Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Какой лучше синхронный или асинхронный двигатель


асинхронный, синхронный или на постоянных магнитах?

Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему

Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.

С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.

Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.

А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.

В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.

Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.

Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.

Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.

Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.

Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.

Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.

Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.

Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.

Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.

Так поговорим же о них поподробнее

Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.

В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.

Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.

Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?

Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.

Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.

Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.

Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».

Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.

Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.

Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.

Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.

А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.

И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.

Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.

Асинхронный двигатель

против синхронного: какая разница?

Все вращающиеся электродвигатели переменного и постоянного тока работают из-за взаимодействия двух магнитных полей. Один из них является стационарным и (обычно) связан с внешним корпусом двигателя. Другой вращается и связан с вращающейся арматурой двигателя (также называемой его ротором). Вращение вызвано взаимодействием между двумя полями.

В простом двигателе постоянного тока имеется вращающееся магнитное поле, полярность которого меняется на пол-оборота с помощью комбинации щетка-коммутатор.Щетки - в основном проводящие углеродные стержни, которые соприкасаются с проводниками ротора при их вращении - также служат для подачи электрического тока в вращающуюся арматуру. Ситуация немного отличается в бесщеточном двигателе постоянного тока. Вращающееся поле все еще обращено, но с помощью коммутации, которая имеет место в электронном виде.

Асинхронный двигатель обладает уникальным качеством: отсутствует электрическое соединение между неподвижной и вращающейся обмотками. Утилита переменного тока применяется к клеммам двигателя и питает стационарные обмотки.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронный прозвище возникает из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью вращения ротора.

Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример от маленького воздушного вентилятора.

Большинство современных асинхронных двигателей имеют ротор в форме короткозамкнутого ротора. Цилиндрическая короткозамкнутая клетка состоит из тяжелых медных, алюминиевых или латунных прутков, установленных в пазы и соединенных с обоих концов проводящими кольцами, которые электрически замыкают прутки вместе.Твердый сердечник ротора построен из штабелей ламинирования электротехнической стали.

Также возможно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не беличную клетку. Это так называемые асинхронные двигатели с обмоткой ротора. Суть конструкции заключается в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель начинает вращаться. Обычно это достигается путем подключения каждой обмотки ротора к резистору последовательно. Обмотки получают ток через какое-то устройство с контактными кольцами.Как только ротор достигает конечной скорости, полюса ротора переключаются на короткое замыкание, и, таким образом, электрически становятся такими же, как и короткозамкнутый ротор.

Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока. При подаче напряжения на статор в обмотках статора течет переменный ток. Поток тока создает магнитное поле, которое воздействует на ротор, настраивая напряжение и ток в элементах ротора.

Северный полюс в статоре вызывает южный полюс в роторе.Но расположение полюса статора вращается, когда переменное напряжение изменяется по амплитуде и полярности. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Тем не менее, закон Фарадея гласит, что электродвижущая сила генерируется, когда петля проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот. Если ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда отстает от поля статора на некоторую величину.Это отставание заставляет ротор вращаться со скоростью, которая несколько медленнее, чем у поля статора. Разница между ними называется промахом.

Сумма промаха может варьироваться. Это зависит главным образом от нагрузки на двигатели, но также зависит от сопротивления цепи ротора и напряженности поля, которое индуцирует поток статора. Сдвиг двигателя в конструкции B составляет от 0,5% до 5%.

Когда двигатель стоит на месте, обмотки ротора и статора являются первичной и вторичной обмотками трансформатора.Когда переменный ток первоначально подается на статор, ротор не движется. Таким образом, напряжение, индуцированное в роторе, имеет ту же частоту, что и частота статора. Когда ротор начинает вращаться, частота наведенного в нем напряжения f r падает. Если f - частота напряжения статора, то проскальзывание s связывает их через f r = sf. Здесь s выражается в виде десятичной дроби.

Поскольку асинхронный двигатель не имеет щеток, коммутатора или аналогичных движущихся частей, его изготовление и обслуживание дешевле, чем у других типов двигателей.

Для сравнения рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, что и магнитное поле статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к источнику переменного тока, как в асинхронном двигателе. Магнитное поле статора вращается синхронно с частотой линии.

Обмотка ротора в синхронном двигателе может получать ток разными способами, но обычно не по индукции (за исключением некоторых конструкций, только для обеспечения пускового момента).Тот факт, что ротор вращается синхронно с частотой линии переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

Следует подчеркнуть, что ротор синхронного электродвигателя переменного тока вращается синхронно с целым числом циклов переменного тока. Это не то же самое, что сказать, что он вращается со скоростью, равной частоте линии. Число оборотов ротора двигателя, то есть синхронная скорость N, составляет:

N = 120f / P = 60 f / P

Где f - частота источника переменного тока в Гц, P - количество полюсов (на фазу), а p - количество пар полюсов на фазу.

Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. Дорожнее построить двигатель медленнее, учитывая равную мощность. При 60 Гц:

  • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
  • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
  • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
  • восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
  • 10-полюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
  • 12-полюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.

Промышленный синхронный двигатель.

Синхронные двигатели переменного тока с низкой частичной мощностью полезны там, где требуется точная синхронизация. Мощные синхронные двигатели переменного тока, хотя и более дорогие, чем трехфазные асинхронные двигатели, имеют два дополнительных качества. Несмотря на более высокую начальную стоимость, они могут быть полезны в долгосрочной перспективе, потому что они более энергоэффективны, чем другие типы двигателей.Во-вторых, иногда одновременно они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, одновременно выполняя полезную работу.

Существует несколько различных типов синхронных двигателей переменного тока. Они обычно классифицируются в соответствии со своими средствами генерирования магнитного поля. Отдельно возбуждаемые двигатели имеют магнитные полюса под напряжением от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбуждаемой) машине.Невозбужденные типы включают реактивные двигатели, гистерезисные двигатели и двигатели с постоянными магнитами. Кроме того, есть двигатели с постоянным током.

Синхронные двигатели без возбуждения имеют стальные роторы. При работе ротор намагничивается необходимыми магнитными полюсами аналогично асинхронному двигателю. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитом статора. Причина в том, что в роторе есть слоты. Двигатели запускаются как асинхронные двигатели. Когда они приближаются к синхронной скорости, щели позволяют синхронному магнитному полю захватывать ротор.Затем двигатель вращается с синхронной скоростью, пока требуемый крутящий момент низкий.

В реактивном двигателе ротор имеет выступающие полюса, которые напоминают отдельные зубья. Ротора меньше, чем полюсов статора, что препятствует выравниванию полюсов статора и ротора, и в этом случае вращения не будет. Моторы неохотно не запускаются самостоятельно. По этой причине в обмотку ротора часто встроены специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный двигатель.

В гистерезисном двигателе используется широкая петля гистерезиса в роторе из кобальтовой стали с высокой коэрцитивной силой. Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора. Это отставание создает крутящий момент. На синхронной скорости поля ротора и статора фиксируются для обеспечения непрерывного вращения. Одним из преимуществ гистерезисного двигателя является то, что он запускается самостоятельно.

Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор.Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

Пример двигателя с постоянным магнитом и электронной коммутацией, в данном случае от небольшого воздушного вентилятора. Этот стиль называется опережающим, потому что ротор находится снаружи статора, встроенного в лопасти вентилятора. Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также видим датчик Холла, который обеспечивает часть электронной коммутации.

Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный постоянный магнит) или просто бесщеточный двигатель с постоянным магнитом.Ротор содержит постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Пример того, как катушки двигателя постоянного тока запитываются в последовательности, которая перемещает ротор.

Компьютер управляет последовательным включением питания на обмотках статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубцом статора, крутящий момент не создается.Если зуб ротора находится под некоторым углом к ​​зубу статора, по меньшей мере, некоторый магнитный поток пересекает зазор под углом, который не перпендикулярен поверхности зуба. В результате крутящий момент на роторе. Таким образом, переключение питания на обмотки статора в нужное время вызывает картину потока, которая приводит к движению по часовой стрелке или против часовой стрелки.

Еще одним типом синхронного двигателя является электродвигатель с переключаемым сопротивлением (SR).
Его ротор состоит из сложенных стальных пластин с рядом зубьев.Зубы магнитопроницаемы, а окружающие их участки слабо проницаемы благодаря прорезям в них.

В отличие от асинхронных двигателей, в роторе отсутствуют прутки и, следовательно, нет тока, создающего крутящий момент. Отсутствие какой-либо формы проводника на роторе SR означает, что общие потери на роторе значительно ниже, чем в других двигателях с роторами, несущими проводники.

Крутящий момент, создаваемый электродвигателем SR, контролируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем модуляции крутящего момента (через ток обмотки). Этот метод аналогичен способу регулирования скорости через ток якоря в традиционном двигателе с постоянным током.

Двигатель SR производит крутящий момент, пропорциональный величине тока, приложенного к его обмоткам. Производство крутящего момента не зависит от скорости двигателя. Это не похоже на асинхронные двигатели переменного тока, где при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля при увеличении оборотов двигателя.

Наконец, есть синхронный двигатель переменного тока с возбуждением. Требуется выпрямленный источник питания для генерации магнитного поля. Эти двигатели, как правило, построены в размерах больше, чем одна лошадиная сила.

,

Разница между синхронным и асинхронным двигателем

Различие между синхронным и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требование к контактному кольцу и щеткам, их стоимость, эффективность, коэффициент мощности, ток питания, скорость, самозапуск , влияют на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

Различие между синхронным и асинхронным двигателем объяснено ниже в табличной форме.

Асинхронный двигатель
ОСНОВА СИНХРОННЫЙ МОТОР АСИНХРОННЫЙ МОТОР
Определение Синхронный двигатель - это машина, скорость вращения ротора и магнитного поля статора которой одинакова.
N = NS = 120f / P
Асинхронный двигатель - это машина, ротор которой вращается со скоростью, меньшей синхронной.
N
Тип Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с переключаемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. переменного тока известен как асинхронный двигатель.
Слип Не имеет слипа. Значение скольжения равно нулю. Имеют проскальзывание, поэтому значение проскальзывания не равно нулю.
Дополнительный источник питания Для первоначального вращения ротора вблизи синхронной скорости требуется дополнительный источник питания постоянного тока. Не требует дополнительного источника запуска.
Кольцо скольжения и щетки Требуется кольцо скольжения и щетки Кольцо скольжения и щетки не требуются.
Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Менее затратный
КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
Коэффициент мощности Изменяя возбуждение, коэффициент мощности можно соответственно отрегулировать как отставание, опережение или единица. Асинхронный двигатель работает только с запаздывающим коэффициентом мощности.
Источник тока Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
Самозапуск Синхронный двигатель самозапуска Самозапуск
Влияние крутящего момента Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин. Скорость двигателя выше 600 об / мин работает отлично.
Применения Синхронные двигатели используются на электростанциях, в обрабатывающей промышленности и т. Д., А также в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.

Синхронный двигатель - это двигатель, который работает с синхронной скоростью, то есть частота вращения ротора равна частоте вращения статора двигателя.Он следует соотношению N = N S = 120f / P, где N - скорость ротора, а Ns - синхронная скорость.

Асинхронный двигатель - это асинхронный двигатель переменного тока. Ротор асинхронного двигателя вращается со скоростью, меньшей синхронной, то есть N S

Подробное объяснение разницы между синхронным и асинхронным двигателем приведено ниже.

  • Синхронный двигатель - это машина, скорость вращения которой и скорость магнитного поля статора равны.Асинхронный двигатель - это машина, ротор которой вращается со скоростью, меньшей синхронной.
  • Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с переключаемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
  • Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
  • Синхронному двигателю требуется дополнительный источник питания постоянного тока для первоначального вращения ротора вблизи синхронной скорости.Асинхронный двигатель не требует дополнительного источника запуска.
  • Кольцо скольжения и щетки требуются в синхронном двигателе, тогда как асинхронный двигатель не требует кольца скольжения и щеток. Только для асинхронного двигателя намоточного типа требуются контактное кольцо и щетки.
  • Синхронный двигатель является дорогостоящим по сравнению с асинхронным двигателем.
  • КПД синхронного двигателя выше, чем у асинхронного двигателя.
  • Изменяя возбуждение, коэффициент мощности Синхронного двигателя можно соответствующим образом отрегулировать как запаздывающий, опережающий или единичный, тогда как асинхронный двигатель работает только с запаздывающим коэффициентом мощности.
  • Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
  • Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
  • Синхронный двигатель не запускается самостоятельно, тогда как асинхронный двигатель запускается самостоятельно.
  • Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, тогда как оно влияет на крутящий момент асинхронного двигателя.
  • Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин. Асинхронный двигатель работает превосходно. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.
  • Различные приложения
.

Разница между синхронной и асинхронной передачей (со сравнительной диаграммой)

В предыдущей статье мы обсуждали последовательную и параллельную передачу. Как мы знаем в Serial Transmission, данные передаются побитно, таким образом, что каждый бит следует за другим. Это два типа, а именно, Синхронная и Асинхронная передача .

Одно из основных отличий заключается в том, что в синхронной передаче отправитель и получатель должны иметь синхронизированные часы перед передачей данных.Принимая во внимание, что асинхронная передача не требует часов, но добавляет бит четности к данным перед передачей.

Кроме того, синхронная передача использует символы синхронизации, в то время как асинхронный метод использует стартовые / стоповые биты, чтобы предупредить модем, когда данные отправляются и когда эти передачи завершены, называются символами сообщения.

Содержимое: синхронная и асинхронная передача

  1. Сравнительная таблица
  2. Определение
  3. Ключевые различия
  4. Заключение

Сравнительная таблица

Основа для сравнения Синхронная передача Асинхронная передача
Значение Передача начинается с заголовка блока, который содержит последовательность битов. Использует начальный и конечный биты перед и после символа соответственно.
Способ передачи Отправляет данные в виде блоков или кадров Отправляет 1 байт или символ за раз
Синхронизация Присутствует с тем же тактовым импульсом. Отсутствует
Скорость передачи
Быстрая Медленная
Разрыв между данными Не существует Существует
Стоимость Дорого Экономичный
Интервал времени Константа Случайный
Реализовано Аппаратное и программное обеспечение Только аппаратное обеспечение
Примеры Чаты, видеоконференции, телефонные разговоры и так далее. Письма, электронные письма, форумы и так далее.

Определение синхронной передачи

В синхронной передачи данные передаются в дуплексном режиме в виде блоков или кадров. Синхронизация между отправителем и получателем необходима для того, чтобы отправитель знал, где начинается новый байт (поскольку между данными нет пропуска). Поэтому каждый блок символов помечается символами синхронизации, и приемное устройство получает данные до тех пор, пока не будет идентифицирован специальный конечный символ.Синхронная передача эффективна, надежна и используется для передачи большого количества данных. Он обеспечивает связь в реальном времени между подключенными устройствами. Чаты, видеоконференции, телефонные разговоры, а также личные встречи являются одними из примеров синхронной передачи.

Голосовые и широкополосные каналы обычно используются в режимах синхронной передачи, поскольку они обеспечивают более высокую скорость до 1200 бит / с и служат для высокой скорости передачи данных.

Определение асинхронной передачи

В асинхронной передачи данные передаются в полудуплексном режиме, 1 байт или символ за раз. Он передает данные в непрерывном потоке байтов. Как правило, размер отправляемого символа составляет 8 битов, к которым добавляется бит четности, то есть стартовый и стоповый бит, который дает в общей сложности 10 битов.

Не требует часов для синхронизации; скорее он использует биты четности, чтобы сообщить получателю, как интерпретировать данные.Эти биты четности известны как стартовые и стоповые биты, которые управляют передачей данных. Он использует символьную синхронизацию, чтобы принимающий терминал мог синхронизироваться с получением данных о символе. Это просто, быстро, экономично и не требует двусторонней связи. Письма, электронные письма, форумы, телевизоры и радио являются одними из примеров асинхронной передачи.

Каналы голосового диапазона, которые имеют узкий тип и работают на более медленной скорости, используются в асинхронной передаче.Здесь передающее устройство работает вручную или периодически.

Ключевые различия между синхронной и асинхронной передачей

  1. В синхронной передаче данные передаются в форме кадров. С другой стороны, в асинхронной передаче данные передаются по 1 байту за раз.
  2. Синхронная передача требует тактового сигнала между отправителем и получателем, чтобы сообщить получателю о новом байте. В отличие от этого, в асинхронной передаче отправителю и получателю не требуется тактовый сигнал, поскольку к отправляемым здесь данным прикреплен бит четности, который указывает начало нового байта.
  3. Скорость передачи данных при асинхронной передаче ниже, чем при синхронной передаче.
  4. Асинхронная передача проста и экономична, тогда как синхронная передача сложна и дорога.
  5. Синхронная передача эффективна и имеет меньшие издержки по сравнению с асинхронной передачей.
  6. При асинхронной передаче данных строка поддерживается на стабильном значении (логика 1), если по линии не передаются данные. В отличие от этого, при синхронной передаче конец данных указывается символом (ами) синхронизации.Помимо символов синхронизации, строка может быть как высокой, так и низкой.

Заключение

Синхронная и асинхронная передача имеют свои преимущества и недостатки. Асинхронный прост, экономичен и используется для передачи небольшого количества данных.

И наоборот, синхронная передача используется для передачи большого объема данных, поскольку она эффективна и имеет меньшие накладные расходы. Следовательно, мы заключаем, что синхронная и асинхронная передача необходимы для передачи данных.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.