Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Какой двигатель лучше коллекторный или бесколлекторный


В чем разница между коллекторными и бесколлекторными моторами?

Вступление

Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?

Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Минусы коллекторных моторов

Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.

Принцип работы бесколлекторного мотора

Здесь все наоборот, у моторов бесколлекторного типа отсутствуют как щетки так и коллектор. Магниты в них располагаются строго вокруг вала и выполняют функцию ротора. Обмотки, которые имеют уже несколько магнитных полюсов, размещаются вокруг него. На роторе бесколлектоных моторов устанавливается так называемый сенсор (датчик) который будет контролировать его положение и передавать эту информацию процессору который работает в купе с регулятором скорости вращения (обмен данными о положении ротора происходит более 100 раз в секунду). На выходе мы получаем более плавную работу самого мотора с максимальной отдачей.

Бесколлекторные моторы могут быть с датчиком (сенсором) и без него. Отсутствие датчика незначительно снижает эффективность работы мотора, поэтому их отсутствие вряд ли расстроит новичка, но зато, приятно удивит ценник. Отличить друг от друга их просто. У моторов с датчиком, помимо 3-х толстых проводов питания есть еще дополнительный шлейф из тонких, которые идут к регулятору скорости. Не стоит гнаться за моторами с датчиком как новичку так и любителю, т.к их потенциал оценит только профи, а остальные просто переплатят, причем значительно.

Плюсы бесколлекторных моторов

Почти нет изнашиваемых деталей. Почему «почти», потому что вал ротора устанавливается на подшипники, которые в свою очередь имеют свойство изнашиваться, но ресурс у них крайне велик, да и взаимозаменяемость их очень проста. Такие моторы очень надежны и эффективны. Устанавливается датчик контроля положения ротора. На коллекторных моторах работа щеток всегда сопровождается искрением, что впоследствии вызывает помехи в работе радиоаппаратуры. Так вот у бесколлектоных, как вы уже поняли, эти проблемы исключены. Нет трения, нет перегрева, что так же является существенным преимуществом. По сравнению с коллекторными моторами не требуют дополнительного обслуживания в процессе эксплуатации.

Минусы бесколлекторных моторов

У таких моторов минус только один, это цена. Но если посмотреть на это с другой стороны, и учесть тот факт что эксплуатация бесколлекторных моторов освобождает владельца сразу от таких заморочек как замена пружин, якоря, щеток, коллекторов, то вы с легкостью отдадите предпочтение в пользу последних.

Бесщеточный электродвигатель постоянного тока - Wikipedia

Синхронный электродвигатель с питанием от инвертора

Мотор от 3,5 в дисководе. Катушки, расположенные радиально, изготовлены из медной проволоки, покрытой синей изоляцией. Ротор (вверху справа) был снят и перевернут. Серое кольцо внутри чашки - это постоянный магнит. Этот конкретный двигатель является с опережением со статором внутри ротора. Бесщеточный канальный вентилятор постоянного тока. Две катушки на печатной плате взаимодействуют с шестью круглыми постоянными магнитами в блоке вентилятора.

Бесщеточный электродвигатель постоянного тока (двигатель BLDC или двигатель BL ), также известный как двигатель с электронной коммутацией (двигатель ECM или EC ) и синхронных двигателей постоянного тока , являются синхронными двигателями, приводимыми в действие электричество постоянного тока (постоянного тока) через инвертор или импульсный источник питания, который вырабатывает электричество в форме переменного тока (переменного тока) для управления каждой фазой двигателя через контроллер с обратной связью. Контроллер подает импульсы тока на обмотки двигателя, которые контролируют скорость и крутящий момент двигателя.

Конструкция системы бесщеточного двигателя, как правило, аналогична синхронному двигателю с постоянными магнитами (PMSM), но также может быть переключаемым реактивным двигателем или асинхронным (асинхронным) двигателем. Они также могут использовать неодимовые магниты и быть опережающими (статор окружен ротором) или внутренними (ротор окружен статором). [1]

Преимущества бесщеточного двигателя перед щеточными двигателями - это высокое соотношение мощности и веса, высокая скорость, электронное управление и низкие эксплуатационные расходы.Бесщеточные двигатели находят применение в таких местах, как компьютерная периферия (дисководы, принтеры), ручные электроинструменты и транспортные средства, от модельных самолетов до автомобилей.

Бесщеточные и матовые двигатели [править]

щеточных двигателей постоянного тока были изобретены в 19 веке и являются распространенными. Бесщеточные двигатели постоянного тока стали возможными благодаря развитию твердотельной электроники в 1960-х годах. [2]

Электродвигатель развивает крутящий момент путем изменения полярности вращающихся магнитов, прикрепленных к ротору, вращающейся части машины, и неподвижных магнитов на статоре, который окружает ротор. [3] Один или оба набора магнитов представляют собой электромагниты, изготовленные из катушки из проволоки, намотанной вокруг железного сердечника. Постоянный ток, проходящий через обмотку провода, создает магнитное поле, обеспечивающее мощность, которая запускает двигатель. Однако каждый раз, когда ротор вращается на 180 ° (на пол-оборота), положение северного и южного полюсов на роторе меняется на противоположное. Если бы магнитное поле полюсов оставалось неизменным, это привело бы к изменению крутящего момента на роторе каждые пол оборота, и поэтому средний крутящий момент был бы равен нулю, а ротор не вращался. [4] [5] Таким образом, в двигателе постоянного тока для создания крутящего момента в одном направлении направление электрического тока через обмотки должно быть обращено при каждом повороте ротора на 180 ° (или отключаться во время вращения). время, когда это в неправильном направлении). Это меняет направление магнитного поля при вращении ротора, поэтому крутящий момент на роторе всегда одинаковый.

Коммутатор [править]

В щеточных двигателях, изобретенных в 19 веке, это делается с помощью поворотного переключателя на валу двигателя, называемого коммутатором. [3] [5] [4] Он состоит из вращающегося цилиндра, разделенного на несколько металлических контактных сегментов на роторе. Сегменты соединены с обмотками проводника на роторе. Два или более неподвижных контакта, называемых «щетками», изготовленных из мягкого проводника, такого как графит, прижимаются к коммутатору, создавая скользящий электрический контакт с последовательными сегментами при повороте ротора, обеспечивая электрический ток для обмоток. Каждый раз, когда ротор вращается на 180 °, коммутатор меняет направление электрического тока, приложенного к данной обмотке, в обратном направлении, поэтому магнитное поле создает крутящий момент в одном направлении.

Недостатки коммутатора [править]

Коммутатор имеет много технических недостатков, что привело к снижению использования щеточных двигателей. Эти недостатки: [3] [5] [4]

  • Трение щеток, скользящих вдоль вращающихся сегментов коммутатора, вызывает потери мощности, которые могут быть значительными в двигателе малой мощности.
  • Мягкий материал щетки изнашивается из-за трения, создавая пыль, и в конечном итоге щетки необходимо заменить.Это делает коммутируемые двигатели непригодными для применений с малыми частицами или в герметичных условиях, таких как двигатели с жестким диском, и для применений, требующих работы без технического обслуживания.
  • Сопротивление скользящего контакта щетки вызывает падение напряжения в цепи двигателя, называемое , падение щетки , которое потребляет энергию.
  • Многократное резкое переключение тока через индуктивность обмоток вызывает искры на контактах коммутатора, которые представляют опасность пожара во взрывоопасных средах, источник деградирующего ультрафиолетового излучения, [, цитирование необходимо ] и источник электронного шум, который может вызвать электромагнитные помехи в соседних микроэлектронных цепях.

В течение последних ста лет мощные щеточные двигатели постоянного тока, некогда являвшиеся основой промышленности, были заменены синхронными двигателями переменного тока. В настоящее время щеточные двигатели используются только в приложениях с низким энергопотреблением или там, где доступен только постоянный ток, но вышеуказанные недостатки ограничивают их использование даже в этих приложениях. Бесщеточные моторы были изобретены для решения этих проблем. [ цитирование необходимо ]

Бесщеточное решение [править]

Развитие полупроводниковой электроники в 1970-х годах позволило исключить коммутатор в двигателях постоянного тока, а также щетки в двигателях с постоянными магнитами.В бесщеточных двигателях постоянного тока электронная сервосистема заменяет контакты механического коммутатора. [3] [5] [4] Электронный датчик определяет угол ротора и управляет полупроводниковыми переключателями, такими как транзисторы, которые переключают ток через обмотки, либо изменяя направление тока, либо в некоторых двигателях выключая его, в нужное время каждое вращение вала на 180 °, чтобы электромагниты создавали крутящий момент в одном направлении. Исключение скользящего контакта позволяет бесщеточным двигателям иметь меньшее трение и увеличить срок службы; срок их службы ограничен сроком службы подшипников.

Моторы постоянного тока с щеткой развивают максимальный крутящий момент в неподвижном состоянии, линейно уменьшаясь при увеличении скорости. [6] Некоторые ограничения щеточных двигателей можно преодолеть с помощью бесщеточных двигателей; они включают в себя более высокую эффективность и меньшую подверженность механическому износу. Эти преимущества достигаются за счет потенциально менее надежной, более сложной и более дорогой управляющей электроники.

Типичный бесщеточный двигатель имеет постоянные магниты, которые вращаются вокруг неподвижной арматуры, устраняя проблемы, связанные с подключением тока к движущейся арматуре.Электронный контроллер заменяет узел щетка / коммутатор щеточного двигателя постоянного тока, который непрерывно переключает фазу на обмотки для поддержания вращения двигателя. Контроллер выполняет аналогичное временное распределение мощности, используя твердотельную цепь, а не систему щетка / коммутатор.

Бесщеточные двигатели имеют ряд преимуществ по сравнению с щеточными двигателями постоянного тока, включая высокое отношение крутящего момента к массе, больший крутящий момент на ватт (повышенная эффективность), повышенную надежность, уменьшенный шум, более длительный срок службы (без эрозии щетки и коммутатора), устранение ионизирующих искр от коммутатор и общее снижение электромагнитных помех (EMI).Без обмоток на роторе они не подвергаются центробежным силам, а поскольку обмотки поддерживаются корпусом, они могут охлаждаться за счет теплопроводности, не требуя воздушного потока внутри двигателя для охлаждения. Это, в свою очередь, означает, что внутренние части двигателя могут быть полностью закрыты и защищены от грязи или других посторонних веществ.

Коммутация бесщеточного двигателя может быть реализована в программном обеспечении с использованием микроконтроллера или микропроцессорного компьютера, или альтернативно может быть реализована с использованием аналоговых или цифровых схем.Коммутация с электроникой вместо щеток обеспечивает большую гибкость и возможности, недоступные для щеточных двигателей постоянного тока, в том числе ограничение скорости, «микрошаг» для медленного и точного управления движением и удерживающий момент в неподвижном состоянии. Программное обеспечение контроллера может быть настроено для конкретного двигателя, используемого в приложении, что приводит к большей эффективности коммутации.

Максимальная мощность, которая может быть применена к бесщеточному двигателю, ограничена почти исключительно теплом; [ цитирование необходимо ] слишком большое количество тепла ослабляет магниты и может повредить изоляцию обмоток.

При преобразовании электричества в механическую мощность бесщеточные двигатели более эффективны, чем щеточные. Это улучшение в значительной степени связано с частотой, с которой переключается электричество, определяемой обратной связью датчика положения. Дополнительный выигрыш обусловлен отсутствием щеток, что снижает механическую потерю энергии из-за трения. Повышенная эффективность является наибольшей в области холостого хода и низкой нагрузки на кривой производительности двигателя. [требуется цитирование ] При высоких механических нагрузках бесщеточные двигатели и высококачественные щеточные двигатели сопоставимы по эффективности. [ требуется цитирование ] [ оспаривается - обсуждается ]

Условия и требования, в которых производители используют двигатели постоянного тока бесщеточного типа, включают необслуживаемую работу, высокие скорости и работу, в которой искрение опасно (например, взрывоопасная среда ) или может повлиять на чувствительное к электронике оборудование.

Конструкция бесщеточного двигателя напоминает шаговый двигатель, но двигатели имеют важные различия из-за различий в реализации и эксплуатации.В то время как шаговый двигатель часто останавливается с ротором в определенном угловом положении, бесщеточный двигатель обычно предназначен для непрерывного вращения. Оба типа двигателей могут иметь, но обычно не включают датчик положения ротора для внутренней обратной связи. Как шаговый двигатель, хорошо разработанный бесщеточный двигатель может удерживать конечный крутящий момент при нулевых оборотах.

Реализации контроллеров [править]

Поскольку контроллер реализует функциональность традиционных щеток, ему требуется ориентация / положение ротора (относительно катушек статора).Это происходит автоматически в щеточном двигателе благодаря фиксированной геометрии вала ротора и щеток. В некоторых конструкциях используются датчики эффекта Холла или поворотный датчик для непосредственного измерения положения ротора. Другие измеряют противо-ЭДС в ненарушенных катушках, чтобы вывести положение ротора, устраняя необходимость в отдельных датчиках с эффектом Холла, и поэтому их часто называют контроллерами без датчика .

Типичный контроллер содержит три двунаправленных выхода (то есть трехфазный выход с частотным управлением), которые управляются логической схемой.Простые контроллеры используют компараторы, чтобы определить, когда выходная фаза должна быть усовершенствована, в то время как более продвинутые контроллеры используют микроконтроллер для управления ускорением, скоростью управления и точной настройкой эффективности.

Контроллеры, которые определяют положение ротора на основе противо-ЭДС, сталкиваются с дополнительными трудностями при инициировании движения, поскольку при неподвижном роторе противо-ЭДС не создается. Обычно это достигается путем начала поворота с произвольной фазы, а затем перехода к правильной фазе, если она окажется неправильной.Это может привести к кратковременному вращению двигателя назад, что еще больше усложнит последовательность запуска. Другие контроллеры без датчиков способны измерять насыщение обмотки, вызванное положением магнитов, определяющих положение ротора.

Двумя ключевыми параметрами производительности бесщеточных двигателей постоянного тока являются константы двигателя KT {\ displaystyle K_ {T}} (постоянная крутящего момента) и Ke {\ displaystyle K_ {e}} (постоянная противо-ЭДС, также известная как постоянная скорости KV = 1Ke {\ displaystyle K_ {V} = {1 \ over K_ {e}}}). [7]

Вариации в строительстве [править]

Схема для стилей обмотки дельта и вай.(Это изображение не иллюстрирует индуктивные и генераторные свойства двигателя) Бесщеточные двигатели

могут быть сконструированы в нескольких различных физических конфигурациях: в «обычной» (также известной как inrunner ) конфигурации постоянные магниты являются частью ротора. Три обмотки статора окружают ротор. В конфигурации с опережением (или с внешним ротором) радиальное соотношение между катушками и магнитами меняется на обратное; катушки статора образуют центр (сердечник) двигателя, в то время как постоянные магниты вращаются внутри нависающего ротора, который окружает сердечник.Тип плоского или осевого потока, используемый там, где существуют ограничения по пространству или форме, использует пластины статора и ротора, установленные лицом к лицу. У аутраннеров обычно больше полюсов, триплеты установлены для поддержания трех групп обмоток и имеют более высокий крутящий момент при низких оборотах. Во всех бесщеточных двигателях катушки неподвижны.

Существует две общие конфигурации электрических обмоток; дельта-конфигурация соединяет три обмотки друг с другом (последовательные цепи) в форме треугольника, и питание подается на каждое из соединений.Конфигурация Wye ( Y--образная), которую иногда называют звездообразной обмоткой, соединяет все обмотки с центральной точкой (параллельные цепи), и питание подается на оставшийся конец каждой обмотки.

Двигатель с обмотками в треугольной конфигурации обеспечивает низкий крутящий момент на низкой скорости, но может давать более высокую максимальную скорость. Конфигурация Wye дает высокий крутящий момент на низкой скорости, но не на максимальной скорости.

Хотя конструкция двигателя сильно влияет на эффективность, витая обмотка обычно более эффективна.В обмотках, соединенных треугольником, половину напряжения прикладывают к обмоткам, примыкающим к ведомому выводу (по сравнению с обмоткой непосредственно между ведомыми выводами), увеличивая резистивные потери. Кроме того, обмотки могут позволить высокочастотным паразитным электрическим токам циркулировать полностью внутри двигателя. Обмотка с соединением по краям не содержит замкнутого контура, в котором могут протекать паразитные токи, предотвращая такие потери.

С точки зрения контроллера, два типа обмоток обрабатываются абсолютно одинаково.

приложений [править]

Четыре полюса на статоре двухфазного бесщеточного двигателя. Это часть вентилятора охлаждения компьютера; ротор был удален. Бесщеточные двигатели

выполняют многие функции, изначально выполняемые щеточными двигателями постоянного тока, но стоимость и сложность управления не позволяют бесщеточным двигателям полностью заменить щеточные двигатели в областях с наименьшими затратами. Тем не менее, бесщеточные двигатели стали доминировать во многих приложениях, особенно таких устройствах, как компьютерные жесткие диски и CD / DVD-плееры.Малые охлаждающие вентиляторы в электронном оборудовании питаются исключительно от бесщеточных двигателей. Их можно найти в беспроводных электроинструментах, где повышенная эффективность двигателя приводит к более длительным периодам использования, прежде чем батарею необходимо зарядить. Низкоскоростные, маломощные бесщеточные двигатели используются в проигрывателях с прямым приводом для граммофонных пластинок. [ цитирование необходимо ]

Транспорт [редактировать]

Бесщеточные двигатели встречаются в электромобилях, гибридных транспортных средствах и личных транспортных средствах. [ цитирование необходимо ] В большинстве электрических велосипедов используются бесщеточные двигатели, которые иногда встроены в саму ступицу колеса, при этом статор неподвижно прикреплен к оси, а магниты прикреплены к колесу и вращаются вместе с ним. [8] Тот же принцип применяется в самобалансирующихся колесах самоката. Большинство моделей RC с электропитанием используют бесщеточные двигатели из-за их высокой эффективности.

Аккумуляторные инструменты [править]

Бесщеточные двигатели

используются во многих современных беспроводных инструментах, включая некоторые триммеры для струн, воздуходувки для листьев, пилы (циркулярные или возвратно-поступательные) и дрели / приводные устройства.Преимущества бесщеточных по сравнению с щеточными двигателями (малый вес, высокая эффективность) важнее для ручных инструментов с питанием от батарей, чем для больших стационарных инструментов, подключенных к розетке переменного тока, поэтому в этом сегменте рынка их внедрение было более быстрым.

Отопление и вентиляция [править]

В отраслях отопления, вентиляции и кондиционирования воздуха (HVAC) и холодильной промышленности наблюдается тенденция к использованию бесщеточных двигателей вместо различных типов двигателей переменного тока. Наиболее существенной причиной перехода на бесщеточный двигатель является резкое снижение мощности, необходимой для их работы, по сравнению с обычным двигателем переменного тока. [9] В то время как двигатели с затененными полюсами и постоянными разделенными конденсаторами когда-то доминировали в качестве двигателя вентилятора, многие вентиляторы теперь работают с использованием бесщеточного двигателя. [ когда? ] Некоторые вентиляторы также используют бесщеточные двигатели для повышения общей эффективности системы.

В дополнение к более высокой эффективности бесщеточного двигателя, в системах отопления, вентиляции и кондиционирования воздуха (особенно в системах с переменной скоростью и / или модуляцией нагрузки) используются бесщеточные двигатели, поскольку встроенный микропроцессор обеспечивает программируемость, контроль воздушного потока и последовательную связь.Некоторые потолочные и переносные вентиляторы также оснащены этим двигателем. Они рекламируют двигатель с высокой энергоэффективностью и тише, чем большинство поклонников.

Промышленное машиностроение [редактировать]

Применение бесщеточных двигателей постоянного тока в промышленном инжиниринге в основном сфокусировано на технологии промышленного проектирования или промышленной автоматизации. В производстве бесщеточные двигатели в основном используются для систем управления движением, позиционирования или приведения в действие.

Бесщеточные двигатели идеально подходят для производственных применений из-за их высокой удельной мощности, хороших скоростных характеристик и крутящего момента, высокой эффективности, широкого диапазона скоростей и низких эксплуатационных расходов.Наиболее распространенные области применения бесщеточных двигателей постоянного тока в промышленном строительстве - это линейные двигатели, серводвигатели, приводы для промышленных роботов, двигатели привода экструдера и приводы подачи для станков с ЧПУ. [10]

Системы управления движением [править]
Бесщеточные двигатели

обычно используются в качестве приводов насосов, вентиляторов и шпинделей в приложениях с регулируемой или переменной скоростью, поскольку они способны развивать высокий крутящий момент с хорошим откликом скорости. Кроме того, они могут быть легко автоматизированы для дистанционного управления.Благодаря своей конструкции они имеют хорошие тепловые характеристики и высокую энергоэффективность. [11] Для получения отклика с переменной скоростью бесщеточные двигатели работают в электромеханической системе, которая включает в себя электронный контроллер двигателя и датчик обратной связи положения ротора. [12]

Бесщеточные двигатели постоянного тока широко используются в качестве сервомоторов для сервоприводов станков. Серводвигатели используются для механического перемещения, позиционирования или точного управления движением. Шаговые двигатели постоянного тока также могут быть использованы в качестве серводвигателей; однако, поскольку они работают с управлением с разомкнутым контуром, они, как правило, демонстрируют пульсации крутящего момента. [13] Бесщеточные двигатели постоянного тока больше подходят в качестве серводвигателей, поскольку их точное движение основано на замкнутой системе управления, которая обеспечивает жесткое управление и стабильную работу. [ цитирование необходимо ]

Системы позиционирования и приведения в действие [править]
Бесщеточные двигатели

используются для промышленного позиционирования и приведения в действие. [14] Для сборочных роботов [15] бесщеточных шаговых или серводвигателей используются для позиционирования детали для сборки или инструмента для производственного процесса, такого как сварка или покраска. [ оспаривается - обсуждается ] Бесщеточные двигатели также могут использоваться для привода линейных приводов. [16]

Двигатели, которые непосредственно производят линейное движение, называются линейными двигателями. Преимущество линейных двигателей состоит в том, что они могут производить линейное движение без необходимости использования системы передачи, такой как шариковые винты, ходовой винт, реечный механизм, кулачок, зубчатые колеса или ремни, которые были бы необходимы для вращающихся двигателей. Известно, что системы передачи обеспечивают меньшую чувствительность и сниженную точность.Бесщеточные линейные двигатели постоянного тока с прямым приводом состоят из щелевого статора с магнитными зубьями и подвижного привода, который имеет постоянные магниты и обмотки катушки. Для получения линейного движения контроллер двигателя возбуждает обмотки катушки в приводе, вызывая взаимодействие магнитных полей, приводящее к линейному движению. [10] Трубчатые линейные двигатели - это еще одна форма конструкции линейного двигателя, работающая аналогичным образом.

Авиамоделирование [редактировать]

Управляемый микропроцессором двигатель BLDC для микроуправляемого самолета.Этот двигатель с внешним ротором весит 5 г и потребляет примерно 11 Вт.

Бесщеточные двигатели стали популярным выбором моделей для самолетов, включая вертолеты и беспилотники. Их благоприятное соотношение мощности к весу и широкий диапазон доступных размеров, от менее 5 грамм до больших двигателей, рассчитанных на мощность в диапазоне выходных киловатт, произвели революцию на рынке моделей с электрическим приводом, вытеснив практически все щеточные электродвигатели, кроме для маломощных недорогих, часто игрушечных самолетов. [ цитирование необходимо ] Они также способствовали росту простых, легких электрических моделей самолетов, а не предыдущих двигателей внутреннего сгорания, приводивших в действие более крупные и тяжелые модели. Увеличенное отношение мощности к весу современных батарей и бесщеточных двигателей позволяет моделям подниматься вертикально, а не подниматься постепенно. Низкий уровень шума и отсутствие массы по сравнению с двигателями внутреннего сгорания с небольшим раскаленным топливом является еще одной причиной их популярности.

Правовые ограничения на использование модельных самолетов с приводом от двигателя внутреннего сгорания в некоторых странах, чаще всего из-за возможного шумового загрязнения - даже с помощью специально разработанных глушителей для почти всех модельных двигателей, доступных в последние десятилетия - также поддержали этот сдвиг к мощным электрическим системам.

Радиоуправляемые машины [править]

Их популярность также возросла в области радиоуправляемых автомобилей. Бесщеточные двигатели были разрешены для гоночных автомобилей RC в Северной Америке в соответствии с Radio Operated Auto Racing (ROAR) с 2006 года. Эти двигатели обеспечивают большую мощность для гонщиков RC и, в сочетании с соответствующей передачей и литиевым полимером с высоким разрядом (Li) -Po) или литий-железо-фосфатные (LiFePO4) батареи, эти автомобили могут развивать скорость свыше 160 километров в час (99 миль в час). [17]

Бесщеточные двигатели способны генерировать больший крутящий момент и имеют более высокую пиковую скорость вращения по сравнению с нитро- или бензиновыми двигателями. Пиковая мощность двигателей Nitro составляет 46 800 об / мин и 2,2 кВт (3,0 л.с.), в то время как меньший бесщеточный двигатель может развивать скорость до 50 000 об / мин и 3,7 кВт (5,0 л.с.). Большие бесщеточные RC-моторы могут развивать мощность до 10 кВт (13 л.с.) и 28 000 об / мин для питания моделей одной пятой шкалы.

См. Также [править]

Список литературы [править]

  1. ^ Разница в управлении между асинхронным двигателем переменного тока и бесщеточным двигателем постоянного тока? - Электротехническая биржа. Бобби Бернштейн (15 января 2015 года). "Топ 4 самых быстрых RC автомобилей для продажи в мире". Heavy.com . Получено 2 февраля 2015 года. Что касается самого быстрого RC-автомобиля, доступного для продажи, то это суперкар Traxxas XO-1. XO-1 поражает 100 миль в час, с надлежащими батареями LiPos. Технические характеристики производителя указывают на использование «Бесщеточный двигатель Traxxas Big Block»

Дополнительное чтение [править]

  • Яцек Ф.Gieras; Mitchell Wing (2002), Технология двигателей с постоянными магнитами: разработка и применение , CRC Press, ISBN 9780824743949
  • Krishnan Ramu (2009), Синхронные и бесщеточные двигатели постоянного тока с постоянными магнитами , CRC Press, ISBN 9781420014235
  • Howard E. Jordan (1994), Энергоэффективные электродвигатели и их применение , Springer, ISBN 9780306446986
  • Бобби А.Bassham (2003), Оценка электродвигателей для судовых двигателей , Военно-морская аспирантура

Внешние ссылки [редактировать]

,

MIT Школа Разработки | »Какой двигатель лучше на большой высоте: дизель или бензин?

Какой двигатель лучше на большой высоте: дизель или бензин?

Ответ в воздухе

Мэг Мерфи

Этот вопрос является источником горячих споров среди поклонников автомобилей во всем мире.

Чтобы получить четкий ответ, мы пошли к Вай Ченгу, профессору машиностроения и директору Sloan Automotive Lab (где он занимается исследованиями производительности и выбросов двигателя, наукой о горении и преобразованием энергии).

«Давайте пойдем немного медленнее и начнем с более широкого вопроса», - говорит Ченг. «Почему все двигатели страдают на больших высотах?» Ответ заключается в том, что воздух тоньше, а значит, он менее плотный и в нем меньше молекул кислорода для запуска процесса горения. «Двигатель всасывает воздух. Количество топлива, которое он может сжечь, ограничено количеством всасываемого воздуха. Когда воздух менее плотный, количество воздуха в цилиндре двигателя меньше, поэтому выходная мощность меньше », - говорит он.

Для бензиновых двигателей вы должны открыть дроссель шире, чтобы добиться такой же мощности на большой высоте.Открытие дросселя шире добавляет больше воздуха. Менее ограничивающий дроссель снижает работу, необходимую для перемещения воздуха в цилиндр - обычно называемую «потеря дросселя».

Эффективность улучшается. «Для бензинового двигателя потеря дросселя меньше, что означает лучшую топливную эффективность», - говорит Ченг. Но бензиновый двигатель не наш победитель.

И вот почему: дизельный двигатель не регулируется в первую очередь. Его эффективность при частичной нагрузке существенно не меняется с высотой. Между тем, улучшение, которое мы видим в эффективности бензинового двигателя, просто недостаточно для преодоления стандартного разрыва эффективности между ним и дизельным двигателем.«Таким образом, дизельный двигатель все еще более эффективен, чем бензиновый на большой высоте», - говорит Ченг.

Так что в следующий раз, когда вы отправитесь в горы, оставьте автомобиль с бензиновым двигателем дома и сэкономьте несколько копеек на топливе.

Благодарю Вишала Тхакура, 23 года, из Хамирпура, Индия, за этот вопрос.

,

Бесщеточная дрель стоит лишних денег?

Примечание. Эта публикация может содержать партнерские ссылки. Это означает, что мы можем бесплатно получить небольшую комиссию за соответствующие покупки.

Покупка дрели сегодня - это урок техники. От беспроводных моделей до проводных электростанций, эти дрели имеют множество функций, которые могут или не могут удовлетворить ваши потребности в домашних условиях.

Одно сравнение, с которым вы столкнетесь, - выбор бесщеточной против матовой дрели .Выбор между этими двумя конструкциями означает, что вам нужно понять науку, стоящую за ними.

В конце концов, бесщеточная дрель, как правило, будет стоить дополнительных денег, основываясь на нескольких факторах и при условии, что инструмент фактически используется чаще, чем раз в неделю.

Что такое дрель без щеток?

Бесщеточная аккумуляторная дрель состоит из двигателя, который не имеет физических связей между движущимися частями, сообщает Popular Mechanics. У старомодных, почищенных щеткой двигателей есть щетки и коммутаторы, которые требуют физических соединений во время их работы.

Бесщеточные модели не требуют подключений, поскольку существуют печатные платы, которые контролируют весь сценарий вращения при включении сеялки.

На первый взгляд, нет разницы между щеточным и бесщеточным мотором. Однако эксплуатационные различия очевидны. Вам просто нужно использовать упражнение в течение нескольких сеансов, чтобы по-настоящему оценить его.

Меньше трения = длительное время работы и работа кулера

Если вы используете обычную беспроводную (матовую) дрель и работа требует дополнительного крутящего момента, вы заметите, что дрель нагревается и даже нагревается на ощупь.Это связано с тем, что стандартные двигатели в аккумуляторных дрелях содержат угольные щетки, которые создают трение при вращении двигателя.

Чем больше энергии требуется, тем больше трения. Это трение - просто потраченная впустую энергия, которая может быстро разрядить батарею (особенно когда требуется большой крутящий момент).

С бесщеточным двигателем вы по существу устраняете эту потерянную энергию, так как между движущимися частями нет трения. Поскольку вся энергия используется для выполнения поставленной задачи, вы максимизируете мощность, запасенную в батарее.

Дополнительным преимуществом является то, что инструмент работает намного холоднее, что делает его более удобным в использовании.

Больше мощности

Бесщеточные дрели стоят дополнительных денег, потому что вы получите лучшее значение крутящего момента в меньшем исполнении по сравнению с полированными моделями. Печатная плата в двигателе определяет отключение питания.

Нет никакого трения, которое можно оторвать от крутящего момента двигателя, поэтому схема выдает максимально возможную мощность для работы под рукой. Маленький двигатель может выполнять работу более крупной модели без веса, чрезмерного потребления мощности и шума, связанного с щеткой.

длится дольше, чем сверла с щеточным мотором

Согласно SGS Engineering, бесщеточные двигатели работают дольше, чем щеточные конструкции, благодаря конструкции без трения. Независимо от частоты работы, безщеточные сверла работают годами без каких-либо проблем.

Отсутствие трения означает, что внутренние компоненты вырабатывают меньше тепла. Тепло является типичным катализатором ранних поломок электроинструментов. Поддерживая охлаждение компонентов практически при любых оборотах, двигатель остается достаточно стабильным в течение многих лет эксплуатации.

Тот факт, что сеялка прослужит дольше, чем у шлифованных моделей, означает экономию средств. Вероятно, вы заплатите меньше за сеялку, если будете рассматривать ее как долгосрочную инвестицию.

Если бы очищенная модель была частью уравнения, потребовалась бы совершенно новая покупка, поскольку вы могли бы использовать надежный, бесщеточный продукт.

Интеллектуальные технологии, встроенные в бесщеточные конструкции

Поскольку в бесщеточных конструкциях используются печатные платы, работа устройства становится более сложной.Некоторые модели могут ощущать материал, который сверлится.

Схема изменяет крутящий момент и другие аспекты сверла, что повышает эффективность на протяжении всего проекта. Изменения также уменьшают нагрузку на внутренние части. У вас будет эффективный, мощный инструмент, который подходит практически для любого проекта бурения.

Меньший корпус

Матовым двигателям требуется некоторое пространство для перемещения между деталями. Бесщеточные моторы совершенно разные. Они могут быть размещены в меньшем корпусе из-за отсутствия трения.

Этот меньший корпус делает сеялку легче и ее легче использовать всем в домашнем хозяйстве.

Достижение спокойной обстановки

Особенностью, которая часто продается, является бесшумная работа бесщеточных моделей. Ваш дом может быть в середине проекта, но нет необходимости заглушать всю семью звуками электроинструмента.

По данным журнала Eureka, бесшумные двигатели не влияют на уровень мощности. Используйте дрель для самой сложной работы по дому, но сведите к минимуму шумовое загрязнение.Отсутствие трения способствует тихой работе.

Похожие сообщения:

.

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.