутри, то есть под капотом. Особый интерес у человека вызывает двигатель, так как строение у этого агрегата очень сложное, а разбираться в этом нужно, дабы сэкономить деньги в случае поломки.

Ведь если хорошо разбираться во всем этом, то можно и самостоятельно починить свою машину, не обращаясь в сервисный центр. Неопытные автомобилисты часто путают понятия «компрессия» и «степень сжатия», хотя они не оказывают влияние один на другой. Стоит сказать, что компрессия меняется в период эксплуатации машины, а степень сжатия – величина безразмерная и относительная.

Степень сжатия

Степень сжатия — расчетная величина, показывает соотношение объемов до сжатия и после.

Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией. 

Что такое степень сжатия и чем она отличается от компрессии

Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.

Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.

Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси.

Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см2, а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.

На что влияет степень сжатия двигателя

Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.

У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.

Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

  • CR=(V+C)/C,
  • где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

  • При форсировании силового агрегата;
  • При его приспособлении для функционирования с топливом другого октанового числа;
  • После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.

Как изменить степень сжатия двигателя

У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.

Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла. 

На форсированном моторе

Степень сжатия. В зависимости от конечной задачи, степень сжатия может серьезно варьироваться, достигая величин в 11 - 11.5 . Все это направлено на снятие максимальной мощности с мотора конкретного объема. Чем выше степень сжатия - тем выше удельная мощность. Правда при этом неизбежно снизится ресурс и резко возрастает риск проблем с мотором при заправке некачественным топливом. Одна заправка сомнительным топливом может быстро кончить "зажатый" мотор. Так что при форсировании мотор сэкономить на качестве бензина не удастся.Поэтому, при тюнинге двигателя степень сжатия увеличивается не очень значительно, обычно что бы перейти на марку бензина, следующую за уже используемой по октановому числу. В принципе, косвенно, о величине степени сжатия можно судить по марке используемого бензина - на АИ-80 можно ездить при степени сжатия равной 9.0 , на АИ-92 - до 10.0 (при условии, что бензин соответствует заявленным характеристикам ).Поднятие степени сжатия - сложный процесс, требующий точных расчетов и очень высокой квалификации моториста. Поэтому самостоятельно этим заниматься крайне не рекомендуется.

Как уже было сказано выше компрессия это давление в цилиндре. Именно поэтому компрессия зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии. Для этого необходимо: двигатель прогрет, АКБ полностью заряжена, дроссель открыт, воздушный фильтр снят, все свечи выкручены. В таком режиме полностью заряженная АКБ позволит стартеру раскрутить двигатель до 200 об/мин. Компрессия во всех цилиндрах должна быть ровной. При снижении уровня компрессии необходимо выяснить причину падения. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 гр. моторного масла. Процедуру замера повторяют. Если показания манометра выросли - причина падения в поршне.

Как снизить степень сжатия двигателя

"Уменьшить степень сжатия?"

Какая степень сжатия? Это количество воздуха, которое двигатель может сжать, готовый к взрывной фазе сгорания.

Например, степень сжатия 10: 1 просто означает, что 10 единиц воздуха будут сжаты в пространство всего 1 единицы.

Степень сжатия (CR) играет большую роль в том, насколько хорошо работает двигатель.

Проблема детонации (когда смесь топливовоздушной смеси преждевременно воспламеняется) в значительной степени контролируется степенью сжатия.

Примечание: вы можете использовать топливо с более высоким октановым числом для уменьшения проблем, связанных с детонацией, другой вариант может заключаться в использовании впрыска воды, но реальным разработанным решением является просто снижение степени сжатия.

Как рассчитать коэффициенты сжатия двигателя.

Чтобы рассчитать степень сжатия, вы просто делите рабочий объем (который не изменится, если двигатель не расточен и / или коленвал не заменен одним из более длинных смещений) на объем камеры сгорания.

Коэффициент сжатия рассчитывается путем деления объема над поршнем, когда он находится в ВМТ, на объем над поршнем, когда он находится в BDC.

Если вы хотите использовать принудительную индукцию (т.е. добавить турбонагнетатель, нагнетатель или воздушный компрессор), вы обнаружите, что вы ограничены в величине усиления, которое вы можете добавить, с помощью ограничений, установленных степенью сжатия. ( * см. Примечание ниже)

Чем ниже степень сжатия, тем больше погрешность, с которой вам приходится играть, что значительно упрощает настройку.

Если у вас высокая степень сжатия, то нет ошибки для детонации, а детонация и стук - это реальные проблемы.

Современные двигатели, использующие турбонагнетатели и высокие степени сжатия (15 фунтов / кв. Дюйм или более при коэффициенте сжатия 10: 1), обычно разрабатываются вокруг системы прямого впрыска топлива, где топливо может добавляться непосредственно перед тем, как требуется воспламенение, так что риск преждевременного детонация снижена.

Это новшество появилось в мире дизельных двигателей с чрезвычайно высоким коэффициентом сжатия.)

Лучшие способы снижения степени сжатия двигателя.

При уменьшении степени сжатия имеет смысл укрепить внутренние детали двигателя.

Это имеет еще больший смысл, если вы используете принудительную индукцию для увеличения мощности вашего двигателя.

Следует иметь в виду удобную формулу: -
CR = (рабочий объем + объем камеры сгорания в ВМТ) / объем камеры сгорания в ВМТ

* Не думайте, что коэффициенты сжатия определяют максимальный импульс, который вы можете безопасно запустить.Это только малая часть уравнения.

Важнейшее значение имеет ваше заправка, топливовоздушная смесь и время зажигания - вот ключевые ингредиенты.

Более низкая степень сжатия даст вам больше погрешности для ошибок и в основном позволяет вам работать с более высоким ускорением, чем вы могли бы в противном случае.

Имеет смысл дать турборежиму хорошую работу по сжатию воздуха и просто оставить двигатель, чтобы сосредоточиться на последней фазе сгорания и взрыва.

Несколько замечаний при определении окончательной степени сжатия.Когда вы заменяете головку на вашем двигателе, ее, как правило, нужно снимать, и это увеличивает степень сжатия, поэтому ее необходимо учитывать при расчете.

Толщина новой прокладки также будет немного больше, чем при затягивании головки на нее, поэтому измерьте толщину прокладки по старой прокладке.

5 хороших способов уменьшить степень сжатия

  • Поршни низкого сжатия . Это, кажется, путь.Поршни намного короче обычных. Небольшой плюс в том, что они также часто легче, поэтому двигатель будет вращаться немного более свободно.

    Мы бы порекомендовали комбинировать поршни с низким сжатием с более коротким ходом, чтобы получить максимальную выгоду.

    Форма поршневой головки также будет зависеть от степени сжатия, возникающей в двигателе.

    Это потребует демонтажа двигателя, и пока двигатель находится в отрыве, вы также можете выполнить некоторые другие моды, перечисленные ниже.

  • Более короткие стержни и уменьшение хода . Более короткий ход будет иметь драматическое влияние на степень сжатия.
    Комбинируя этот метод с поршнями с низким сжатием, можно начать думать о работе при очень высоких давлениях наддува при добавлении турбины.
    Кривошип также будет иметь некоторое влияние на ход двигателя, и в идеале все кривошипы, поршневые коронки и шатуны должны быть согласованы.

  • Головная работа , снова увеличивает объем цилиндра, но эффективность во многом зависит от того, как расположены впускной и выпускной клапаны, а также от того, сколько места у вас есть для работы.

    Снятие головки относительно просто и не требует таких больших усилий, как другие способы снижения компрессии. Тем не менее, требуется большой навык, чтобы правильно выполнять работу на голове и достичь более низкой степени сжатия, которую вы ищете.

  • Более толстые прокладки головки . Этот вариант немного сложен, но мы должны упомянуть об этом, поскольку многие люди используют более толстые прокладки для достижения более низкой степени сжатия.

    Мы также видели людей, использующих 2 или более прокладок для достижения более низкой степени сжатия! Использование нескольких прокладок, безусловно, не рекомендуется и представляет собой серьезное слабое место в двигателе.

    Более толстая прокладка уменьшит степень сжатия на небольшую долю, вероятно, только на .1 или .2.

    Это, безусловно, самый простой метод снижения компрессии, но есть риск, что вы будете более склонны к поломке прокладки головки, и выигрыш в более низком сжатии минимален.

  • Декомпрессионные пластины по сути являются продолжением головки и могут быть очень эффективными для снижения степени сжатия.

    Сторона блока нуждается в обычном уплотнении прокладки, но сторона головки обычно требует только ненадлежащего высокотемпературного герметика (в случае алюминиевых декомпрессионных пластин).

    Пластины могут быть изготовлены из различных металлов, и мы предлагаем вам поговорить со специалистом о ваших вариантах здесь.

    Декомпрессионные пластины могут преждевременно выходить из строя в приложениях с высоким наддувом, где возникают высокие температуры.

    Многие считают это хорошей вещью, поскольку заменить декомпрессионную пластину гораздо проще, чем заменить поршни и головки.

В большинстве ситуаций тюнеры выбирают множество этих опций, основываясь на желаемой полосе крутящего момента и выходной мощности двигателя, который они собирают.

Чтобы обсудить все аспекты тюнинга двигателя и модификации автомобиля или получить дополнительную информацию о снижении степени сжатия ваших двигателей, пожалуйста, присоединяйтесь к нашим дружелюбным международным автомобильным форумам.

ПОЖАЛУЙСТА, ПОМОГИТЕ: ВАМ НУЖНЫ ВАШИ ПОЛНОМОЧИЯ, ЧТОБЫ ПОКРЫТЬ РАСХОДЫ НА ЭТОМ САЙТЕ И ДЕРЖАТЬ ЕГО РАБОТУ. Я не взимаю с вас за доступ к этому сайту, и это экономит для большинства читателей TorqueCars $ 100 за каждый год 9 923 - , но мы НЕТ прибыли и даже не покрываем наши расходы.Чтобы мы продолжали работать, ПОЖАЛУЙСТА, Пожертвуйте здесь

Эта статья была написана мной, основателем Waynne Smith TorqueCars, и я ценю ваши отзывы и предложения. Эта запись была подал под Engine Mods, Тюнинг. Вы можете оставить отзыв ниже или присоединиться к нашему форуму, чтобы подробно обсудить эту статью и модификацию автомобиля с нашими членами.

Если вам понравилась эта страница , поделитесь ею с друзьями, оставьте ссылку на нее на своем любимом форуме или используйте параметры закладок, чтобы сохранить ее в своем профиле в социальных сетях.

Обратная связь

Пожалуйста, используйте наши форумы , если вы хотите задать вопрос по настройке , и обратите внимание, что мы не продаем запчасти или услуги, мы просто онлайн-журнал.

Помогите нам улучшить, оставьте предложение или совет

,

Двигатели с воспламенением от сжатия - большой прорыв - мы должны попробовать один

  • Это похоже на Mazda 3, но на самом деле это прототип на миллион долларов новой архитектуры шасси компании Skyactiv и ее нового двигателя Skyactiv-X.

    Мазда

  • Инженер Mazda Джей Чен (Jay Chen) объясняет, как работает управляемое искрой компрессионное зажигание и почему это такой прорыв.

    Джонатан Гитлин

  • Двигатель Skyactiv-X.

    Джонатан Гитлин

  • Skyactiv-X под другим углом.

    Джонатан Гитлин

  • И еще одна удача.

    Джонатан Гитлин

Ирвин, Калифорния.- Несмотря на слухи об обратном, двигатель внутреннего сгорания далеко не мертв. Недавно мы увидели несколько технологических достижений, которые значительно повысят эффективность бензиновых двигателей. Одним из них, впервые сообщенным еще в августе 2017 года, является прорыв Mazda с воспламенением от сжатия. Во вторник Mazda пригласила нас в свой научно-исследовательский центр в Калифорнии, чтобы узнать больше об этом умном новом двигателе Skyactiv-X, но, что еще важнее, мы действительно смогли управлять им в дороге.

Что тогда такого особенного в этом двигателе?

Mazda

Идея Skyactiv-X состоит в том, чтобы иметь возможность эксплуатировать двигатель с максимально обедненной топливно-воздушной смесью (известной как λ).Поскольку очень слабое сгорание является более холодным, чем стехиометрическая реакция (где λ = 1 и воздуха ровно достаточно, чтобы полностью сжечь каждую молекулу топлива, но не более), меньше энергии теряется в виде тепла. Более того, выхлопные газы содержат меньше неприятных оксидов азота, и неиспользованный воздух начинает работать. Он поглощает тепло сгорания, а затем расширяется и толкает поршень вниз. В результате получается более чистый, эффективный и мощный двигатель. А Skyactiv-X использует скудную смесь и : λ до 2.5.

Это звучит как автомобильный Святой Грааль, так что вы можете удивиться, почему все так не делают. Как это часто бывает, реальный мир не так прост. Проблема с очень бедными воздушно-топливными смесями состоит в том, что их сгорание не особенно стабильно; поскольку молекулы топлива гораздо менее концентрированы, событие сгорания легко исчезает. Решение, таким образом, заключается в том, чтобы сжать вещи в гораздо большей степени, чем обычно. И если вы сожмете достаточно топлива и воздуха, произойдет чудесная вещь: она загорается без искры.

Это известно как воспламенение от сжатия однородного заряда, или HCCI, идея, которую Кайл Нимейер подробно рассказал нам в 2012 году. У HCCI есть и другие преимущества. Вдобавок к горящему охладителю и с меньшим количеством загрязняющих веществ, событие сгорания происходит быстрее, с более высоким пиком давления, так что вы получаете больше работы от той же энергии. Все это звучит довольно замечательно, поэтому вы, вероятно, спрашиваете себя, почему каждый бензиновый двигатель на дороге не просто использует HCCI.

К сожалению, это была одна из тех идей, которые работали в лаборатории, но не могли быть полностью воплощены в серийный движок.Самая большая проблема всегда заключалась в том, чтобы точно контролировать, когда во время цикла двигателя произошло воспламенение от сжатия, что-то, что вы хотите, чтобы как можно ближе к верхней мертвой точке.

HCCI, но со свечой зажигания?

Прорыв Mazda состоял в осознании того, что свеча зажигания все еще может сыграть свою роль. Двигатель Skyactiv-X был разработан для обеспечения очень высокой степени сжатия - фактически 16: 1 - и использования очень обедненного соотношения воздух: топливо, но оба они чуть ниже порога, необходимого для возникновения HCCI.Вместо этого двигатель Mazda использует искру, чтобы начать вечеринку; полученный огненный шар затем добавляет больше тепла и давления в камеру сгорания, и вуаля! Возгорание от сжатия сработало. Мазда называет это искровым контролируемым зажиганием сжатия, или SPCCI.

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

  • Мазда

Очевидно, это было не без проблем.Топливно-воздушная смесь должна быть немного богаче искры, чтобы она могла загореться, чем вы хотите, чтобы она оставалась в остальной части цилиндра. Это должны быть отдельные области, чтобы избежать падения λ до 2 или ниже (которое не будет подвергаться воспламенению от сжатия). Это достигается за счет закручивания воздуха внутри цилиндра и создания вихревого эффекта, когда спокойный центр имеет достаточно низкое значение λ, чтобы воспламениться от искры, в окружении области с высоким коэффициентом λ, которая затем подвергается воспламенению от сжатия.

Следующей задачей Mazda было предотвращение предварительного зажигания или детонации.Более высокие степени сжатия увеличивают вероятность детонации, поэтому двигателям с более высокой степенью сжатия обычно также требуется более дорогое топливо с более высоким октановым числом, которое устойчиво к детонации. Технически, воспламенение от сжатия - это детонация , но если это происходит раньше, чем вы этого хотите - в верхней мертвой точке - могут произойти плохие вещи, потому что событие сгорания будет оказывать давление на поршень при его движении вверх по такту сжатия ,

Решение здесь состояло в том, чтобы использовать меньше времени для нагревания смеси топлива и воздуха.Сначала происходит небольшой начальный впрыск топлива, затем основная масса топлива вводится в цилиндр как можно позже во время такта сжатия. Это делается с использованием инжекторов с несколькими отверстиями для увеличения распыления и смешивания топлива и воздуха.

Если всего этого недостаточно, возникает дополнительная проблема отслеживания воспламенения от сжатия. В прошлом это было одной из самых сложных проблем для двигателей HCCI. В идеале вы хотите, чтобы сгорание происходило в одной и той же точке цикла двигателя каждый раз - примерно на четыре градуса после верхней мертвой точки.Но по мере изменения условий окружающей среды - холодного дня в Денвере или жаркого в Хьюстоне - время, необходимое для того, чтобы огненный шар достиг достаточного давления, также меняется. Таким образом, двигатель должен иметь возможность изменять время зажигания, чтобы поддерживать пиковое давление в нужном месте.

Skyactiv-X делает это, активно отслеживая давление в каждом цилиндре, поэтому он знает след повышения давления каждого события сгорания. Если он отклоняется, время зажигания регулируется для компенсации. Джей Чен, один из инженеров трансмиссии Mazda, объяснил, что это было то, о чем компания думала некоторое время, но это стало возможным только недавно, когда процессоры управления двигателем достаточно быстры, чтобы контролировать события от случая к случаю.

Skyactiv-X имеет некоторые другие особенности, которые отличают его от текущего семейства двигателей Skyactiv-G Mazda. У него есть топливная система с непосредственным впрыском под более высоким давлением, способствующая распылению, которая проходит где-то между текущей системой прямого впрыска бензина и дизельной системой DI, хотя я не смог получить конкретную цифру давления топлива. Существуют датчики давления в цилиндрах, которые необходимы для подачи в цифровой мозг двигателя данных, необходимых для контроля времени. Существует своего рода нагнетатель типа Roots с низким наддувом - Mazda называет это высокоскоростным источником подачи воздуха, так как его работа не заключается в добавлении мощности, и она реально способствует только при высоких нагрузках.Есть также промежуточный охладитель воздух-вода, охладитель рециркуляции выхлопных газов (EGR), который помогает предотвратить преждевременное сгорание, электрические приводы с переменным временем газораспределения (в которых используются шаговые двигатели) для более быстрой синхронизации клапанов, и, наконец, мягкий гибридный пуск 48 В остановить систему.

Листинг изображения от Jonathan Gitlin

,Двигатель

- Википедия

Анимация, демонстрирующая четыре стадии цикла четырехтактного бензинового двигателя внутреннего сгорания:
  1. Индукция (Топливо входит в состав)
  2. Компрессия
  3. Зажигание (Топливо сожжено)
  4. Эмиссия (выхлопной газ)

машина, которая преобразует одну форму энергии в механическую энергию

Двигатель , или , двигатель - это машина, предназначенная для преобразования одной формы энергии в механическую. [1] [2] Тепловые двигатели, как и двигатель внутреннего сгорания, сжигают топливо для создания тепла, которое затем используется для работы. Электродвигатели преобразуют электрическую энергию в механическое движение, пневматические моторы используют сжатый воздух, а заводные моторы в игрушечных игрушках используют упругую энергию. В биологических системах молекулярные двигатели, такие как миозины в мышцах, используют химическую энергию для создания сил и, в конечном итоге, движения.

Терминология [править]

Слово двигатель происходит от древнеанглийского двигателя , от латинского ingenium - корень слова гениального .Доиндустриальное оружие войны, такое как катапульты, требучеты и тараны, называлось осадных орудий , и знание того, как их создавать, часто считалось военной тайной. Слово джин , как в хлопок джин , является сокращением от двигатель . Большинство механических устройств, изобретенных во время промышленной революции, были описаны как двигатели - паровой двигатель является ярким примером. Однако оригинальные паровые двигатели, такие как Томас Савери, были не механическими, а насосами.Таким образом, пожарная машина в своем первоначальном виде была просто водяным насосом, при этом двигатель доставлялся в огонь лошадьми. [3]

В современном использовании термин «двигатель » обычно описывает устройства, такие как паровые двигатели и двигатели внутреннего сгорания, которые сжигают или иным образом потребляют топливо для выполнения механической работы, прикладывая крутящий момент или линейную силу (обычно в форме тяги). Устройства, преобразующие тепловую энергию в движение, обычно называют просто двигателями . [4] Примеры двигателей, которые создают крутящий момент, включают известные автомобильные бензиновые и дизельные двигатели, а также турбовалы. Примеры двигателей, которые производят тягу, включают турбовентиляторы и ракеты.

Когда был изобретен двигатель внутреннего сгорания, термин «двигатель » первоначально использовался для отличия его от парового двигателя, который в то время широко использовался для питания локомотивов и других транспортных средств, таких как паровые катки. Термин двигателя происходит от латинского глагола moto , который означает приводить в движение или поддерживать движение.Таким образом, мотор - это устройство, которое передает движение.

Двигатель и двигатель являются взаимозаменяемыми на стандартном английском языке. [5] В некоторых технических жаргонах два слова имеют разные значения, в которых двигатель - это устройство, которое сжигает или иным образом потребляет топливо, изменяя свой химический состав, а двигатель - это устройство, приводимое в действие электричеством, воздухом или гидравлическое давление, которое не меняет химический состав своего источника энергии. [6] [7] Однако в ракетостроении используется термин ракетный двигатель, хотя они потребляют топливо.

Тепловой двигатель также может служить первичным двигателем - компонентом, который преобразует поток или изменения давления жидкости в механическую энергию. [8] Автомобиль, приводимый в действие двигателем внутреннего сгорания, может использовать различные двигатели и насосы, но в конечном итоге все такие устройства получают свою мощность от двигателя. Другой способ взглянуть на это состоит в том, что двигатель получает энергию от внешнего источника, а затем преобразует ее в механическую энергию, в то время как двигатель создает энергию от давления (получаемого непосредственно от взрывной силы сгорания или другой химической реакции, или вторично от действие некоторой такой силы на другие вещества, такие как воздух, вода или пар). [9]

История [править]

Античность [править]

Простые машины, такие как дубинка и весло (примеры рычага), являются доисторическими. Более сложные двигатели, использующие энергию человека, животных, воду, ветер и даже энергию пара, уходят в глубь древности. Человеческая сила была сосредоточена на использовании простых двигателей, таких как лебедка-кабестан, лебедка или беговая дорожка, а также на веревках, шкивах и механизмах блокировки и захвата; эта сила передавалась обычно с умноженными силами и уменьшенной скоростью.Они использовались в кранах и на кораблях в Древней Греции, а также в шахтах, водяных насосах и осадных машинах в Древнем Риме. Авторы тех времен, включая Витрувия, Фронтина и Плиния Старшего, рассматривают эти двигатели как обычное дело, поэтому их изобретение может быть более древним. К 1-му веку нашей эры крупный рогатый скот и лошади использовались на мельницах, приводя в движение машины, подобные тем, которые приводились в действие людьми в более ранние времена.

По словам Страбона, водная мельница была построена в Каберии, в королевстве Митридата, в 1 веке до нашей эры.Использование водяных колес в мельницах распространилось по всей Римской империи в течение следующих нескольких веков. Некоторые были довольно сложными, с акведуками, дамбами и шлюзами для поддержания и направления воды, а также с системами зубчатых колес или зубчатых колес из дерева и металла для регулирования скорости вращения. Более сложные небольшие устройства, такие как механизм Antikythera, использовали сложные цепочки передач и циферблатов, чтобы действовать как календари или предсказывать астрономические события. В стихотворении Авсония в 4 веке нашей эры он упоминает о камнерезной пиле, приводимой в движение водой.Героя Александрии приписывают многим таким ветряным и паровым машинам в 1-м веке нашей эры, включая Aeolipile и торговый автомат, часто эти машины ассоциировались с поклонением, такие как анимированные алтари и автоматизированные двери храма.

Средневековье [править]

Средневековые мусульманские инженеры использовали шестерни в мельницах и водоподъемных машинах и использовали плотины в качестве источника воды, чтобы обеспечить дополнительную мощность для водяных мельниц и водоподъемных машин. [10] В средневековом исламском мире такие достижения позволили механизировать многие производственные задачи, ранее выполнявшиеся с помощью ручного труда.

В 1206 году аль-Джазари использовал систему шатунов для двух своих водоподъемных машин. Зачаточное паротурбинное устройство было описано Таки ад-Дином [11] в 1551 году и Джованни Бранкой [12] в 1629 году. [13]

В 13 веке твердотопливный ракетный двигатель был изобретен в Китай. Управляемый порохом, этот простейший двигатель внутреннего сгорания был неспособен обеспечить устойчивую мощность, но был полезен для приведения оружия в действие на высоких скоростях в направлении врагов в бою и для фейерверков.После изобретения это новшество распространилось по всей Европе.

Промышленная революция [править]

Двигатель Boulton & Watt 1788 г.

Паровая машина Watt была первым паровым двигателем, который использовал пар при давлении чуть выше атмосферного для привода поршня, чему способствовал частичный вакуум. Совершенствование конструкции парового двигателя Newcomen 1712 года, парового двигателя Watt, которое спорадически разрабатывалось с 1763 по 1775 год, стало большим шагом в развитии парового двигателя. Предлагая резкое повышение эффективности использования топлива, дизайн Джеймса Уотта стал синонимом паровых двигателей, во многом благодаря его деловому партнеру Мэтью Боултону.Это позволило быстро создать эффективные полуавтоматические заводы в ранее невообразимых масштабах в местах, где гидроэнергетика была недоступна. Дальнейшее развитие привело к появлению паровозов и значительному расширению железнодорожного транспорта.

Что касается поршневых двигателей внутреннего сгорания, они были испытаны во Франции в 1807 году де Ривазом и независимо друг от друга братьями Ниепсе. Теоретически они были разработаны Карно в 1824 году. [ требуется цитирование ] В 1853–57 годах Эудженио Барсанти и Феличе Маттеуччи изобрели и запатентовали двигатель, использующий принцип свободного поршня, который, возможно, был первым четырехтактным двигателем. [14]

Изобретение двигателя внутреннего сгорания, которое впоследствии было коммерчески успешным, было сделано в 1860 году Этьеном Ленуаром. [15]

В 1877 году цикл Отто был в состоянии дать намного более высокое отношение мощности к весу, чем паровые двигатели, и работал намного лучше для многих транспортных применений, таких как автомобили и самолеты.

Автомобили [править]

Первый коммерчески успешный автомобиль, созданный Карлом Бенцем, добавил интерес к легким и мощным двигателям.Легкий бензиновый двигатель внутреннего сгорания, работающий по четырехтактному циклу Отто, был наиболее успешным для легких автомобилей, в то время как более эффективный дизельный двигатель используется для грузовых автомобилей и автобусов. Однако в последние годы турбодизельные двигатели становятся все более популярными, особенно за пределами США, даже для довольно небольших автомобилей.

Горизонтально противоположные поршни [править]

В 1896 году Карлу Бенцу был выдан патент на конструкцию первого двигателя с горизонтально расположенными поршнями.Его конструкция создала двигатель, в котором соответствующие поршни движутся в горизонтальных цилиндрах и одновременно достигают верхней мертвой точки, таким образом автоматически балансируя друг друга в зависимости от их индивидуального импульса. Двигатели этой конструкции часто называют плоскими двигателями из-за их формы и низкого профиля. Они использовались в Volkswagen Beetle, Citroën 2CV, некоторых автомобилях Porsche и Subaru, многих мотоциклах BMW и Honda, а также двигателях воздушных винтов.

Продвижение [править]

Продолжение использования двигателя внутреннего сгорания для автомобилей отчасти связано с совершенствованием систем управления двигателем (бортовые компьютеры, обеспечивающие процессы управления двигателем и впрыск топлива с электронным управлением).Принудительная подача воздуха за счет турбонаддува и наддува повышает выходную мощность и эффективность двигателя. Подобные изменения были применены к меньшим дизельным двигателям, давая им почти такие же характеристики мощности, что и бензиновые двигатели. Это особенно очевидно в связи с популярностью автомобилей с меньшим двигателем с дизельным двигателем в Европе. Большие дизельные двигатели все еще часто используются в грузовиках и тяжелой технике, хотя они требуют специальной обработки, недоступной на большинстве заводов. Дизельные двигатели производят более низкие выбросы углеводородов и CO
2, но с более высоким уровнем твердых частиц и NO
x , чем бензиновые двигатели. [16] Дизельные двигатели также на 40% более экономичны, чем сопоставимые бензиновые двигатели. [16]

Увеличение мощности [править]

В первой половине 20-го века наблюдалась тенденция увеличения мощности двигателя, особенно в моделях США. [требуется уточнение ] Изменения конструкции включали в себя все известные методы увеличения мощности двигателя, включая увеличение давления в цилиндрах для повышения эффективности, увеличение размеров двигателя и увеличение скорости, с которой двигатель производит работу.Более высокие силы и давления, создаваемые этими изменениями, создавали проблемы с вибрацией и размерами двигателя, что приводило к более жестким, более компактным двигателям с V-образным расположением цилиндров и противостоянием, заменяющим более длинные прямолинейные устройства.

Эффективность сгорания [править]

Принципы проектирования, которым отдают предпочтение в Европе, из-за экономических и других ограничений, таких как более мелкие и крутые дороги, ориентированы на автомобили меньшего размера и соответствуют принципам проектирования, сосредоточенным на повышении эффективности сгорания небольших двигателей.Это позволило получить более экономичные двигатели с более ранними четырехцилиндровыми двигателями мощностью 40 лошадиных сил (30 кВт) и шестицилиндровыми двигателями мощностью до 80 лошадиных сил (60 кВт) по сравнению с американскими двигателями V-8 большого объема с номинальной мощностью в диапазон от 250 до 350 л.с., некоторые даже более 400 л.с. (от 190 до 260 кВт). [требуется уточнение ] [необходимо цитирование ]

Конфигурация двигателя [править]

Раньше при разработке автомобильных двигателей производился гораздо больший ассортимент двигателей, чем обычно используется сегодня.Двигатели варьировались от 1 до 16 цилиндров с соответствующими различиями в общем размере, весе, объеме двигателя и отверстиях цилиндров. В большинстве моделей использовались четыре цилиндра и номинальная мощность от 19 до 120 л.с. (от 14 до 90 кВт). Было построено несколько трехцилиндровых двухтактных моделей, в то время как большинство двигателей имели прямые или рядные цилиндры. Было несколько моделей V-типа и горизонтально противоположных двух- и четырехцилиндровых моделей. Верхние распредвалы часто использовались.Меньшие двигатели обычно имели воздушное охлаждение и располагались в задней части автомобиля; коэффициенты сжатия были относительно низкими. В 1970-х и 1980-х годах возрос интерес к улучшению экономии топлива, что привело к возврату к меньшим размерам V-6 и четырехцилиндровым двигателям с пятью клапанами на цилиндр для повышения эффективности. Bugatti Veyron 16.4 работает с двигателем W16, что означает, что два расположения цилиндров V8 расположены рядом друг с другом, чтобы создать форму W, разделяющую один и тот же коленчатый вал.

Самый большой из когда-либо созданных двигателей внутреннего сгорания - это 14-цилиндровый 2-тактный дизельный двигатель с турбонаддувом Wärtsilä-Sulzer RTA96-C, который был спроектирован для оснащения Emma Mærsk , самого большого контейнеровоза в мире, когда его запускали в 2006.Этот двигатель имеет массу 2300 тонн, а при работе на скорости 102 об / мин (1,7 Гц) вырабатывает более 80 МВт и может использовать до 250 тонн топлива в день.

Двигатель можно отнести к категории в соответствии с двумя критериями: форма энергии, которую он принимает для создания движения, и тип движения, которое он выводит.

Тепловой двигатель [править]

Двигатель внутреннего сгорания [править]

Двигатели внутреннего сгорания - это тепловые двигатели, приводимые в движение теплом процесса сгорания.

Двигатель внутреннего сгорания [править]
Трехтактный двигатель внутреннего сгорания, работающий на угольном газе

Двигатель внутреннего сгорания представляет собой двигатель, в котором сгорание топлива (обычно ископаемого топлива) происходит с окислителем (обычно воздухом) в камере сгорания.В двигателе внутреннего сгорания расширение газов высокой температуры и высокого давления, которые образуются в результате сгорания, непосредственно прикладывает усилие к компонентам двигателя, таким как поршни или лопатки турбины или сопло, и перемещая его на расстояние , генерирует механическую работу. [17] [18] [19] [20]

Двигатель внешнего сгорания [править]

Двигатель внешнего сгорания (двигатель ЕС) представляет собой тепловой двигатель, в котором внутренняя рабочая жидкость нагревается путем сгорания внешнего источника через стенку двигателя или теплообменник.Затем жидкость, расширяясь и воздействуя на механизм двигателя, производит движение и полезную работу. [21] Затем жидкость охлаждается, сжимается и используется повторно (замкнутый цикл) или (реже) сбрасывается, а холодная жидкость втягивается (воздушный двигатель открытого цикла).

«Сжигание» относится к сжиганию топлива с окислителем, для подачи тепла. Двигатели с аналогичной (или даже идентичной) конфигурацией и работой могут использовать подачу тепла из других источников, таких как ядерные, солнечные, геотермальные или экзотермические реакции, не связанные с горением; но тогда они строго не классифицируются как двигатели внешнего сгорания, а как внешние тепловые двигатели.

Рабочая жидкость может быть газом, как в двигателе Стирлинга, или паром, как в паровом двигателе, или органической жидкостью, такой как н-пентан, в цикле органического Ренкина. Жидкость может быть любого состава; газ является наиболее распространенным, хотя иногда используется даже однофазная жидкость. В случае парового двигателя жидкость меняет фазы между жидкостью и газом.

Воздухопроницаемые двигатели внутреннего сгорания [править]

Воздушно-реактивные двигатели внутреннего сгорания - это двигатели внутреннего сгорания, которые используют кислород в атмосферном воздухе для окисления («сжигания») топлива, а не для переноса окислителя, как в ракете.Теоретически, это должно привести к лучшему удельному импульсу, чем для ракетных двигателей.

Непрерывный поток воздуха проходит через дыхательный двигатель. Этот воздух сжимается, смешивается с топливом, воспламеняется и удаляется в качестве выхлопного газа.

Примеры

Типичные воздушно-реактивные двигатели включают в себя:

реактивный реактивный двигатель
Турбовинтовой двигатель
Воздействие на окружающую среду [редактировать]

Работа двигателей обычно оказывает негативное влияние на качество воздуха и уровень окружающего звука.Все больше внимания уделяется характеристикам автомобильных систем, способствующих загрязнению. Это создало новый интерес к альтернативным источникам энергии и усовершенствованиям двигателя внутреннего сгорания. Хотя появилось несколько электромобилей с ограниченным производством на батарейках, они не оказались конкурентоспособными из-за затрат и эксплуатационных характеристик. [ цитирование необходимо ] В 21-м веке дизельный двигатель становится все более популярным среди автовладельцев.Тем не менее, бензиновый двигатель и дизельный двигатель с их новыми устройствами контроля выбросов для улучшения характеристик выбросов еще не испытывали значительных проблем. [ цитирование необходимо ] Ряд производителей представили гибридные двигатели, в основном с небольшим бензиновым двигателем в сочетании с электродвигателем и большим аккумуляторным блоком, но они также еще не достигли значительных успехов на рынке. бензиновых и дизельных двигателей.

Качество воздуха [редактировать]

Выхлопные газы из двигателя с искровым зажиганием состоят из следующего: азот от 70 до 75% (по объему), водяной пар от 10 до 12%, диоксид углерода от 10 до 13.5%, водород от 0,5 до 2%, кислород от 0,2 до 2%, монооксид углерода: от 0,1 до 6%, несгоревшие углеводороды и продукты частичного окисления (например, альдегиды) от 0,5 до 1%, монооксид азота от 0,01 до 0,4%, закись азота <100 ч / млн. диоксид серы от 15 до 60 частей на миллион, следы других соединений, таких как присадки к топливу и смазочные материалы, а также соединения галогенов и металлов и другие частицы. [22] Окись углерода очень токсична и может вызвать отравление угарным газом, поэтому важно избегать скопления газа в замкнутом пространстве.Каталитические нейтрализаторы могут уменьшить токсичные выбросы, но не полностью устранить их. Кроме того, выбросы парниковых газов, главным образом углекислого газа, в результате широко распространенного использования двигателей в современном промышленно развитом мире способствуют глобальному парниковому эффекту - главной проблеме глобального потепления.

Негорючие тепловые двигатели [править]

Некоторые двигатели преобразуют тепло от не горючих процессов в механическую работу, например, атомная электростанция использует тепло от ядерной реакции для производства пара и приводит в движение паровой двигатель, или газовая турбина в ракетном двигателе может приводиться в действие путем разложения перекиси водорода.Помимо другого источника энергии, двигатель часто проектируется так же, как двигатель внутреннего или внешнего сгорания. Другая группа не горючих двигателей включает термоакустические тепловые двигатели (иногда называемые «двигателями ТА»), которые представляют собой термоакустические устройства, которые используют звуковые волны высокой амплитуды для накачки тепла из одного места в другое или, наоборот, используют разность тепла для создания звуковых волн высокой амплитуды. , В целом, термоакустические двигатели можно разделить на устройства со стоячей и бегущей волной. [23]

Нетепловой двигатель с химическим приводом [править]

Нетепловые двигатели обычно приводятся в действие химической реакцией, но не являются тепловыми двигателями. Примеры включают в себя:

Электродвигатель [править]

Электродвигатель использует электрическую энергию для производства механической энергии, обычно через взаимодействие магнитных полей и проводников с током. Обратный процесс, производящий электрическую энергию из механической энергии, осуществляется с помощью генератора или динамо.Тяговые двигатели, используемые на транспортных средствах, часто выполняют обе задачи. Электродвигатели могут работать как генераторы и наоборот, хотя это не всегда практично. Электродвигатели распространены повсеместно, и их можно найти в таких разнообразных применениях, как промышленные вентиляторы, воздуходувки и насосы, станки, бытовая техника, электроинструменты и дисководы. Они могут получать питание от постоянного тока (например, от портативного устройства с питанием от батареи или транспортного средства) или от переменного тока от центральной электрической распределительной сети.Самые маленькие моторы можно найти в электрических наручных часах. Средние двигатели с высокими стандартизированными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для приведения в движение больших судов и для таких целей, как трубопроводные компрессоры, с номинальной мощностью в тысячи киловатт. Электродвигатели могут быть классифицированы по источнику электроэнергии, по их внутренней конструкции и по их применению.

Физический принцип производства механической силы при взаимодействии электрического тока и магнитного поля был известен еще в 1821 году.Электродвигатели с возрастающей эффективностью были построены в течение 19-го века, но коммерческая эксплуатация электродвигателей в больших масштабах требовала эффективных электрических генераторов и электрических распределительных сетей.

Для сокращения потребления электроэнергии двигателями и связанными с ними углеродными следами различные регулирующие органы во многих странах ввели и внедрили законодательство, поощряющее производство и использование более эффективных электродвигателей.Хорошо сконструированный двигатель может преобразовывать более 90% входной энергии в полезную мощность в течение десятилетий. [24] Когда эффективность двигателя повышается даже на несколько процентных пунктов, экономия в киловатт-часах (и, следовательно, в стоимости) огромна. Эффективность электрической энергии типичного промышленного асинхронного двигателя может быть улучшена путем: 1) уменьшения электрических потерь в обмотках статора (например, путем увеличения площади поперечного сечения проводника, улучшения техники обмотки и использования материалов с более высоким электрическим напряжением). проводимости, такие как медь), 2) снижение электрических потерь в катушке ротора или отливки (например,Например, используя материалы с более высокой электропроводностью, такие как медь, 3) уменьшая магнитные потери, используя магнитную сталь более высокого качества, 4) улучшая аэродинамику двигателей, чтобы уменьшить механические потери в обмотке, 5) улучшая подшипники, чтобы уменьшить потери на трение, и 6) минимизация производственных допусков. Для дальнейшего обсуждения этой темы см. Премиум эффективность.)

По соглашению, электрический двигатель относится к железнодорожному электровозу, а не к электрическому двигателю.

Двигатель с физическим питанием [править]

Некоторые двигатели приводятся в действие потенциальной или кинетической энергией, например, некоторые фуникулеры, гравитационные плоскости и конвейеры канатных дорог использовали энергию от движущейся воды или камней, а некоторые часы имеют вес, который падает под действием силы тяжести. Другие формы потенциальной энергии включают сжатые газы (например, пневматические моторы), пружины (заводные моторы) и резинки.

Исторические военные осадные машины включали в себя большие катапульты, требучеты и (в некоторой степени) тараны с питанием от потенциальной энергии.

Пневматический двигатель [править]

Пневматический двигатель - это машина, которая преобразует потенциальную энергию в виде сжатого воздуха в механическую работу. Пневматические двигатели обычно преобразуют сжатый воздух в механическую работу с помощью линейного или вращательного движения. Линейное движение может исходить либо от диафрагмы, либо от поршневого привода, тогда как вращательное движение обеспечивается либо лопастным пневмодвигателем, либо поршневым пневмодвигателем. Пневматические двигатели нашли широкое распространение в индустрии ручных инструментов, и постоянно предпринимаются попытки расширить их использование в транспортной отрасли.Однако пневматические двигатели должны преодолевать недостатки эффективности, прежде чем их можно будет рассматривать в качестве жизнеспособного варианта в транспортной отрасли.

Гидравлический мотор [править]

Гидравлический двигатель получает мощность от жидкости под давлением. Этот тип двигателя используется для перемещения тяжелых грузов и привода машин. [25]

Производительность [править]

Следующие используются при оценке производительности двигателя.

Скорость [править]

Скорость относится к вращению коленчатого вала в поршневых двигателях и скорости вращения роторов компрессора / турбины и роторов электродвигателя.Измеряется в оборотах в минуту (об / мин).

Тяга [править]

Тяга - это сила, действующая на двигатель самолета или его пропеллер после того, как он ускорил проходящий через него воздух.

Крутящий момент [править]

Крутящий момент - это крутящий момент на валу, который рассчитывается путем умножения силы, вызвавшей момент, на расстояние от вала.

Мощность [править]

Мощность - это показатель того, как быстро выполняется работа.

Эффективность [править]

Эффективность - это показатель того, сколько топлива расходуется на производство электроэнергии.

Уровни звука [править]

Шум транспортного средства в основном из-за двигателя на низких скоростях, а также из-за шин и воздуха, проходящего мимо автомобиля на более высоких скоростях. [26] Электродвигатели тише, чем двигатели внутреннего сгорания. Тяговые двигатели, такие как турбовентиляторы, турбореактивные двигатели и ракеты, издают наибольшее количество шума благодаря тому, как их высокоскоростные выхлопные потоки, создающие тягу, взаимодействуют с окружающим неподвижным воздухом. Технология шумоподавления включает в себя глушители системы впуска и выпуска (глушители) на бензиновых и дизельных двигателях и вкладыши шумоподавления на входах в турбовентилятор. Hogan, C. Michael (сентябрь 1973). «Анализ дорожного шума». Журнал воды, воздуха и загрязнения почвы . 2 (3): 387–92. Bibcode: 1973WASP .... 2..387H. DOI: 10.1007 / BF00159677. ISSN 0049-6979.

Список литературы [править]

Внешние ссылки [редактировать]

Wikimedia Commons имеет СМИ, связанные с Двигатели .
Посмотрите двигатель в Викисловарь, бесплатный словарь.
Посмотрите motor в Викисловарь, бесплатный словарь.
,

Смотрите также


avtovalik.ru © 2013-2020