Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Какой нужен пускатель для двигателя 30 квт


Выбор автомата защиты и контактора по мощности двигателя

Используя информацию из таблицы ниже можно по мощности трехфазного двигателя (или его номинальному току) выбрать автомат защиты двигателя и подходящий контактор. Под таблицей даны ответы на вопросы. В таблице показано наличие изделий: зеленый - в наличии, голубой - ожидается, серый - под заказ.

 

       
Мощность двигателя 3~400В, кВт
 
Диапазон уставки, А
Imin – Iном
Ток мгновенного расцепителя, А
(авт. выключателя)
Ном. откл.
способн., кА
(авт. выключателя)
Автомат защиты двигателя Модуль соединения        Контактор        Адаптер
на DIN-рейку
- 0,10 – 0,16 2,1 100 M4-32T-0,16 M4 32 VK1 K1-09D10 230 -
0,06 0,16 – 0,25 3,3 100 M4-32T-0,25 M4 32 VK1 K1-09D10 230 -
0,09 0,25 – 0,4 5,2 100 M4-32T-0,4   M4 32 VK1 K1-09D10 230 -
0,18 0,4 – 0,63 8,2 100 M4-32T-0,63 M4 32 VK1 K1-09D10 230 -
0,25 0,63 – 1 13 100 M4-32T-1      M4 32 VK1 K1-09D10 230 -
0,55 1,0 – 1,6 20,8 100 M4-32T-1,6   M4 32 VK1 K1-09D10 230 -
0,75 1,6 – 2,5 32,5 100 M4-32T-2,5   M4 32 VK1 K1-09D10 230 -
1,5 2,5 – 4 52 100 M4-32T-4      M4 32 VK1 K1-09D10 230 -
2,2 4 – 6 78 100 M4-32T-6      M4 32 VK1 K1-09D10 230 -
3 5 – 8 104 100 M4-32T-8      M4 32 VK1 K1-09D10 230 -
4 6 – 10 130 50 M4-32T-10    M4 32 VK1 K1-09D10 230 -
5,5 9 – 13 169 50 M4-32T-13    M4 32 VK1 K1-12D10 230 -
7,5 11 – 17 221 20 M4-32T-17    M4 32 VK3 K3-18ND10 230 -
7,5 14 – 22 286 15 M4-32T-22    M4 32 VK3 K3-22ND10 230 -
11 18 – 26 338 15 M4-32T-26    M4 32 VK3 K3-22ND10 230 -
15 22 – 32 416 15 M4-32T-32    M4 32 VD K3-32A00 230 M4 32 HU1
 
 
             
- 0,10 – 0,16 2,1 100 M4-32R-0,16 M4 32 VK3 K3-10ND10 230 -
0,06 0,16 – 0,25 3,3 100 M4-32R-0,25 M4 32 VK3 K3-10ND10 230 -
0,09 0,25 – 0,4 5,2 100 M4-32R-0,4   M4 32 VK3 K3-10ND10 230 -
0,18 0,4 – 0,63 8,2 100 M4-32R-0,63 M4 32 VK3 K3-10ND10 230 -
0,25 0,63 – 1 13 100 M4-32R-1      M4 32 VK3 K3-10ND10 230 -
0,55 1,0 – 1,6 20,8 100 M4-32R-1,6   M4 32 VK3 K3-10ND10 230 -
0,75 1,6 – 2,5 32,5 100 M4-32R-2,5   M4 32 VK3 K3-10ND10 230 -
1,5 2,5 – 4 52 100 M4-32R-4      M4 32 VK3 K3-10ND10 230 -
2,2 4 – 6 78 100 M4-32R-6      M4 32 VK3 K3-10ND10 230 -
3 5 – 8 104 100 M4-32R-8      M4 32 VK3 K3-10ND10 230 -
4 6 – 10 130 100 M4-32R-10    M4 32 VK3 K3-10ND10 230 -
5,5 9 – 13 169 100 M4-32R-13    M4 32 VK3 K3-14ND10 230 -
7,5 11 – 17 221 50 M4-32R-17    M4 32 VK3 K3-18ND10 230 -
7,5 14 – 22 286 50 M4-32R-22    M4 32 VK3 K3-22ND10 230 -
11 18 – 26 338 50 M4-32R-26    M4 32 VK3 K3-22ND10 230 -
15 22 – 32 416 50 M4-32R-32    M4 32 VD K3-32A00 230 M4 32 HU1
 
 
             
12,5 18 – 26 338 50 M4-63R-26    M4 63 VD K3-32A00 230 M4 63 HU1
15 22 – 32 416 50 M4-63R-32    M4 63 VD K3-32A00 230 M4 63 HU1
18,5 28 – 40 520 50 M4-63R-40    M4 63 VD K3-40A00 230 M4 63 HU1
22 34 – 50 650 50 M4-63R-50    M4 63 VD K3-50A00 230 M4 63 HU1
30 45 – 63 819 50 M4-63R-63    M4 63 VD K3-62A00 230 M4 63 HU1
 
 
             
30 45 – 63 819 50 M4-100R-63   M4 100 VD K3-62A00 230 M4 100 HU1
37 55 – 75 975 50 M4-100R-75   M4 100 VD K3-74A00 230 M4 100 HU1
45 70 – 90 1170 50 M4-100R-90   - K3-90A00 230 -
- 80 – 100 1300 50 M4-100R-100 - K3-115A00 230 -

 

Как осуществлять подбор автоматического выключателя для защиты электродвигателя:

1. Номинальный ток автоматического выключателя должен быть больше или равен номинальному току электродвигателя.

2. Пусковой ток электродвигателя обычно в 7 раз превышает номинальный (точная величина для конкретного двигателя указывается в паспорте). Т.к. автоматический выключатель не должен срабатывать при пуске двигателя, необходимо удостовериться, что величина в колонке "Ток мгновенного расцепления при к.з." с некоторым запасом будет выше пускового тока.
Пусковой ток для этих вылей вычисляем по формуле Iном*KРАТН*КОЭФ, где Iном - номинальный ток электродвигателя, КРАТН - кратность пускового тока электродвигателя, КОЭФ - поправочный коэффициент, учитывающий отклонение пускового тока от номинального, колебания напряжения (принимаем равным 1,4).

3. Номинальный ток автоматического включателя должен быть меньше предельно допустимого тока кабеля, которым осуществляется подключение электродвигателя.

Пример: возьмем двигатель АИР90L4 мощностью 2.2кВт, в паспорте указаны: номинальный ток Iн (треугольник/звезда) (220/380В) = 8,91А / 5,16А; кратность пускового тока Iп/Iн=6,8.
По номинальному току электродвигателя (5,16А) выбираем автомат защиты двигателя M4-32T-6 c номинальным током .
Проверяем: пусковой ток 5,16*6,8*1,4=49,12А не превышает "Ток мгновенного расцепления при к.з." равный 78А.
Т.О. автомат не будет срабатывать при пуске двигателя.

Следовательно данный автоматический выключатель подходит для защиты указанного электродвигателя.

 

 

 

Вопросы и ответы:

В: В каких случаях срабатывает автомат защиты двигателя?
О: Автоматические выключатели M4 снабжены: 1. биметаллическим тепловым размыкателем, который срабатывает в зависимости от уставки по номинальному току двигателя (уставка задается регулятором на лицевой панели), данный размыкатель инерционен и срабатывает тем быстрее, чем выше ток. 2. мгновенным электромагнитным размыкателем, срабатывающим в случае к.з., порог срабатывания в 13 раз выше номинала автоматического выключателя и поэтому позволяет исключить ложные срабатывания при запуске электродвигателя.

В: Чем отличаются автоматы защиты M4-32T.. от M4-32R..?
О: Автоматы защиты M4-32T имеют кнопочный механизм включения, в то время как M4-32R оборудованы поворотным переключателем.

В: Для каких условий эксплуатации предназначены автоматы защиты двигателя M4?
Автоматические выключатели M4 подходят для любого климата. Для исключения ложных срабатываний рекомендуется избегать обдува автоматов свежим или холодным воздухом (от системы кондиционирования). Автоматы защиты M4 предназначены для функционирования в закрытых помещениях при нормальных условиях (т.е. без пыли, приводящих к коррозии паров или вредных газов). В случае использования в помещениях с отличными от нормальных условиями эксплуатации, необходимо использовать защитный корпус IP65, например, M4 32R PFh5 (серый) или M4 32R PFHN4 (желто-красный).

В: Где найти информацию по аксессуарам для автоматов-защиты двигателей M4?
О: См. раздел АКСЕССУАРЫ ДЛЯ МОТОР-АВТОМАТОВ BENEDICT? (блоки доп. контактов, контакты сигнализации срабатывания, расцепитель минимального напряжения, независимый расцепитель, перемычки и т.д.)

В: На какое конкретно значение должна выставляться уставка автомата защиты двигателя?
О: Уставка автоматического выключателя должна выставляться на значение номинального рабочего тока электродвигателя, указанное на шильдике (в паспорте).

В: Возможно ли использование автоматов защиты двигателя M4 для однофазных электродвигателей?
О: Да, возможно. В этом случае подключение должно осуществляться, как показано на рисунке:

В: Какую защиту обеспечивают автоматические выключатели M4?

1. Защита при возникновении токов короткого замыкания. Мгновенный расцепитель при возникновении короткого замыкания в нагрузке, обеспечивает отключение нагрузки от сети питания, таким образом предотвращая возникновение дополнительного ущерба от действия больших токов. Автоматические выключатели M4 имеют отключающую способность 50кА и 100кА, что при напряжениях 380-400В AC является исчерпывающе надежной защитой, т.к. более высокие токи обычно не могут возникать в точке установки данного оборудования. В общем случае использование предохранителей не требуется, однако установка предохранителей дополнительно может производиться в тех случаях, когда ток короткого замкания в точке монтажа оборудования может превышать номинальную отключающую способность автоматического выключателя.

2. Защита двигателя. Характеристики срабатывания автоматических выключателей M4 специально разработаны для защиты трехфазных электродвигателей. Поэтому автоматические выключатели для защиты электродвигателей так же могут называться ручными пускателями двигателя. Номинальный ток защищаемого двигателя выбирается регулятором на лицевой панели устройства.

3. Защита сети. Автоматы защиты двигателя M4 так же обеспечивают защиту сети. Они соответствуют требованиям ГОСТ IEC 60947-3-2016 (Выключатели, разъединители, выключатели-разъединители и комбинации их с предохранителями) и ГОСТ IEC 60947-2-2014 (Аппаратура распределения и управления низковольтная). В соответствии с ГОСТ Р МЭК 60204-1-2007 данные автоматические выключатели могут быть использованы как основной или аварийной выключатель (следует учитывать, что в случае использования аксессуара для дверного сочленения не выполняются требования к изоляции).

Характеристики срабатывания автоматических выключателей M4 для защиты электродвигателя:


I - Кривая показывает средний рабочий ток при температуре 20°С, если устройство было полностью охлаждено перед началом работы.
II - Кривая показывает характеристику мгновенного электромагнитного расцепителя (расцепление при к.з.)

Информация по аксессуарам для автоматов защиты двигателя M4



 

как это работает, проблемы, тестирование

Обновлено: 6 мая 2020 г.

Стартер - это электродвигатель, который переворачивает или «заводит» двигатель для запуска. Он состоит из мощного электродвигателя постоянного тока (постоянного тока) и соленоида стартера, который прикреплен к двигателю (см. Рисунок).

В большинстве автомобилей стартовый двигатель крепится болтами к двигателю или коробке передач, посмотрите эти фотографии: фото 1, фото 2. Ниже показано, как работает стартер внутри.

Стартер работает от основной 12-вольтовой батареи автомобиля. Чтобы перевернуть двигатель, стартер требует очень большой электрический ток, а это означает, что аккумулятор должен иметь достаточную мощность. Если аккумулятор разряжен, в автомобиле могут загореться огни, но энергии (тока) не хватит, чтобы перевернуть стартер.

Каковы признаки плохого стартера: При запуске автомобиля с полностью заряженным аккумулятором происходит один щелчок или ничего не происходит.Стартер не работает, хотя на клемме управления стартера есть напряжение 12 Вольт.

Другим симптомом является то, что стартер работает, но не переворачивает двигатель. Часто это может вызвать громкий визг при запуске автомобиля. Конечно, это также может быть вызвано повреждением зубьев зубчатого колеса гибкого диска или маховика.

Соленоид стартера

Соленоид стартера.

Типичный соленоид стартера имеет один маленький разъем для провода управления стартера (белый разъем на фото) и две большие клеммы: одна для положительного кабеля аккумулятора, а другая для толстого провода, который питает сам стартер (см. диаграмма ниже).

Соленоид стартера работает как мощное электрическое реле. При активации через клемму управления соленоид замыкает сильноточную электрическую цепь и передает энергию аккумулятора на стартер. В то же время соленоид стартера толкает шестерню вперед, чтобы она зацепилась с зубчатым венцом гибкой пластины двигателя или маховика.

Реклама - Продолжить чтение ниже

Кабели для батарей

Пусковая система упрощенная схема.

Как мы уже упоминали, для запуска двигателя от стартера требуется очень большой электрический ток, поэтому он подключен к аккумулятору толстыми (крупногабаритными) кабелями (см. Схему). Отрицательный (заземляющий) кабель соединяет отрицательную клемму аккумулятора « - » с блоком цилиндров двигателя или коробкой передач рядом со стартером. Положительный кабель соединяет положительную клемму аккумулятора « + » с соленоидом стартера.Часто плохое соединение на одном из кабелей аккумулятора может привести к тому, что стартер не будет работать.

Как работает система запуска:

Когда вы поворачиваете ключ зажигания в положение START или нажимаете кнопку START, если трансмиссия находится в режиме парковки или нейтрали, напряжение батареи проходит через цепь управления стартера и активирует соленоид стартера. Электромагнит стартера приводит в действие двигатель стартера. В то же время соленоид стартера толкает шестерню вперед, чтобы сцепить его с маховиком двигателя (гибкая пластина в автоматической коробке передач).Маховик прикреплен к коленвалу двигателя. Стартер вращается, поворачивая коленчатый вал двигателя, позволяя запустить двигатель. В автомобилях с кнопкой запуска система отключает стартер, как только двигатель начинает работать.

Нейтральный предохранительный выключатель

Переключатель режимов автоматической коробки передач.

В целях безопасности стартер может работать только тогда, когда автоматическая коробка передач находится в положении парковки или нейтрали; или если автомобиль имеет механическую коробку передач, когда педаль сцепления нажата.В автомобилях с механической коробкой передач переключатель педали сцепления замыкает цепь стартера при нажатии. В автомобилях с автоматической коробкой передач переключатель диапазона трансмиссии позволяет стартеру работать только тогда, когда коробка передач находится в режиме парковки или нейтрали.

Работа переключателя режимов трансмиссии состоит в том, чтобы сообщать компьютеру транспортного средства (PCM), в какой передаче находится трансмиссия. Если на вашем автомобиле установлен индикатор переключения передач на приборной панели, вы можете увидеть, когда индикатор диапазона трансмиссии не работает ,

Наиболее распространенная проблема - когда вы переключаете передачу в «Парк», а буква «Р» не отображается на приборной панели. Это означает, что компьютер транспортного средства (PCM) не знает, что коробка передач находится в «Парке», и не позволит запускать стартер. Признак этой проблемы - когда автомобиль запускается в нейтральном положении, но не запускается в «парке».

Эта проблема часто возникает из-за коррозии или заедания кабеля или рычага троса (см. Фото). Ржавчина на ограничивает движение кабеля и препятствует нормальной работе переключателя.Решение состоит в том, чтобы смазать точку подключения кабеля и, если необходимо, заменить ржавые детали. Положение переключателя диапазона трансмиссии может потребоваться перенастроить.

Запуск системных проблем

Проблемы с запуском системы являются общими, и не все они вызваны неисправным стартером. Чтобы найти причину проблемы, система запуска должна быть надлежащим образом протестирована. Если, когда вы пытаетесь завести автомобиль, вы слышите, что стартер заводится как обычно, но автомобиль не заводится, то проблема скорее всего не с системой запуска - прочитайте наше руководство по устранению неполадок при запуске автомобиля, чтобы узнать, как найти проблему.Вот несколько типичных проблем при запуске системы:

Разъедаемая клемма для теста. Хорошее соединение.

Батарея очень часто выходит из строя. Иногда один из электрических компонентов, который остался включенным или имеет дефект, вызывающий паразитное потребление тока, разряжает батарею. Иногда старая батарея может умереть однажды без предупреждения. В любом случае, если аккумулятор разряжен, у него не будет достаточно мощности для запуска двигателя стартера.

Если аккумулятор разряжен, при попытке запуска двигателя вы можете услышать один щелчок или повторный щелчок, или стартер может медленно перевернуться и остановиться.

Плохое соединение на кабельных клеммах может привести к тому, что стартер не будет работать или работать очень медленно. Часто клеммы аккумулятора или заземляющий кабель подвергаются коррозии, что вызывает проблемы со стартером (см. Фото выше).

Клемма управления электромагнитным реле со стартером

Иногда клемма управления стартера подвергается коррозии (на фото), или провод управления стартера ослабевает или отсоединяется от клеммы, что приводит к тому, что стартер не работает.Например, эта разъеденная клемма управления стартера была причиной незапуска, не проворачивания в Mazda 3. Мы заметили это только после отсоединения разъема провода управления. Очистка терминала и замена разъема решили проблему.

Другая частая неисправность - это сам стартер. Иногда угольные щетки или другие детали внутри стартера изнашиваются, и стартер перестает работать.

Например, неисправный стартер был обычным явлением в некоторых моделях Toyota Corolla и Matrix.Даже при хорошем аккумуляторе стартер щелкает, но не переворачивается.

Если стартовый двигатель неисправен, его необходимо заменить, что может стоить от 250 до 650 долларов США. Восстановление стартера обычно дешевле, но занимает больше времени.

Иногда механизм стартера по какой-то причине не будет правильно сцепляться с маховиком двигателя. Это может вызвать очень громкий металлический скрежет или визг при попытке завести автомобиль. В этом случае необходимо проверить зубчатое колесо маховика на наличие поврежденных зубов.

Замок зажигания также часто выходит из строя. Точки контакта внутри переключателя зажигания изнашиваются, поэтому при повороте переключателя зажигания в положение «Пуск» электрический ток не проходит через цепь управления стартера для активации соленоида стартера. Если покачивание ключа в замке зажигания помогает завести автомобиль, возможно, неисправен выключатель зажигания.

Нейтральный защитный выключатель также может выйти из строя или выйти из строя. Например, если автомобиль запускается в «Нейтральном», но не в «Парковочном», сначала необходимо проверить защитный выключатель нейтрального положения.

Как тестируется стартовая система

Техник проверяет состояние заряда аккумулятора
с помощью тестера аккумулятора

Когда стартер не работает, сначала необходимо проверить состояние заряда батареи, клеммы батареи и кабели батареи. Одним из симптомов слабой батареи является то, что приборная лампа тускнеет, когда ключ повернут в положение СТАРТ.

Следующий шаг обычно включает в себя тестирование цепи управления стартером.Ваш механик может начать с измерения напряжения аккумулятора на клемме управления соленоида стартера с ключом в положении СТАРТ. Если напряжение отсутствует, проблема, скорее всего, связана с цепью управления стартера (выключатель зажигания, реле стартера, предохранительный выключатель нейтрали, провод управления). Если на клемме управления соленоида стартера имеется напряжение батареи, когда ключ находится в положении «ПУСК», сам стартер может быть неисправен. Клемма управления электромагнитным реле стартера также должна быть проверена на правильность подключения.

Как работает стартер?

Стартер внутри

Стартер обычно имеет четыре обмотки возбуждения (полевые катушки), прикрепленные к корпусу стартера с внутренней стороны. Якорь (вращающаяся часть) соединен через угольные щетки последовательно с катушками возбуждения. На переднем конце якоря есть небольшая шестерня, которая прикреплена к якорю через обгонную муфту.

Как работает стартер? Когда водитель поворачивает ключ или нажимает кнопку Пуск, обмотка соленоида находится под напряжением. Плунжер соленоида перемещается в направлении стрелки и замыкает контакты соленоида. Это подключает питание от батареи к стартеру (катушки возбуждения и якорь). В то же время поршень проталкивает стартер через рычаг. Затем зубчатое колесо входит в зацепление с зубчатым колесом гибкой пластины и переворачивает его. Гибкая пластина прикреплена к коленчатому валу двигателя.

Большинство проблем стартера вызвано изношенными или сгоревшими соленоидными контактами, изношенными щетками и коммутатором и изношенными втулками якоря. Симптом изношенных контактов соленоида - это когда щелкает соленоид, но стартер не работает. Когда щетки стартера изношены, двигатель стартера не издает никаких шумов. Когда передняя и задняя втулки якоря изнашиваются, якорь трется о полевые башмаки, заставляя стартер работать медленно и шумно. Многие современные стартеры имеют небольшие шариковые подшипники вместо втулок.Если вы хотите восстановить стартовый двигатель, комплекты для восстановления стартового двигателя, которые включают в себя детали с частым износом, продаются онлайн.

Сравнение плавного пуска и запуска преобразователя частоты

Мягкий запуск

Устройство плавного пуска - это, как и следовало ожидать, устройство, обеспечивающее плавный пуск двигателя . Плавный пускатель имеет характеристики, отличные от других методов пуска. Он имеет тиристоров в главной цепи, а напряжение двигателя регулируется печатной платой.

Сравнение плавного пуска и запуска двигателя преобразователя частоты (на фото: частотно-регулируемые приводы, установленные на двигателях вентиляторов и насосов; кредит: crockett-Facilities.ком)

Устройство плавного пуска использует тот факт, что , когда напряжение двигателя низкое во время запуска, пусковой ток и пусковой момент также низки .

Моторный мягкий стартер
Преимущества

Устройства плавного пуска основаны на полупроводниках . Посредством силовой цепи и цепи управления эти полупроводники уменьшают начальное напряжение двигателя.

Это приводит к уменьшению крутящего момента двигателя до .

Во время процесса запуска устройство плавного пуска постепенно увеличивает напряжение двигателя, что позволяет двигателю разогнать нагрузку до номинальной скорости , не вызывая высокого крутящего момента или пиков тока .

Кривая плавного пуска - Синхронная скорость - Момент полной нагрузки (слева) и ток полной нагрузки (справа)

Устройства плавного пуска также можно использовать для контроля остановки процессов. Устройства плавного пуска дешевле, чем преобразователи частоты.

Еще одной особенностью устройства плавного пуска является функция плавного останова , которая очень полезна при остановке насосов, когда проблема заключается в гидравлическом ударе в трубопроводной системе при прямом останове, как при пускателе со звездообразным треугольником и при прямом пуске.


Недостатки

Однако они имеют ту же проблему, что и преобразователи частоты: они могут подавать гармонических токов в систему, что может нарушить другие процессы.(Подробнее об этом)

Пандус напряжения для устройства плавного пуска. Время запуска около 1 сек.

Метод запуска также подает пониженное напряжение на двигатель во время запуска.

Устройство плавного пуска запускает двигатель при пониженном напряжении , а затем напряжение возрастает до его полного значения . Напряжение снижается в устройстве плавного пуска через фазовый угол. В связи с этим методом запуска импульсы тока не будут возникать. Время запуска и ток заблокированного ротора (пусковой ток) могут быть установлены.


Электродвигатель Soft Start 60HP (ВИДЕО)

часть 1


часть 2


Преобразователь частоты пусковой

Преобразователи частоты

предназначены для непрерывной подачи двигателей , но их также можно использовать только для запуска .

Преобразователь частоты иногда также называют VSD (привод с переменной скоростью) , VFD (привод с переменной частотой) или просто Drives , что, вероятно, является наиболее распространенным названием.

Привод состоит в основном из двух частей: одна преобразует переменный ток (50 или 60 Гц) в постоянный ток, а вторая часть преобразует постоянный ток в переменный ток, но теперь с переменной частотой 0-250 Гц. Поскольку скорость двигателя зависит от частоты, это позволяет управлять скоростью двигателя, изменяя выходную частоту от привода, и это является большим преимуществом, если существует необходимость в регулировании скорости во время непрерывной работы.

Как указано выше, во многих случаях привод все еще используется только для запуска и остановки двигателя, несмотря на то, что нет необходимости в регулировании скорости во время нормальной работы.Конечно, это создаст потребность в более дорогом стартовом оборудовании, чем это необходимо.

Управляя частотой, номинальный крутящий момент двигателя доступен на низкой скорости, а пусковой ток низкий, составляет от 0,5 до 1,0 от номинального тока двигателя, максимум 1,5 x В .

Другая доступная функция - плавный останов , который очень полезен, например, при остановке насосов, где проблема заключается в гидравлическом ударе в трубопроводах при прямом останове.Функция плавного торможения также полезна, когда мешает конвейерным лентам транспортировать хрупкий материал, который может быть поврежден, если ремни останавливаются слишком быстро.

Очень часто устанавливается фильтр вместе с приводом , чтобы снизить уровни излучения и генерируемые гармоники.

Преобразователь частоты и его линейная схема
Преимущества

Преобразователь частоты позволяет использовать с низким пусковым током , поскольку двигатель может создавать номинальный крутящий момент при номинальном токе от нуля до полной скорости.Преобразователи частоты становятся все дешевле.

В результате они все чаще используются в приложениях, где ранее использовались устройства плавного пуска.

Кривая преобразователя частоты - Синхронная скорость - Момент полной нагрузки (слева) и ток полной нагрузки (справа)
Недостатки

Несмотря на это, преобразователи частоты по-прежнему на дороже, чем устройства плавного пуска в большинстве случаев; и как устройства плавного пуска, они также вводят гармонические токи в сеть.


Что такое диск? (ВИДЕО)


VLT приводы на большой опреснительной установке (ВИДЕО)


VLT управляет вентиляторами градирни (ВИДЕО)

Ссылки:

,

Встроенный байпасный двигатель плавного пуска 11KW 15KW 22KW 30KW 45KW 55KW электродвигатель плавного пуска 380V Трехфазный плавный пуск Krrqd zlb | |

8 мощных функций защиты

1. Защита от перегрева

2. Защита от потери фазы на входе и выходе

3. Трехфазная защита от дисбаланса

4. Запустите токовую защиту

5. Защита от гистерезиса короткого замыкания нагрузки

6. Слишком низкое напряжение и слишком высокая защита

7.Длительная защита двигателя

8. Запустите защиту от перегрузки.

Область применения

Может широко использоваться в вентиляторах, насосах, ленточных конвейерах, шаровых мельницах, конвейерах и компрессорах и т. Д.

Это идеальный заменяющий продукт для традиционного преобразования звезда / треугольник, самонаводящегося доллара, магнитного контроля и других понижающих пусковых устройств, который безопасен и надежен.

Процесс отладки

1.Начать настройку

2. Установите ток настройки в соответствии с заводской табличкой двигателя.

3. Установите уровень защиты в соответствии с условиями нагрузки и скоростью перегрузки.

4. Подключите основной источник питания L1, L2, L3 и подтвердите сброс при включении УПП. В первый раз, пожалуйста, сначала выполните сброс при включении питания, чтобы предотвратить запуск незавершенной команды УПП. В это время на выход T2 подается питание. Пожалуйста, обратите внимание на операцию. Безопасность.

5.Отключите основной источник питания и подключите трехфазный двигатель к выходному концу.

6. После подключения двигателя индикатор включения изменится с мигающего на постоянный постоянный. Если он мигает, проверьте линию и не выполняйте следующие шаги.

7. Поднимите двигатель через клеммы RUN и COM.

8. Отрегулируйте начальное напряжение, время запуска, время плавного останова, чтобы получить наилучшие результаты.

9. Ввод в эксплуатацию завершен

Сил-о-Метр

модель

230 / кВт

40 / кВт

500V / KW

Номинальный ток А

5R5

3

5.5

5,5

13

7R5

4

7,5

7,5

17

11

5.5

11

11

25

15

7,5

15

15

32

18

7.5

18,5

22

37

22

11

22

30

45

30

15

30

37

60

37

18.5

37

45

75

45

22

45

55

90

Параметры проводки

Режим

мощность

Диаметр главной цепи

Момент затяжки главной цепи

Диаметр контрольной петли

Цепь управления моментом затяжки

KW

mm²

Lbf / дюйм

mm²

Lbf / дюйм

5R5

5.5

2.5

10,6 ~ 13

0,64 ~ 1

2 ~ 2,2

7R5

7,5

2.5

10,6 ~ 13

0.64 ~ 1

2 ~ 2,2

11

11

4

10,6 ~ 13

0,64 ~ 1

2 ~ 2,2

15

15

6

10.6 ~ 13

0,64 ~ 1

2 ~ 2,2

18

18,5

10

10,6 ~ 13

0,64 ~ 1

2 ~ 2,2

22

22

10

10.6 ~ 13

0,64 ~ 1

2 ~ 2,2

30

30

16

18 ~ 22

0,64 ~ 1

2 ~ 2,2

37

37

25

18 ~ 22

0.64 ~ 1

2 ~ 2,2

45

45

35

18 ~ 22

0,64 ~ 1

2 ~ 2,2

,

Смотрите также


avtovalik.ru © 2013-2020