Какой двигатель на
самые надежные двигатели современности — DRIVE2
Какие двигатели самые лучшие — немецкие, японские или, может быть, американские? Мы составили рейтинг наиболее удачных моторов и раскрыли секреты их надежности и "неубиваемости".
У автовладельцев есть легенда. О двигателе, который-не-ломается. И даже не одна, а множество. Легенды эти обрастают со временем удивительными жизнеописаниями, порождают неутихающие споры на тему "немецкое против японского против американского".
Множество очевидцев готовы засвидетельствовать надежность того или иного мотора с пробегом в полмиллиона-миллион километров, нимало не смущаясь тем, что его происхождение скрыто во мраке веков, а наблюдается очевидцами он от силы несколько лет. Но легенды не врут: такие двигатели существуют. Мы объединили их в список, в составлении которого оказали посильную помощь автомеханики с солидным стажем работы.
Список оказался немаленьким — за последние несколько десятков лет автопроизводители сумели создать достаточно шедевров двигателестроения. И оговоримся, что в наш обзор войдут далеко не все моторы, а всего десять, наиболее известных и массовых. Тех, которые устанавливались на знаковые в свое время модели, побеждали в гонках. Своего рода знаменитости в мире автомобилей.
Дизели
Дизельные силовые установки традиционно числятся самыми надежными. Во многом благодаря тому, что еще лет десять назад сложно было представить себе машину со спортивным характером и дизельным агрегатом, да и сейчас дизели берут те, кому нужно много ездить, а значит, мотор работает в наилучших условиях. К тому же старые поколения двигателей имеют сравнительно простую конструкцию с хорошим запасом прочности.
Mercedes-Benz OM602
Семейство дизелей OM602, пятицилиндровых, с двумя клапанами на цилиндр и механическим ТНВД Bosch заслуженно держит пальму первенства по пробегам, стойкости к жизненным трудностям и числу оставшихся на ходу машин с ними. Выпускались эти дизели с 1985 по 2002 год — без малого двадцать лет.
Не самые мощные, от 90 до 130 л.с., они славились именно надежностью и экономичностью. У этого семейства были вполне достойные предки, поколение OM617, и вполне достойные наследники — OM612 и OM647.
Встретить такие моторы можно на Mercedes в кузове W124, W201(MB190), на внедорожниках G-class, на фругонах T1 и Sprinter и даже на более поздних W210. Пробеги многих экземпляров превышают полмиллиона километров, а рекордные — и вовсе за два. И если вовремя позаботиться о выходящих из строя топливной аппаратуре и навесном оборудовании, то конструкция не подведет.



BMW M57
Баварские моторы ничуть не менее заслуженные, чем штутгартские. Эти рядные шестицилиндровые дизели, помимо впечатляющей надежности, отличались еще и очень бойким нравом, немало поспособствовав изменению имиджа дизельного мотора. Воспринимать BMW 330D в кузове E46 как медленную машину для пенсионеров или таксистов уже нельзя, это драйверс-кар, но с мощным и тяговитым дизелем.
Мощность этих моторов в разных вариантах варьировалась от 201 л.с. до 286 л.с., а выпускались они с 1998 до 2008 года и стояли на большинстве баварских моделей десятилетия. Все они, от третьей серии до седьмой, имели варианты с М57. Встречаются они и на Range Rover — мотор легендарного "Мумусика" был именно из этой серии.
Кстати, у нашего героя был не менее легендарный предок, пускай и не такой распространенный. Семейство моторов M51 выпускалось с 1991 по 2000 год. Мелких проблем у двигателей хватало, но механики единодушны: серьезные поломки встречаются редко и он хорошо "бегает" по крайней мере до пробегов в 350-500 тысяч.


Бензиновые рядные "четверки"
Бензиновые моторы в России пока любят больше, чем дизельные. Всё же бензин не замерзает зимой, да и устроены они проще. И если дизели в списке финалистов оказались только сравнительно большие, то среди бензиновых "легенд" будут и моторы поменьше, обычные рядные "четверки".
Toyota 3S-FE
Честь открыть список выпадает мотору Toyta 3S-FE — представителю заслуженной серии S, который считается в ней одним из самых надежных и неприхотливых агрегатов. Двухлитровый объем, четыре цилиндра и шестнадцать клапанов — типичные показатели для массовых моторов 90-х. Привод распределительного вала ремнем, простой распределенный впрыск. Производился двигатель с 1986 по 2000 год.
Мощность составляла от 128 до 140 л.с. Более мощные версии этого мотора, 3S-GE и турбонаддувный 3S-GTE, унаследовали удачную конструкцию и неплохой ресурс. Двигатель 3S-FE устанавливался на целый ряд тойотовских моделей: Toyota Camry (1987-1991), Toyota Celica T200, Toyota Carina (1987-1998), Toyota Corona T170 / T190, Toyota Avensis (1997-2000), Toyota RAV4 (1994-2000), Toyota Picnic (1996-2002), Toyota MR2, а турбонаддувный 3S-GTE еще и на Toyota Caldina, Toyota Altezza.
Механики отмечают удивительную способность этого двигателя переносить высокие нагрузки и плохой сервис, удобство его ремонта и общую продуманность конструкции. При хорошем обслуживании такие моторы разменивают пробег в 500 тысяч километров без капремонта и с хорошим запасом на будущее. И умеют не докучать владельцам мелкими проблемами.


Mitsubishi 4G63
Еще одно былинное японское семейство двухлитровых бензиновых моторов. Первые его варианты появились в 1982 году, а лицензионные копии и модели-наследники выпускаются до сих пор. Изначально двигатель выпускался с одним распределительным валом (SOHC) и тремя клапанами на цилиндр, но в 1987 году появилась и DOHC версия с двумя распредвалами. Самые последние разновидности агрегата устанавливались на Mitsubishi Lancer Evolution IX до 2006 года. Моторы семейства нашли место под капотом не только машин Mitsubishi, но и Huyndai, Kia, а также китайского бренда Brilliance.
За годы производства двигатель неоднократно модернизировался, самые последние его версии имеют систему регулировки фаз ГРМ и более сложные системы питания и наддува. Все это не лучшим образом сказывается на надежности, но вот ремонтопригодность и удобство компоновки остались. "Миллионниками" считаются только безнаддувные версии мотора, хотя турбированные тоже могут иметь очень большой, по меркам конкурентов, ресурс.

Honda D-series
Еще одно японское семейство моторов, которое включает в себя более десятка разновидностей объемом от 1.2 до 1.7 л, по праву заслуживших статус практически "неубиваемых". Выпускались они с 1984 по 2005 год. Самыми надежными считаются варианты D15 и D16, но объединяет их всех одно — воля к жизни и высоким показаниям тахометра.
Мощность доходит до 131 л.с., а рабочие обороты — до 7 тысяч. Ставились такие моторы на Honda Civic, HR-V, Stream, Accord и Acura Integra. При боевом характере и малом рабочем объеме ресурс до капитального ремонта в 350-500 тысяч можно считать выдающимся, а продуманность конструкции дает шансы и на вторую жизнь и еще 350 тысяч пробега.


Opel 20ne
Список отличных и простых "четверок" закрывает представитель европейской школы двигателестроения — x20se из семейства моторов Opel 20ne. Этот член семейства моторов GM Family II прославился тем, что часто переживал машины, на которые был установлен.
Простая конструкция — 8 клапанов, ременной привод распредвала — и простая система распределенного впрыска являются секретами долголетия. Как и самые удачные образцы японской школы, он имеет объем два литра и то же соотношение диаметра цилиндра и хода поршня, что на 3S-FE — 86 х 86мм.
Мощность разных вариантов составляет от 114 до 130 л.с. Выпускались моторы с 1987 по 1999 год и устанавливались на такие модели, как Kadett, Astra, Vectra, Omega, Frontera, Calibra, а также на австралийские Holden и американские Buick и Oldsmobile. В Бразилии даже выпускали турбонаддувную версию двигателя — Lt3 мощностью в 165 л.с.
Шестнадцатиклапанный вариант, знаменитый C20XE, до прошлого года использовался на машинах Lada и Chevrolet в гоночном чемпионате WTCC, а его турбонаддувная версия, C20LET, успела отметиться в ралли и считается одной из самых простых и удачных.
Простые версии двигателя могут разменять не только полмиллиона пробега без капремонта, но при бережном отношении попробуют пойти на миллион. Шестнадцатиклапанные разновидности, X20XEV и C20XE, подобным "здоровьем" не обладают, но тоже могут долго радовать владельца, да и конструкция у них так же проста и логична.


V-образные "восьмерки"
Моторы V8 для легковых машин обычно сверхдлинным ресурсом не отличаются — облегченная конструкция и сложности компоновки такого большого мотора не добавляют надежности агрегату в целом. К американским V8 это не вполне относится, но о них — отдельный разговор.
Действительно надежные V-образные моторы, не досаждающие владельцам крупными и мелкими поломками, способные легко перешагнуть порог в полмиллиона километров, можно пересчитать по пальцам.
BMW M60
И опять в списке надежных моторов — баварская продукция. Первый за много лет легковой V8 компания сделала на славу: двухрядная цепь, никасиловое покрытие цилиндров и хороший запас прочности. Сравнительно небольшая степень форсирования и хорошая проработка конструкции позволили создать по-настоящему ресурсный мотор.
Использование никель-кремниевого покрытия (Nikasil) делает цилиндры такого мотора практически неизнашиваемыми. К полумиллиону километров пробега зачастую в двигателе не нужно менять даже поршневые кольца. Но столь прочное никасиловое покрытие боится серы в топливе, и после многочисленных случаев порчи двигателей в США от его использования отказались в пользу технологии "Алюсил" (Alusil), с более "нежным" покрытием. Несмотря на столь же высокую твердость, оно выкрашивается со временем под действием ударных нагрузок и других факторов. Эти моторы устанавливались на модели BMW 5-й и 7-й серий в 1992-1998 годах.
Простота конструкции, высокая мощность, хороший запас прочности позволяет им пройти более полумиллиона километров. Если конечно, вы не заправляетесь высокосернистым канадским бензином… Более поздние моторы, M62, стали гораздо сложнее и, как следствие, значительно менее надежными
- Википедия
Анимация, демонстрирующая четыре стадии цикла четырехтактного бензинового двигателя внутреннего сгорания:- Индукция (Топливо входит в состав)
- Компрессия
- Зажигание (Топливо сожжено)
- Эмиссия (выхлопной газ)
машина, которая преобразует одну форму энергии в механическую энергию
Двигатель , или , двигатель - это машина, предназначенная для преобразования одной формы энергии в механическую. [1] [2] Тепловые двигатели, как и двигатель внутреннего сгорания, сжигают топливо для создания тепла, которое затем используется для работы. Электродвигатели преобразуют электрическую энергию в механическое движение, пневматические моторы используют сжатый воздух, а заводные моторы в игрушечных игрушках используют упругую энергию. В биологических системах молекулярные двигатели, такие как миозины в мышцах, используют химическую энергию для создания сил и, в конечном итоге, движения.
Терминология [править]
Слово двигатель происходит от древнеанглийского двигателя , от латинского ingenium - корень слова гениального .Доиндустриальное оружие войны, такое как катапульты, требучеты и тараны, называлось осадных орудий , и знание того, как их создавать, часто считалось военной тайной. Слово джин , как в хлопок джин , является сокращением от двигатель . Большинство механических устройств, изобретенных во время промышленной революции, были описаны как двигатели - паровой двигатель является ярким примером. Однако оригинальные паровые двигатели, такие как Томас Савери, были не механическими, а насосами.Таким образом, пожарная машина в своем первоначальном виде была просто водяным насосом, при этом двигатель доставлялся в огонь лошадьми. [3]
В современном использовании термин «двигатель » обычно описывает устройства, такие как паровые двигатели и двигатели внутреннего сгорания, которые сжигают или иным образом потребляют топливо для выполнения механической работы, прикладывая крутящий момент или линейную силу (обычно в форме тяги). Устройства, преобразующие тепловую энергию в движение, обычно называют просто двигателями . [4] Примеры двигателей, которые создают крутящий момент, включают известные автомобильные бензиновые и дизельные двигатели, а также турбовалы. Примеры двигателей, которые производят тягу, включают турбовентиляторы и ракеты.
Когда был изобретен двигатель внутреннего сгорания, термин «двигатель » первоначально использовался для отличия его от парового двигателя, который в то время широко использовался для питания локомотивов и других транспортных средств, таких как паровые катки. Термин двигателя происходит от латинского глагола moto , который означает приводить в движение или поддерживать движение.Таким образом, мотор - это устройство, которое передает движение.
Двигатель и двигатель являются взаимозаменяемыми на стандартном английском языке. [5] В некоторых технических жаргонах два слова имеют разные значения, в которых двигатель - это устройство, которое сжигает или иным образом потребляет топливо, изменяя свой химический состав, а двигатель - это устройство, приводимое в действие электричеством, воздухом или гидравлическое давление, которое не меняет химический состав своего источника энергии. [6] [7] Однако в ракетостроении используется термин ракетный двигатель, хотя они потребляют топливо.
Тепловой двигатель также может служить первичным двигателем - компонентом, который преобразует поток или изменения давления жидкости в механическую энергию. [8] Автомобиль, приводимый в действие двигателем внутреннего сгорания, может использовать различные двигатели и насосы, но в конечном итоге все такие устройства получают свою мощность от двигателя. Другой способ взглянуть на это состоит в том, что двигатель получает энергию от внешнего источника, а затем преобразует ее в механическую энергию, в то время как двигатель создает энергию от давления (получаемого непосредственно от взрывной силы сгорания или другой химической реакции, или вторично от действие некоторой такой силы на другие вещества, такие как воздух, вода или пар). [9]
История [править]
Античность [править]
Простые машины, такие как дубинка и весло (примеры рычага), являются доисторическими. Более сложные двигатели, использующие энергию человека, животных, воду, ветер и даже энергию пара, уходят в глубь древности. Человеческая сила была сосредоточена на использовании простых двигателей, таких как лебедка-кабестан, лебедка или беговая дорожка, а также на веревках, шкивах и механизмах блокировки и захвата; эта сила передавалась обычно с умноженными силами и уменьшенной скоростью.Они использовались в кранах и на кораблях в Древней Греции, а также в шахтах, водяных насосах и осадных машинах в Древнем Риме. Авторы тех времен, включая Витрувия, Фронтина и Плиния Старшего, рассматривают эти двигатели как обычное дело, поэтому их изобретение может быть более древним. К 1-му веку нашей эры крупный рогатый скот и лошади использовались на мельницах, приводя в движение машины, подобные тем, которые приводились в действие людьми в более ранние времена.
По словам Страбона, водная мельница была построена в Каберии, в королевстве Митридата, в 1 веке до нашей эры.Использование водяных колес в мельницах распространилось по всей Римской империи в течение следующих нескольких веков. Некоторые были довольно сложными, с акведуками, дамбами и шлюзами для поддержания и направления воды, наряду с системами зубчатых колес или зубчатых колес из дерева и металла для регулирования скорости вращения. Более сложные небольшие устройства, такие как механизм Antikythera, использовали сложные цепочки передач и циферблатов, чтобы действовать как календари или предсказывать астрономические события. В стихотворении Авсония в 4 веке нашей эры он упоминает о камнерезной пиле, приводимой в движение водой.Героя Александрии приписывают многим таким ветряным и паровым машинам в 1-м веке нашей эры, включая Aeolipile и торговый автомат, часто эти машины ассоциировались с поклонением, такие как анимированные алтари и автоматизированные двери храма.
Средневековье [править]
Средневековые мусульманские инженеры использовали шестерни в мельницах и водоподъемных машинах и использовали плотины в качестве источника воды, чтобы обеспечить дополнительную мощность для водяных мельниц и водоподъемных машин. [10] В средневековом исламском мире такие достижения позволили механизировать многие производственные задачи, ранее выполнявшиеся с помощью ручного труда.
В 1206 году аль-Джазари использовал систему шатунов для двух своих водоподъемных машин. Элементарное паротурбинное устройство было описано Таки аль-Дином [11] в 1551 году и Джованни Бранкой [12] в 1629 году. [13]
В 13 веке твердотопливный ракетный двигатель был изобретен в Китай. Управляемый порохом, этот простейший двигатель внутреннего сгорания был неспособен обеспечить устойчивую мощность, но был полезен для приведения оружия в действие на высоких скоростях в направлении врагов в бою и для фейерверков.После изобретения это новшество распространилось по всей Европе.
Промышленная революция [править]
Двигатель Boulton & Watt 1788 г.Паровая машина Watt была первым паровым двигателем, который использовал пар при давлении чуть выше атмосферного для привода поршня, чему способствовал частичный вакуум. Совершенствование конструкции парового двигателя Newcomen 1712 года, парового двигателя Watt, спорадически развивающегося с 1763 по 1775 год, стало большим шагом в развитии парового двигателя. Предлагая резкое повышение эффективности использования топлива, дизайн Джеймса Уотта стал синонимом паровых двигателей, во многом благодаря его деловому партнеру Мэтью Боултону.Это позволило быстро создать эффективные полуавтоматические заводы в ранее невообразимых масштабах в местах, где гидроэнергетика была недоступна. Дальнейшее развитие привело к появлению паровозов и значительному расширению железнодорожного транспорта.
Что касается поршневых двигателей внутреннего сгорания, они были испытаны во Франции в 1807 году де Ривазом и независимо друг от друга братьями Ниепсе. Теоретически они были разработаны Карно в 1824 году. [ требуется цитирование ] В 1853–57 годах Эудженио Барсанти и Феличе Маттеуччи изобрели и запатентовали двигатель, использующий принцип свободного поршня, который, возможно, был первым четырехтактным двигателем. [14]
Изобретение двигателя внутреннего сгорания, которое впоследствии было коммерчески успешным, было сделано в 1860 году Этьеном Ленуаром. [15]
В 1877 году цикл Отто был в состоянии дать намного более высокое отношение мощности к весу, чем паровые двигатели, и работал намного лучше для многих транспортных применений, таких как автомобили и самолеты.
Автомобили [править]
Первый коммерчески успешный автомобиль, созданный Карлом Бенцем, добавил интерес к легким и мощным двигателям.Легкий бензиновый двигатель внутреннего сгорания, работающий по четырехтактному циклу Отто, был наиболее успешным для легких автомобилей, в то время как более эффективный дизельный двигатель используется для грузовых автомобилей и автобусов. Однако в последние годы турбодизельные двигатели становятся все более популярными, особенно за пределами США, даже для довольно небольших автомобилей.
Горизонтально противоположные поршни [править]
В 1896 году Карлу Бенцу был выдан патент на конструкцию первого двигателя с горизонтально расположенными поршнями.Его конструкция создала двигатель, в котором соответствующие поршни движутся в горизонтальных цилиндрах и одновременно достигают верхней мертвой точки, таким образом автоматически балансируя друг друга в отношении их индивидуального импульса. Двигатели этой конструкции часто называют плоскими двигателями из-за их формы и низкого профиля. Они использовались в Volkswagen Beetle, Citroën 2CV, некоторых автомобилях Porsche и Subaru, многих мотоциклах BMW и Honda, а также двигателях воздушных винтов.
Продвижение [править]
Продолжение использования двигателя внутреннего сгорания для автомобилей отчасти связано с совершенствованием систем управления двигателем (бортовые компьютеры, обеспечивающие процессы управления двигателем, и впрыск топлива с электронным управлением).Принудительная подача воздуха за счет турбонаддува и наддува повышает выходную мощность и эффективность двигателя. Подобные изменения были применены к меньшим дизельным двигателям, давая им почти такие же характеристики мощности, что и бензиновые двигатели. Это особенно очевидно в связи с популярностью автомобилей с меньшим двигателем с дизельным двигателем в Европе. Большие дизельные двигатели все еще часто используются в грузовиках и тяжелой технике, хотя они требуют специальной обработки, недоступной на большинстве заводов. Дизельные двигатели производят более низкие выбросы углеводородов и CO
2, но с более высоким уровнем твердых частиц и NO
x , чем бензиновые двигатели. [16] Дизельные двигатели также на 40% более экономичны, чем сопоставимые бензиновые двигатели. [16]
Увеличение мощности [править]
В первой половине 20-го века наблюдалась тенденция увеличения мощности двигателя, особенно в моделях США. [требуется уточнение ] Изменения конструкции включали в себя все известные методы увеличения мощности двигателя, включая увеличение давления в цилиндрах для повышения эффективности, увеличение размеров двигателя и увеличение скорости, с которой двигатель производит работу.Более высокие силы и давления, создаваемые этими изменениями, создавали проблемы с вибрацией и размерами двигателя, что приводило к более жестким, более компактным двигателям с V-образным расположением цилиндров и противостоянием, заменяющим более длинные прямолинейные устройства.
Эффективность сгорания [править]
Принципы проектирования, которым отдают предпочтение в Европе, из-за экономических и других ограничений, таких как более мелкие и крутые дороги, ориентированы на автомобили меньшего размера и соответствуют принципам проектирования, сосредоточенным на повышении эффективности сгорания небольших двигателей.Это позволило получить более экономичные двигатели с более ранними четырехцилиндровыми двигателями мощностью 40 лошадиных сил (30 кВт) и шестицилиндровыми двигателями мощностью до 80 лошадиных сил (60 кВт) по сравнению с американскими двигателями V-8 большого объема с номинальной мощностью в диапазон от 250 до 350 л.с., некоторые даже более 400 л.с. (от 190 до 260 кВт). [требуется уточнение ] [необходимо цитирование ]
Конфигурация двигателя [править]
Раньше при разработке автомобильных двигателей производился гораздо больший ассортимент двигателей, чем обычно используется сегодня.Двигатели варьировались от 1 до 16 цилиндров с соответствующими различиями в общем размере, весе, объеме двигателя и отверстиях цилиндров. В большинстве моделей использовались четыре цилиндра и номинальная мощность от 19 до 120 л.с. (от 14 до 90 кВт). Было построено несколько трехцилиндровых двухтактных моделей, в то время как большинство двигателей имели прямые или рядные цилиндры. Было несколько моделей V-типа и горизонтально противоположных двух- и четырехцилиндровых моделей. Верхние распредвалы часто использовались.Меньшие двигатели обычно имели воздушное охлаждение и располагались в задней части автомобиля; коэффициенты сжатия были относительно низкими. В 1970-х и 1980-х годах возрос интерес к улучшению экономии топлива, что привело к возврату к меньшим размерам V-6 и четырехцилиндровым двигателям с пятью клапанами на цилиндр для повышения эффективности. Bugatti Veyron 16.4 работает с двигателем W16, что означает, что два расположения цилиндров V8 расположены рядом друг с другом, чтобы создать форму W, разделяющую один и тот же коленчатый вал.
Самый большой из когда-либо созданных двигателей внутреннего сгорания - это 14-цилиндровый 2-тактный дизельный двигатель с турбонаддувом Wärtsilä-Sulzer RTA96-C, который был спроектирован для оснащения Emma Mærsk , самого большого контейнеровоза в мире, когда его запускали в 2006.Этот двигатель имеет массу 2300 тонн, а при работе на скорости 102 об / мин (1,7 Гц) вырабатывает более 80 МВт и может использовать до 250 тонн топлива в день.
Двигатель можно отнести к категории в соответствии с двумя критериями: форма энергии, которую он принимает для создания движения, и тип движения, которое он выводит.
Тепловой двигатель [править]
Двигатель внутреннего сгорания [править]
Двигатели внутреннего сгорания - это тепловые двигатели, приводимые в движение теплом процесса сгорания.
Двигатель внутреннего сгорания [править]
Трехтактный двигатель внутреннего сгорания, работающий на угольном газеДвигатель внутреннего сгорания представляет собой двигатель, в котором сгорание топлива (обычно ископаемого топлива) происходит с окислителем (обычно воздухом) в камере сгорания.В двигателе внутреннего сгорания расширение газов высокой температуры и высокого давления, которые образуются в результате сгорания, непосредственно прикладывает усилие к компонентам двигателя, таким как поршни или лопатки турбины или сопло, и перемещая его на расстояние , генерирует механическую работу. [17] [18] [19] [20]
Двигатель внешнего сгорания [править]
Двигатель внешнего сгорания (двигатель ЕС) представляет собой тепловой двигатель, в котором внутренняя рабочая жидкость нагревается путем сгорания внешнего источника через стенку двигателя или теплообменник.Затем жидкость, расширяясь и воздействуя на механизм двигателя, производит движение и полезную работу. [21] Затем жидкость охлаждается, сжимается и используется повторно (замкнутый цикл) или (реже) сбрасывается, а холодная жидкость втягивается (воздушный двигатель открытого цикла).
«Сжигание» относится к сжиганию топлива с окислителем, для подачи тепла. Двигатели с аналогичной (или даже идентичной) конфигурацией и работой могут использовать подачу тепла из других источников, таких как ядерные, солнечные, геотермальные или экзотермические реакции, не связанные с горением; но тогда они строго не классифицируются как двигатели внешнего сгорания, а как внешние тепловые двигатели.
Рабочая жидкость может быть газом, как в двигателе Стирлинга, или паром, как в паровом двигателе, или органической жидкостью, такой как н-пентан, в цикле органического Ренкина. Жидкость может быть любого состава; газ является наиболее распространенным, хотя иногда используется даже однофазная жидкость. В случае парового двигателя жидкость меняет фазы между жидкостью и газом.
Воздухопроницаемые двигатели внутреннего сгорания [править]
Воздушно-реактивные двигатели внутреннего сгорания - это двигатели внутреннего сгорания, которые используют кислород в атмосферном воздухе для окисления («сжигания») топлива, а не для переноса окислителя, как в ракете.Теоретически, это должно привести к лучшему удельному импульсу, чем для ракетных двигателей.
Непрерывный поток воздуха проходит через дыхательный двигатель. Этот воздух сжимается, смешивается с топливом, воспламеняется и удаляется в качестве выхлопного газа.
- Примеры
Типичные воздушно-реактивные двигатели включают в себя:
- реактивный реактивный двигатель
- Турбовинтовой двигатель
Воздействие на окружающую среду [редактировать]
Работа двигателей обычно оказывает негативное влияние на качество воздуха и уровень окружающего звука.Все больше внимания уделяется характеристикам автомобильных систем, способствующих загрязнению. Это создало новый интерес к альтернативным источникам энергии и усовершенствованиям двигателя внутреннего сгорания. Хотя появилось несколько электромобилей с ограниченным производством на батарейках, они не оказались конкурентоспособными из-за затрат и эксплуатационных характеристик. [ цитирование необходимо ] В 21-м веке дизельный двигатель становится все более популярным среди автовладельцев.Тем не менее, бензиновый двигатель и дизельный двигатель, с их новыми устройствами контроля выбросов для улучшения характеристик выбросов, еще не подвергались значительным испытаниям. [ цитирование необходимо ] Ряд производителей представили гибридные двигатели, в основном с небольшим бензиновым двигателем в сочетании с электродвигателем и большим аккумуляторным блоком, но они также еще не достигли значительных успехов на рынке. бензиновых и дизельных двигателей.
Качество воздуха [редактировать]
Выхлопные газы двигателя с искровым зажиганием состоят из следующего: азот от 70 до 75% (по объему), водяной пар от 10 до 12%, диоксид углерода от 10 до 13.5%, водород от 0,5 до 2%, кислород от 0,2 до 2%, монооксид углерода: от 0,1 до 6%, несгоревшие углеводороды и продукты частичного окисления (например, альдегиды) от 0,5 до 1%, монооксид азота от 0,01 до 0,4%, закись азота <100 ч / млн. диоксид серы от 15 до 60 частей на миллион, следы других соединений, таких как присадки к топливу и смазочные материалы, а также соединения галогенов и металлов и другие частицы. [22] Окись углерода очень токсична и может вызвать отравление угарным газом, поэтому важно избегать скопления газа в замкнутом пространстве.Каталитические нейтрализаторы могут уменьшить токсичные выбросы, но не полностью устранить их. Кроме того, выбросы парниковых газов, главным образом углекислого газа, в результате широко распространенного использования двигателей в современном промышленно развитом мире способствуют глобальному парниковому эффекту - главной проблеме глобального потепления.
Негорючие тепловые двигатели [править]
Некоторые двигатели преобразуют тепло от не горючих процессов в механическую работу, например, атомная электростанция использует тепло от ядерной реакции для производства пара и приводит в движение паровой двигатель, или газовая турбина в ракетном двигателе может приводиться в действие путем разложения перекиси водорода.Помимо другого источника энергии, двигатель часто проектируется так же, как двигатель внутреннего или внешнего сгорания. Другая группа не горючих двигателей включает термоакустические тепловые двигатели (иногда называемые «двигателями ТА»), которые представляют собой термоакустические устройства, которые используют звуковые волны высокой амплитуды для накачки тепла из одного места в другое или, наоборот, используют разность тепла для создания звуковых волн высокой амплитуды. , В целом, термоакустические двигатели можно разделить на устройства со стоячей и бегущей волной. [23]
Нетепловой двигатель с химическим приводом [править]
Нетепловые двигатели обычно приводятся в действие химической реакцией, но не являются тепловыми двигателями. Примеры включают в себя:
Электродвигатель [править]
Электродвигатель использует электрическую энергию для производства механической энергии, обычно через взаимодействие магнитных полей и проводников с током. Обратный процесс, производящий электрическую энергию из механической энергии, осуществляется с помощью генератора или динамо.Тяговые двигатели, используемые на транспортных средствах, часто выполняют обе задачи. Электродвигатели могут работать как генераторы и наоборот, хотя это не всегда практично. Электродвигатели распространены повсеместно, и их можно найти в таких разнообразных применениях, как промышленные вентиляторы, воздуходувки и насосы, станки, бытовая техника, электроинструменты и дисководы. Они могут получать питание от постоянного тока (например, от портативного устройства с питанием от батареи или транспортного средства) или от переменного тока от центральной электрической распределительной сети.Самые маленькие моторы можно найти в электрических наручных часах. Средние двигатели с высокими стандартизированными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для приведения в движение больших судов и для таких целей, как трубопроводные компрессоры, с номинальной мощностью в тысячи киловатт. Электродвигатели могут быть классифицированы по источнику электроэнергии, по их внутренней конструкции и по их применению.
Физический принцип производства механической силы при взаимодействии электрического тока и магнитного поля был известен еще в 1821 году.Электродвигатели с возрастающей эффективностью были построены в течение 19-го века, но коммерческая эксплуатация электродвигателей в больших масштабах требовала эффективных электрических генераторов и электрических распределительных сетей.
Для сокращения потребления электроэнергии двигателями и связанными с ними углеродными следами различные регулирующие органы во многих странах ввели и внедрили законодательство, поощряющее производство и использование более эффективных электродвигателей.Хорошо сконструированный двигатель может преобразовывать более 90% входной энергии в полезную мощность в течение десятилетий. [24] Когда эффективность двигателя повышается даже на несколько процентных пунктов, экономия в киловатт-часах (и, следовательно, в стоимости) огромна. Эффективность электрической энергии типичного промышленного асинхронного двигателя может быть улучшена путем: 1) уменьшения электрических потерь в обмотках статора (например, путем увеличения площади поперечного сечения проводника, улучшения техники обмотки и использования материалов с более высоким электрическим напряжением). проводимости, такие как медь), 2) снижение электрических потерь в катушке ротора или отливки (например,Например, используя материалы с более высокой электропроводностью, такие как медь, 3) уменьшая магнитные потери, используя магнитную сталь более высокого качества, 4) улучшая аэродинамику двигателей, чтобы уменьшить механические потери в обмотке, 5) улучшая подшипники, чтобы уменьшить потери на трение, и 6) минимизация производственных допусков. Для дальнейшего обсуждения этой темы см. Премиум эффективность.)
По соглашению, электрический двигатель относится к железнодорожному электровозу, а не к электрическому двигателю.
Двигатель с физическим питанием [править]
Некоторые двигатели питаются от потенциальной или кинетической энергии, например, некоторые фуникулеры, гравитационные плоскости и конвейеры канатных дорог использовали энергию от движущейся воды или камней, а некоторые часы имеют вес, который падает под действием силы тяжести. Другие формы потенциальной энергии включают сжатые газы (например, пневматические моторы), пружины (заводные моторы) и резинки.
Исторические военные осадные машины включали в себя большие катапульты, требучеты и (в некоторой степени) тараны с питанием от потенциальной энергии.
Пневматический двигатель [править]
Пневматический двигатель - это машина, которая преобразует потенциальную энергию в виде сжатого воздуха в механическую работу. Пневматические двигатели обычно преобразуют сжатый воздух в механическую работу с помощью линейного или вращательного движения. Линейное движение может исходить либо от мембранного, либо от поршневого привода, тогда как вращательное движение обеспечивается либо лопастным пневмодвигателем, либо поршневым пневмодвигателем. Пневматические двигатели нашли широкое распространение в индустрии ручных инструментов, и постоянно предпринимаются попытки расширить их использование в транспортной отрасли.Однако пневматические двигатели должны преодолевать недостатки эффективности, прежде чем их можно будет рассматривать в качестве жизнеспособного варианта в транспортной отрасли.
Гидравлический мотор [править]
Гидравлический двигатель получает мощность от жидкости под давлением. Этот тип двигателя используется для перемещения тяжелых грузов и привода машин. [25]
Производительность [править]
Следующие используются при оценке производительности двигателя.
Скорость [править]
Скорость относится к вращению коленчатого вала в поршневых двигателях и скорости вращения роторов компрессора / турбины и роторов электродвигателя.Измеряется в оборотах в минуту (об / мин).
Тяга [править]
Тяга - это сила, действующая на двигатель самолета или его пропеллер после того, как он ускорил проходящий через него воздух.
Крутящий момент [править]
Крутящий момент - это крутящий момент на валу, который рассчитывается путем умножения силы, вызвавшей момент, на расстояние от вала.
Мощность [править]
Мощность - это показатель того, как быстро выполняется работа.
Эффективность [править]
Эффективность - это показатель того, сколько топлива расходуется на производство электроэнергии.
Уровни звука [править]
Шум транспортного средства в основном из-за двигателя на низких скоростях, а также из-за шин и воздуха, проходящего мимо автомобиля на более высоких скоростях. [26] Электродвигатели тише, чем двигатели внутреннего сгорания. Тяговые двигатели, такие как турбовентиляторы, турбореактивные двигатели и ракеты, издают наибольшее количество шума благодаря тому, как их высокоскоростные выхлопные потоки, создающие тягу, взаимодействуют с окружающим неподвижным воздухом. Технология шумоподавления включает в себя глушители системы впуска и выпуска (глушители) на бензиновых и дизельных двигателях и вкладыши шумоподавления на входах в турбовентилятор. Hogan, C. Michael (сентябрь 1973). «Анализ дорожного шума». Журнал воды, воздуха и загрязнения почвы . 2 (3): 387–92. Bibcode: 1973WASP .... 2..387H. DOI: 10.1007 / BF00159677. ISSN 0049-6979.
Список литературы [править]
Внешние ссылки [редактировать]
Wikimedia Commons имеет СМИ, связанные с Двигатели . |
Посмотрите двигатель в Викисловарь, бесплатный словарь. |
Посмотрите motor в Викисловарь, бесплатный словарь. |
В - Википедия
Двигатель внутреннего сгорания с двумя рядами цилиндров под углом, напоминающим букву «V»
Ранний двигатель Vee - это двухцилиндровый V-образный твин, используемый в раннем британском мотоцикле. Три типа двигателя: а - прямой двигатель, б - двигатель Ve, в - двигатель VR Желтые линии обозначают «угол» «Ви»Двигатель В или Ve двигатель является общей конфигурацией для двигателя внутреннего сгорания. Цилиндры и поршни совмещены в двух отдельных плоскостях или «банках», так что они выглядят как «V» , если смотреть вдоль оси коленчатого вала.Конфигурация Vee обычно уменьшает общую длину двигателя, высоту и вес по сравнению с эквивалентной встроенной конфигурацией.
История [править]
Первый V-образный двигатель, двухцилиндровый V-образный, был построен в 1889 году Daimler по проекту Вильгельма Майбаха. К 1903 году Société Antoinette производила двигатели V8 для гонок на моторных лодках по проектам Леона Левавассера, основанные на опыте, накопленном в линейных четырехцилиндровых двигателях. В 1904 году на моторном заводе в Путни был выпущен новый V12 мощностью 150 л.с.Двигатель 4 литра - первый двигатель V12, выпускаемый для любых целей. Этот был изготовлен для двух русских братьев, делающих дирижабль. У них закончились деньги, и Коммандер Мэй купил их на условиях продажи или возврата для гонок на моторных лодках, добившись некоторого умеренного успеха в 1908 году. Двигатель был разоблачен, и зажигание горячей катушки вызвало пропуски зажигания при намокании от брызг. Роберт Бош поставил самые первые магниты, и проблема была решена. [1]
Характеристики [редактировать]
Обычно каждая пара соответствующих поршней из каждого ряда цилиндров имеет один коленчатый штифт на коленчатом валу либо с помощью ведущих / ведомых шатунов, либо с помощью двух обычных шатунов, расположенных рядом.Тем не менее, некоторые конструкции V-образных двигателей имеют двухштырьковые шатуны, в то время как другие V-образные конфигурации включают в себя раздельные шатуны для более равномерного зажигания.
V-образные двигатели, как правило, более компактны, чем прямые двигатели с цилиндрами таких же размеров и количества. Этот эффект возрастает с увеличением количества цилиндров в двигателе; не может быть никакой заметной разницы в общих размерах между V-образными и прямыми двигателями, в то время как двигатели V8 намного более компактны, чем двигатели с прямым двигателем. [2]
Различные углы цилиндров Vee используются в разных двигателях; в зависимости от количества цилиндров могут быть углы, которые работают лучше других для стабильности.Очень узкие углы Vee сочетают в себе некоторые преимущества двигателя Vee и прямолинейного двигателя (в основном в форме компактности), а также недостатки; эта концепция является старой, впервые примененной двигателем V4 Lancia в 1920-х годах, но недавно переработанной Volkswagen Group с их двигателями VR, которая фактически представляет собой сочетание V и прямой конфигурации.
Некоторые конфигурации Vee хорошо сбалансированы и плавны, в то время как другие работают менее плавно, чем их эквивалентные прямые аналоги. [ требуется цитирование ] V8 с коленчатым валом с перекрестной плоскостью можно легко сбалансировать с использованием только противовесов. V12, будучи фактически двумя двигателями с шестью прямыми, соединенными вместе, полностью сбалансированы; если угол V равен 60 ° для 4-тактного хода или 30 ° для 2-тактного, они также имеют равномерный выстрел. Другие, такие как V2, V4, V6, плоскопараллельный двигатель V8, V10, V14 и V18, демонстрируют повышенную вибрацию и, как правило, требуют балансировочных валов или коленчатых валов.
Перевернутые двигатели [править]
Некоторые типы двигателей Vee были построены как инвертированные двигатели, чаще всего для самолетов.Преимущества включают лучшую видимость в одномоторном самолете, более высокую линию тяги и, как следствие, увеличенный дорожный просвет для винта. Примерами могут служить британский Gipsy Major de Havilland, немецкий Daimler-Benz DB 601 и поршневые двигатели American Ranger L-440.
Конкретные конфигурации [править]
Обычно двигатели Vee описываются с помощью "V # " , где # - это количество цилиндров:
См. Также [править]
Список литературы [править]
Wikimedia Commons имеет СМИ, связанные с двигателями V . |
Стук двигателя - Википедия
детонации (также детонации , детонации , искрового детонации , пингования или розового ) в двигателях внутреннего сгорания с искровым зажиганием происходит, когда не происходит сгорание части смеси воздух / топливо в цилиндре от распространения фронта пламени, зажженного свечой зажигания, но один или несколько карманов воздушно-топливной смеси взрываются вне оболочки нормального фронта горения.Топливно-воздушный заряд должен зажигаться только свечой зажигания и в точной точке хода поршня. Стук возникает, когда пик процесса сгорания больше не наступает в оптимальный момент для четырехтактного цикла. Ударная волна создает характерный металлический «пингующий» звук, и давление в цилиндре резко возрастает. Эффекты детонации двигателя варьируются от несущественных до полностью разрушительных.
Стук не следует путать с предварительным зажиганием - это два отдельных события.Однако предварительное зажигание может сопровождаться стуком.
Феномен детонации был впервые обнаружен и описан Гарри Рикардо в ходе экспериментов, проведенных между 1916 и 1919 годами, чтобы выяснить причину неисправностей в авиационных двигателях. [1]
нормальное сгорание [править]
В идеальных условиях обычный двигатель внутреннего сгорания сжигает топливно-воздушную смесь в цилиндре упорядоченным и контролируемым образом. Сгорание начинается от свечи зажигания примерно на 10-40 градусов коленчатого вала до верхней мертвой точки (ВМТ), в зависимости от многих факторов, включая частоту вращения и нагрузку двигателя.Такое опережение зажигания дает время для процесса сгорания развивать пиковое давление в идеальное время для максимального восстановления работы из расширяющихся газов. [2]
Искра на электродах свечи зажигания образует небольшое ядро пламени, примерно равное размеру зазора свечи зажигания. По мере того как он увеличивается в размерах, его тепловая мощность увеличивается, что позволяет ему расти с ускоряющейся скоростью, быстро расширяясь через камеру сгорания. Этот рост происходит из-за прохождения фронта пламени через саму горючую топливно-воздушную смесь и из-за турбулентности, которая быстро растягивает зону горения в комплекс пальцев горящего газа, которые имеют гораздо большую площадь поверхности, чем простой сферический шар пламя быПри нормальном сгорании этот фронт пламени движется по топливно-воздушной смеси со скоростью, характерной для конкретной смеси. Давление плавно возрастает до пика, так как почти все имеющееся топливо расходуется, затем давление падает, когда поршень опускается. Максимальное давление в цилиндре достигается через несколько градусов коленчатого вала после того, как поршень проходит ВМТ, так что сила, приложенная к поршню (от увеличивающегося давления, приложенного к верхней поверхности поршня), может дать самый сильный толчок именно тогда, когда скорость поршня и механическое преимущество на коленчатом валу дает лучшее восстановление силы от расширяющихся газов, тем самым максимизируя крутящий момент, передаваемый на коленчатый вал. [2] [3]
Аномальное сгорание [править]
Когда несгоревшая топливно-воздушная смесь за границей фронта пламени подвергается воздействию тепла и давления в течение определенной продолжительности (за пределами периода задержки используемого топлива), может произойти детонация. Детонация характеризуется почти мгновенным взрывным воспламенением по меньшей мере одного кармана топливовоздушной смеси вне фронта пламени. Вокруг каждого кармана создается локальная ударная волна, и давление в цилиндре резко возрастает - и, возможно, выходит за пределы проектных пределов - вызывая повреждение.
Если детонация может сохраняться в экстремальных условиях или в течение многих циклов работы двигателя, детали двигателя могут быть повреждены или разрушены. Самыми простыми вредными эффектами, как правило, являются износ частиц, вызванный умеренным ударом, который в дальнейшем может происходить через масляную систему двигателя и вызывать износ других частей перед тем, как попасть в масляный фильтр. Такой износ создает вид эрозии, истирания или «пескоструйной» обработки, подобный повреждению, вызванному гидравлической кавитацией. Сильный стук может привести к катастрофическому отказу в виде расплавленных физических отверстий и проталкивания через поршень или головку цилиндра (т.е.разрыв камеры сгорания), при котором происходит сброс давления в поврежденном цилиндре и попадание крупных металлических фрагментов, топлива и продуктов сгорания в масляную систему. Известно, что гиперэвтектические поршни легко ломаются от таких ударных волн. [3]
Детонацию можно предотвратить с помощью любого или всех следующих методов:
- использование топлива с высоким октановым числом, которое повышает температуру сгорания топлива и снижает склонность к детонации
- обогащает соотношение воздух-топливо, которое изменяет химические реакции при сгорании, снижает температуру сгорания и увеличивает запас по детонации
- снижение пикового давления в цилиндре
- снижение давления в коллекторе путем уменьшения открытия дросселя или давления наддува
- снижение нагрузки на двигатель
- замедление зажигания
Поскольку давление и температура тесно связаны, детонация также может быть ослаблена путем регулирования пиковых температур в камере сгорания за счет уменьшения степени сжатия, рециркуляции выхлопных газов, соответствующей калибровки графика синхронизации зажигания двигателя и тщательного проектирования двигателя. камеры сгорания и система охлаждения, а также контроль начальной температуры воздуха на впуске.
Добавление определенных материалов, таких как свинец и таллий, будет очень хорошо подавлять детонацию при использовании определенных видов топлива. [ цитирование необходимо ] Добавление тетраэтилсвинца (TEL), растворимого соединения свинца в органолиде, добавляемого в бензин, было обычным явлением до тех пор, пока оно не было прекращено по причинам токсического загрязнения. Свинцовая пыль, добавленная во впускной заряд, также уменьшит детонацию с различными углеводородными топливами. Соединения марганца также используются для уменьшения детонации бензиновым топливом.
Стук реже встречается в холодном климате. В качестве вторичного решения можно использовать систему впрыска воды для снижения пиковых температур в камере сгорания и, таким образом, для подавления детонации. Пар (водяной пар) будет подавлять детонацию, даже если дополнительное охлаждение не подается.
Для того, чтобы произошел удар, сначала должны произойти определенные химические изменения, следовательно, топливо с определенными структурами имеет тенденцию выбивать легче, чем другие. Парафины с разветвленной цепью имеют тенденцию сопротивляться стуку, в то время как парафины с прямой цепью легко стучат.Теоретически [ цитирование необходимо ] , что свинец, пар и тому подобное мешают некоторым из различных окислительных изменений, которые происходят во время сгорания и, следовательно, уменьшить детонацию.
Турбулентность, как указывалось, оказывает очень важное влияние на детонацию. Двигатели с хорошей турбулентностью имеют тенденцию разбивать меньше, чем двигатели с плохой турбулентностью. Турбулентность возникает не только при вдыхании двигателя, но и при сжатии и сжигании смеси. Многие поршни спроектированы так, чтобы использовать «мягкую» турбулентность для насильственного смешивания воздуха и топлива при их воспламенении и сгорании, что значительно снижает детонацию за счет ускорения горения и охлаждения несгоревшей смеси.Одним из примеров этого являются все современные боковые клапаны или плоские двигатели. Значительная часть пространства головки расположена в непосредственной близости от головки поршня, создавая большую турбулентность вблизи ВМТ. В первые дни работы боковых головок клапанов этого не делали, и для любого конкретного топлива приходилось использовать гораздо более низкую степень сжатия. Также такие двигатели были чувствительны к возгоранию и имели меньшую мощность. [3]
Детонация более или менее неизбежна в дизельных двигателях, где топливо впрыскивается в сильно сжатый воздух в конце такта сжатия.Существует небольшая задержка между впрыскиваемым топливом и началом сгорания. К этому времени в камере сгорания уже есть количество топлива, которое сначала воспламеняется в областях с большей плотностью кислорода до сгорания полного заряда. Это внезапное повышение давления и температуры вызывает характерный «стук» или «стук» дизеля, некоторые из которых должны быть учтены в конструкции двигателя.
Тщательная конструкция инжекторного насоса, топливного инжектора, камеры сгорания, головки поршня и головки цилиндров может значительно снизить детонацию, а современные двигатели, использующие электронный впрыск Common Rail, имеют очень низкий уровень детонации.Двигатели с косвенным впрыском обычно имеют более низкий уровень детонации, чем двигатели с прямым впрыском, из-за большего рассеивания кислорода в камере сгорания и более низкого давления впрыска, обеспечивающего более полное смешивание топлива и воздуха. На самом деле дизели не испытывают такого же «удара», как бензиновые двигатели, поскольку известно, что причиной этого является только очень высокая скорость повышения давления, а не нестабильное сгорание. Дизельное топливо на самом деле очень склонно к детонации в бензиновых двигателях, но в дизельном двигателе нет времени для возникновения детонации, потому что топливо окисляется только во время цикла расширения.В бензиновом двигателе топливо медленно окисляется все время, пока оно сжимается до искры. Это позволяет изменениям в структуре / составе молекул до самого критического периода высокой температуры / давления. [3]
Обнаружение детонации [править]
Из-за большого различия в качестве топлива, большое количество двигателей теперь содержат механизмы для обнаружения детонации и соответственно регулируют время и давление наддува, чтобы предложить улучшенные характеристики на высокооктановых топливах, снижая при этом риск повреждения двигателя в результате детонации во время работы. на низкооктановых топливах.
Одним из первых примеров этого являются двигатели Saab H с турбонаддувом, в которых система автоматического контроля производительности использовалась для снижения давления наддува, если оно вызывало детонацию двигателя. [4]
Различные устройства мониторинга обычно используются тюнерами в качестве метода наблюдения и прослушивания двигателя, чтобы определить, является ли настроенное транспортное средство безопасным под нагрузкой или используется для безопасной перенастройки транспортного средства. Обычно используемый тип датчика детонации состоит из пьезоэлектрического датчика, прикрепленного к блоку двигателя, настроенного для обнаружения звука детонации.
предсказание детонации [править]
Поскольку предотвращение детонационного сгорания очень важно для инженеров-разработчиков, было разработано множество технологий моделирования, которые могут идентифицировать конструкцию двигателя или условия эксплуатации, в которых можно ожидать возникновения детонации. Это позволяет инженерам разрабатывать способы уменьшения детонационного сгорания, сохраняя при этом высокую тепловую эффективность.
Поскольку начало детонации чувствительно к давлению в цилиндре, температуре и химическому составу самовоспламенения, связанным с составами локальных смесей в камере сгорания, моделирование, учитывающее все эти аспекты [5], , таким образом, оказалось наиболее эффективным в определение рабочих пределов детонации и предоставление инженерам возможности определить наиболее подходящую операционную стратегию.
Контроль детонации [править]
Целью стратегий управления детонацией является попытка оптимизировать компромисс между защитой двигателя от повреждающих событий детонации и максимизацией выходного крутящего момента двигателя. События Knock - это независимый случайный процесс. [6] Невозможно проектировать контроллеры детонации на детерминированной платформе. Однократное моделирование временной истории или эксперимент методов контроля детонации не способны обеспечить повторяемое измерение производительности контроллера из-за случайного характера наступающих событий детонации.Следовательно, желаемый компромисс должен быть достигнут в стохастической структуре, которая могла бы обеспечить подходящую среду для разработки и оценки различных стратегий контроля детонации со строгими статистическими свойствами.
Список литературы [править]
Дополнительное чтение [править]
- Laganá, Armando A.M .; Лима, Леонардо Л .; Justo, João F .; Арруда, Бенедито А .; Сантос, Макс М.Д. (2018). «Идентификация сгорания и детонации в двигателях с искровым зажиганием по сигналу ионного тока». Топливо . 227 : 469–477. DOI: 10.1016 / j.fuel.2018.04.080.
- Ди Гаэта, Алессандро; Джильо, Веньеро; Полиция, Джузеппе; Рисполи, Натале (2013). «Моделирование колебаний давления в цилиндре в условиях детонации: общий подход, основанный на уравнении затухающих волн». Топливо . 104 : 230–243. DOI: 10.1016 / j.fuel.2012.07.066.
- Giglio, Veniero; Полиция, Джузеппе; Рисполи, Натале; Иорио, Бьяджо; Ди Гаэта, Алессандро (2011).«Экспериментальная оценка приведенных кинетических моделей для моделирования детонации в двигателях СИ». SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2011-24-0033.
- Ди Гаэта, Алессандро; Джильо, Веньеро; Полиция, Джузеппе; Реал, Фабрицио; Рисполи, Натале (2010). "Моделирование колебаний давления в условиях детонации: подход к уравнению с частными дифференциальными волнами". SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2010-01-2185.
- Моделирование с прогнозирующим сгоранием для «уменьшенных» двигателей с прямым зажиганием с искровым зажиганием: решения для предварительного зажигания («мега-детонация»), пропуски зажигания, тушения, распространения пламени и обычного «детонации» , инновации cmcl, доступны с июня 2010 года.
- Основы двигателя: детонация и предварительное зажигание , Аллен В. Клайн, доступ к июню 2007 г.
- Giglio, V .; Полиция, Г .; Рисполи, Н .; Ди Гаэта, А .; Сесере, М .; Ragione, L. Della (2009). «Экспериментальное исследование по использованию ионного тока на двигателях СИ для обнаружения детонации». SAE Техническая бумага Серия . 1 . DOI: 10.4271 / 2009-01-2745.
- Тейлор, Чарльз Фейет (1985). Двигатель внутреннего сгорания в теории и на практике: сгорание, топливо, материалы, дизайн .ISBN 9780262700276 .