Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Коллекторный тип двигателя что это


Коллекторный двигатель: виды, принцип работы, схемы

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.
Двигатель

- Википедия

Анимация, демонстрирующая четыре стадии цикла четырехтактного бензинового двигателя внутреннего сгорания:
  1. Индукция (Топливо входит в состав)
  2. Компрессия
  3. Зажигание (Топливо сожжено)
  4. Эмиссия (выхлопной газ)

машина, которая преобразует одну форму энергии в механическую энергию

Двигатель , или , двигатель - это машина, предназначенная для преобразования одной формы энергии в механическую. [1] [2] Тепловые двигатели, как и двигатель внутреннего сгорания, сжигают топливо для создания тепла, которое затем используется для работы. Электродвигатели преобразуют электрическую энергию в механическое движение, пневматические моторы используют сжатый воздух, а заводные моторы в игрушечных игрушках используют упругую энергию. В биологических системах молекулярные двигатели, такие как миозины в мышцах, используют химическую энергию для создания сил и, в конечном итоге, движения.

Терминология [править]

Слово двигатель происходит от древнеанглийского двигателя , от латинского ingenium - корень слова гениального .Доиндустриальное оружие войны, такое как катапульты, требучеты и тараны, называлось осадных орудий , и знание того, как их создавать, часто считалось военной тайной. Слово джин , как в хлопок джин , является сокращением от двигатель . Большинство механических устройств, изобретенных во время промышленной революции, были описаны как двигатели - паровой двигатель является ярким примером. Однако оригинальные паровые двигатели, такие как Томас Савери, были не механическими, а насосами.Таким образом, пожарная машина в своем первоначальном виде была просто водяным насосом, при этом двигатель доставлялся в огонь лошадьми. [3]

В современном использовании термин «двигатель » обычно описывает устройства, такие как паровые двигатели и двигатели внутреннего сгорания, которые сжигают или иным образом потребляют топливо для выполнения механической работы, прикладывая крутящий момент или линейную силу (обычно в форме тяги). Устройства, преобразующие тепловую энергию в движение, обычно называют просто двигателями . [4] Примеры двигателей, которые создают крутящий момент, включают известные автомобильные бензиновые и дизельные двигатели, а также турбовалы. Примеры двигателей, которые производят тягу, включают турбовентиляторы и ракеты.

Когда был изобретен двигатель внутреннего сгорания, термин «двигатель » первоначально использовался для отличия его от парового двигателя, который в то время широко использовался для питания локомотивов и других транспортных средств, таких как паровые катки. Термин двигателя происходит от латинского глагола moto , который означает приводить в движение или поддерживать движение.Таким образом, мотор - это устройство, которое передает движение.

Двигатель и двигатель являются взаимозаменяемыми на стандартном английском языке. [5] В некоторых технических жаргонах два слова имеют разные значения, в которых двигатель - это устройство, которое сжигает или иным образом потребляет топливо, изменяя свой химический состав, а двигатель - это устройство, приводимое в действие электричеством, воздухом или гидравлическое давление, которое не меняет химический состав своего источника энергии. [6] [7] Однако в ракетостроении используется термин ракетный двигатель, хотя они потребляют топливо.

Тепловой двигатель также может служить первичным двигателем - компонентом, который преобразует поток или изменения давления жидкости в механическую энергию. [8] Автомобиль, приводимый в действие двигателем внутреннего сгорания, может использовать различные двигатели и насосы, но в конечном итоге все такие устройства получают свою мощность от двигателя. Другой способ взглянуть на это состоит в том, что двигатель получает энергию от внешнего источника, а затем преобразует ее в механическую энергию, в то время как двигатель создает энергию от давления (получаемого непосредственно от взрывной силы сгорания или другой химической реакции, или вторично от действие некоторой такой силы на другие вещества, такие как воздух, вода или пар). [9]

История [править]

Античность [править]

Простые машины, такие как дубинка и весло (примеры рычага), являются доисторическими. Более сложные двигатели, использующие энергию человека, животных, воду, ветер и даже энергию пара, уходят в глубь древности. Человеческая сила была сосредоточена на использовании простых двигателей, таких как лебедка-кабестан, лебедка или беговая дорожка, а также на веревках, шкивах и механизмах блокировки и захвата; эта сила передавалась обычно с умноженными силами и уменьшенной скоростью.Они использовались в кранах и на кораблях в Древней Греции, а также в шахтах, водяных насосах и осадных машинах в Древнем Риме. Авторы тех времен, включая Витрувия, Фронтина и Плиния Старшего, рассматривают эти двигатели как обычное дело, поэтому их изобретение может быть более древним. К 1-му веку нашей эры крупный рогатый скот и лошади использовались на мельницах, приводя в движение машины, подобные тем, которые приводились в действие людьми в более ранние времена.

По словам Страбона, водная мельница была построена в Каберии, в королевстве Митридата, в 1 веке до нашей эры.Использование водяных колес в мельницах распространилось по всей Римской империи в течение следующих нескольких веков. Некоторые были довольно сложными, с акведуками, дамбами и шлюзами для поддержания и направления воды, а также с системами зубчатых колес или зубчатых колес из дерева и металла для регулирования скорости вращения. Более сложные небольшие устройства, такие как механизм Antikythera, использовали сложные цепочки передач и циферблатов, чтобы действовать как календари или предсказывать астрономические события. В стихотворении Авсония в 4 веке нашей эры он упоминает о камнерезной пиле, приводимой в движение водой.Героя Александрии приписывают многим таким ветряным и паровым машинам в 1-м веке нашей эры, включая Aeolipile и торговый автомат, часто эти машины ассоциировались с поклонением, такие как анимированные алтари и автоматизированные двери храма.

Средневековье [править]

Средневековые мусульманские инженеры использовали шестерни в мельницах и водоподъемных машинах и использовали плотины в качестве источника воды, чтобы обеспечить дополнительную мощность для водяных мельниц и водоподъемных машин. [10] В средневековом исламском мире такие достижения позволили механизировать многие производственные задачи, ранее выполнявшиеся с помощью ручного труда.

В 1206 году аль-Джазари использовал систему шатунов для двух своих водоподъемных машин. Зачаточное паротурбинное устройство было описано Таки ад-Дином [11] в 1551 году и Джованни Бранкой [12] в 1629 году. [13]

В 13 веке твердотопливный ракетный двигатель был изобретен в Китай. Управляемый порохом, этот простейший двигатель внутреннего сгорания был неспособен обеспечить устойчивую мощность, но был полезен для приведения оружия в действие на высоких скоростях в направлении врагов в бою и для фейерверков.После изобретения это новшество распространилось по всей Европе.

Промышленная революция [править]

Двигатель Boulton & Watt 1788 г.

Паровая машина Watt была первым паровым двигателем, который использовал пар при давлении чуть выше атмосферного для привода поршня, чему способствовал частичный вакуум. Совершенствование конструкции парового двигателя Newcomen 1712 года, парового двигателя Watt, которое спорадически разрабатывалось с 1763 по 1775 год, стало большим шагом в развитии парового двигателя. Предлагая резкое повышение эффективности использования топлива, дизайн Джеймса Уотта стал синонимом паровых двигателей, во многом благодаря его деловому партнеру Мэтью Боултону.Это позволило быстро создать эффективные полуавтоматические заводы в ранее невообразимых масштабах в местах, где гидроэнергетика была недоступна. Дальнейшее развитие привело к появлению паровозов и значительному расширению железнодорожного транспорта.

Что касается поршневых двигателей внутреннего сгорания, они были испытаны во Франции в 1807 году де Ривазом и независимо друг от друга братьями Ниепсе. Теоретически они были разработаны Карно в 1824 году. [ требуется цитирование ] В 1853–57 годах Эудженио Барсанти и Феличе Маттеуччи изобрели и запатентовали двигатель, использующий принцип свободного поршня, который, возможно, был первым четырехтактным двигателем. [14]

Изобретение двигателя внутреннего сгорания, которое впоследствии было коммерчески успешным, было сделано в 1860 году Этьеном Ленуаром. [15]

В 1877 году цикл Отто был в состоянии дать намного более высокое отношение мощности к весу, чем паровые двигатели, и работал намного лучше для многих транспортных применений, таких как автомобили и самолеты.

Автомобили [править]

Первый коммерчески успешный автомобиль, созданный Карлом Бенцем, добавил интерес к легким и мощным двигателям.Легкий бензиновый двигатель внутреннего сгорания, работающий по четырехтактному циклу Отто, был наиболее успешным для легких автомобилей, в то время как более эффективный дизельный двигатель используется для грузовых автомобилей и автобусов. Однако в последние годы турбодизельные двигатели становятся все более популярными, особенно за пределами США, даже для довольно небольших автомобилей.

Горизонтально противоположные поршни [править]

В 1896 году Карлу Бенцу был выдан патент на конструкцию первого двигателя с горизонтально расположенными поршнями.Его конструкция создала двигатель, в котором соответствующие поршни движутся в горизонтальных цилиндрах и одновременно достигают верхней мертвой точки, таким образом автоматически балансируя друг друга в зависимости от их индивидуального импульса. Двигатели этой конструкции часто называют плоскими двигателями из-за их формы и низкого профиля. Они использовались в Volkswagen Beetle, Citroën 2CV, некоторых автомобилях Porsche и Subaru, многих мотоциклах BMW и Honda, а также двигателях воздушных винтов.

Продвижение [править]

Продолжение использования двигателя внутреннего сгорания для автомобилей отчасти связано с совершенствованием систем управления двигателем (бортовые компьютеры, обеспечивающие процессы управления двигателем и впрыск топлива с электронным управлением).Принудительная подача воздуха за счет турбонаддува и наддува повышает выходную мощность и эффективность двигателя. Подобные изменения были применены к меньшим дизельным двигателям, давая им почти такие же характеристики мощности, что и бензиновые двигатели. Это особенно очевидно в связи с популярностью автомобилей с меньшим двигателем с дизельным двигателем в Европе. Большие дизельные двигатели все еще часто используются в грузовиках и тяжелой технике, хотя они требуют специальной обработки, недоступной на большинстве заводов. Дизельные двигатели производят более низкие выбросы углеводородов и CO
2, но с более высоким уровнем твердых частиц и NO
x , чем бензиновые двигатели. [16] Дизельные двигатели также на 40% более экономичны, чем сопоставимые бензиновые двигатели. [16]

Увеличение мощности [править]

В первой половине 20-го века наблюдалась тенденция увеличения мощности двигателя, особенно в моделях США. [требуется уточнение ] Изменения конструкции включали в себя все известные методы увеличения мощности двигателя, включая увеличение давления в цилиндрах для повышения эффективности, увеличение размеров двигателя и увеличение скорости, с которой двигатель производит работу.Более высокие силы и давления, создаваемые этими изменениями, создавали проблемы с вибрацией и размерами двигателя, что приводило к более жестким, более компактным двигателям с V-образным расположением цилиндров и противостоянием, заменяющим более длинные прямолинейные устройства.

Эффективность сгорания [править]

Принципы проектирования, которым отдают предпочтение в Европе, из-за экономических и других ограничений, таких как более мелкие и крутые дороги, ориентированы на автомобили меньшего размера и соответствуют принципам проектирования, сосредоточенным на повышении эффективности сгорания небольших двигателей.Это позволило получить более экономичные двигатели с более ранними четырехцилиндровыми двигателями мощностью 40 лошадиных сил (30 кВт) и шестицилиндровыми двигателями мощностью до 80 лошадиных сил (60 кВт) по сравнению с американскими двигателями V-8 большого объема с номинальной мощностью в диапазон от 250 до 350 л.с., некоторые даже более 400 л.с. (от 190 до 260 кВт). [требуется уточнение ] [необходимо цитирование ]

Конфигурация двигателя [править]

Раньше при разработке автомобильных двигателей производился гораздо больший ассортимент двигателей, чем обычно используется сегодня.Двигатели варьировались от 1 до 16 цилиндров с соответствующими различиями в общем размере, весе, объеме двигателя и отверстиях цилиндров. В большинстве моделей использовались четыре цилиндра и номинальная мощность от 19 до 120 л.с. (от 14 до 90 кВт). Было построено несколько трехцилиндровых двухтактных моделей, в то время как большинство двигателей имели прямые или рядные цилиндры. Было несколько моделей V-типа и горизонтально противоположных двух- и четырехцилиндровых моделей. Верхние распредвалы часто использовались.Меньшие двигатели обычно имели воздушное охлаждение и располагались в задней части автомобиля; коэффициенты сжатия были относительно низкими. В 1970-х и 1980-х годах возрос интерес к улучшению экономии топлива, что привело к возврату к меньшим размерам V-6 и четырехцилиндровым двигателям с пятью клапанами на цилиндр для повышения эффективности. Bugatti Veyron 16.4 работает с двигателем W16, что означает, что два расположения цилиндров V8 расположены рядом друг с другом, чтобы создать форму W, разделяющую один и тот же коленчатый вал.

Самый большой из когда-либо созданных двигателей внутреннего сгорания - это 14-цилиндровый 2-тактный дизельный двигатель с турбонаддувом Wärtsilä-Sulzer RTA96-C, который был спроектирован для оснащения Emma Mærsk , самого большого контейнеровоза в мире, когда его запускали в 2006.Этот двигатель имеет массу 2300 тонн, а при работе на скорости 102 об / мин (1,7 Гц) вырабатывает более 80 МВт и может использовать до 250 тонн топлива в день.

Двигатель можно отнести к категории в соответствии с двумя критериями: форма энергии, которую он принимает для создания движения, и тип движения, которое он выводит.

Тепловой двигатель [править]

Двигатель внутреннего сгорания [править]

Двигатели внутреннего сгорания - это тепловые двигатели, приводимые в движение теплом процесса сгорания.

Двигатель внутреннего сгорания [править]
Трехтактный двигатель внутреннего сгорания, работающий на угольном газе

Двигатель внутреннего сгорания представляет собой двигатель, в котором сгорание топлива (обычно ископаемого топлива) происходит с окислителем (обычно воздухом) в камере сгорания.В двигателе внутреннего сгорания расширение газов высокой температуры и высокого давления, которые образуются в результате сгорания, непосредственно прикладывает усилие к компонентам двигателя, таким как поршни или лопатки турбины или сопло, и перемещая его на расстояние , генерирует механическую работу. [17] [18] [19] [20]

Двигатель внешнего сгорания [править]

Двигатель внешнего сгорания (двигатель ЕС) представляет собой тепловой двигатель, в котором внутренняя рабочая жидкость нагревается путем сгорания внешнего источника через стенку двигателя или теплообменник.Затем жидкость, расширяясь и воздействуя на механизм двигателя, производит движение и полезную работу. [21] Затем жидкость охлаждается, сжимается и используется повторно (замкнутый цикл) или (реже) сбрасывается, а холодная жидкость втягивается (воздушный двигатель открытого цикла).

«Сжигание» относится к сжиганию топлива с окислителем, для подачи тепла. Двигатели с аналогичной (или даже идентичной) конфигурацией и работой могут использовать подачу тепла из других источников, таких как ядерные, солнечные, геотермальные или экзотермические реакции, не связанные с горением; но тогда они строго не классифицируются как двигатели внешнего сгорания, а как внешние тепловые двигатели.

Рабочая жидкость может быть газом, как в двигателе Стирлинга, или паром, как в паровом двигателе, или органической жидкостью, такой как н-пентан, в цикле органического Ренкина. Жидкость может быть любого состава; газ является наиболее распространенным, хотя иногда используется даже однофазная жидкость. В случае парового двигателя жидкость меняет фазы между жидкостью и газом.

Воздухопроницаемые двигатели внутреннего сгорания [править]

Воздушно-реактивные двигатели внутреннего сгорания - это двигатели внутреннего сгорания, которые используют кислород в атмосферном воздухе для окисления («сжигания») топлива, а не для переноса окислителя, как в ракете.Теоретически, это должно привести к лучшему удельному импульсу, чем для ракетных двигателей.

Непрерывный поток воздуха проходит через дыхательный двигатель. Этот воздух сжимается, смешивается с топливом, воспламеняется и удаляется в качестве выхлопного газа.

Примеры

Типичные воздушно-реактивные двигатели включают в себя:

реактивный реактивный двигатель
Турбовинтовой двигатель
Воздействие на окружающую среду [редактировать]

Работа двигателей обычно оказывает негативное влияние на качество воздуха и уровень окружающего звука.Все больше внимания уделяется характеристикам автомобильных систем, способствующих загрязнению. Это создало новый интерес к альтернативным источникам энергии и усовершенствованиям двигателя внутреннего сгорания. Хотя появилось несколько электромобилей с ограниченным производством на батарейках, они не оказались конкурентоспособными из-за затрат и эксплуатационных характеристик. [ цитирование необходимо ] В 21-м веке дизельный двигатель становится все более популярным среди автовладельцев.Тем не менее, бензиновый двигатель и дизельный двигатель с их новыми устройствами контроля выбросов для улучшения характеристик выбросов еще не испытывали значительных проблем. [ цитирование необходимо ] Ряд производителей представили гибридные двигатели, в основном с небольшим бензиновым двигателем в сочетании с электродвигателем и большим аккумуляторным блоком, но они также еще не достигли значительных успехов на рынке. бензиновых и дизельных двигателей.

Качество воздуха [редактировать]

Выхлопные газы из двигателя с искровым зажиганием состоят из следующего: азот от 70 до 75% (по объему), водяной пар от 10 до 12%, диоксид углерода от 10 до 13.5%, водород от 0,5 до 2%, кислород от 0,2 до 2%, монооксид углерода: от 0,1 до 6%, несгоревшие углеводороды и продукты частичного окисления (например, альдегиды) от 0,5 до 1%, монооксид азота от 0,01 до 0,4%, закись азота <100 ч / млн. диоксид серы от 15 до 60 частей на миллион, следы других соединений, таких как присадки к топливу и смазочные материалы, а также соединения галогенов и металлов и другие частицы. [22] Окись углерода очень токсична и может вызвать отравление угарным газом, поэтому важно избегать скопления газа в замкнутом пространстве.Каталитические нейтрализаторы могут уменьшить токсичные выбросы, но не полностью устранить их. Кроме того, выбросы парниковых газов, главным образом углекислого газа, в результате широко распространенного использования двигателей в современном промышленно развитом мире способствуют глобальному парниковому эффекту - главной проблеме глобального потепления.

Негорючие тепловые двигатели [править]

Некоторые двигатели преобразуют тепло от не горючих процессов в механическую работу, например, атомная электростанция использует тепло от ядерной реакции для производства пара и приводит в движение паровой двигатель, или газовая турбина в ракетном двигателе может приводиться в действие путем разложения перекиси водорода.Помимо другого источника энергии, двигатель часто проектируется так же, как двигатель внутреннего или внешнего сгорания. Другая группа не горючих двигателей включает термоакустические тепловые двигатели (иногда называемые «двигателями ТА»), которые представляют собой термоакустические устройства, которые используют звуковые волны высокой амплитуды для накачки тепла из одного места в другое или, наоборот, используют разность тепла для создания звуковых волн высокой амплитуды. , В целом, термоакустические двигатели можно разделить на устройства со стоячей и бегущей волной. [23]

Нетепловой двигатель с химическим приводом [править]

Нетепловые двигатели обычно приводятся в действие химической реакцией, но не являются тепловыми двигателями. Примеры включают в себя:

Электродвигатель [править]

Электродвигатель использует электрическую энергию для производства механической энергии, обычно через взаимодействие магнитных полей и проводников с током. Обратный процесс, производящий электрическую энергию из механической энергии, осуществляется с помощью генератора или динамо.Тяговые двигатели, используемые на транспортных средствах, часто выполняют обе задачи. Электродвигатели могут работать как генераторы и наоборот, хотя это не всегда практично. Электродвигатели распространены повсеместно, и их можно найти в таких разнообразных применениях, как промышленные вентиляторы, воздуходувки и насосы, станки, бытовая техника, электроинструменты и дисководы. Они могут получать питание от постоянного тока (например, от портативного устройства с питанием от батареи или транспортного средства) или от переменного тока от центральной электрической распределительной сети.Самые маленькие моторы можно найти в электрических наручных часах. Средние двигатели с высокими стандартизированными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для приведения в движение больших судов и для таких целей, как трубопроводные компрессоры, с номинальной мощностью в тысячи киловатт. Электродвигатели могут быть классифицированы по источнику электроэнергии, по их внутренней конструкции и по их применению.

Физический принцип производства механической силы при взаимодействии электрического тока и магнитного поля был известен еще в 1821 году.Электродвигатели с возрастающей эффективностью были построены в течение 19-го века, но коммерческая эксплуатация электродвигателей в больших масштабах требовала эффективных электрических генераторов и электрических распределительных сетей.

Для сокращения потребления электроэнергии двигателями и связанными с ними углеродными следами различные регулирующие органы во многих странах ввели и внедрили законодательство, поощряющее производство и использование более эффективных электродвигателей.Хорошо сконструированный двигатель может преобразовывать более 90% входной энергии в полезную мощность в течение десятилетий. [24] Когда эффективность двигателя повышается даже на несколько процентных пунктов, экономия в киловатт-часах (и, следовательно, в стоимости) огромна. Эффективность электрической энергии типичного промышленного асинхронного двигателя может быть улучшена путем: 1) уменьшения электрических потерь в обмотках статора (например, путем увеличения площади поперечного сечения проводника, улучшения техники обмотки и использования материалов с более высоким электрическим напряжением). проводимости, такие как медь), 2) снижение электрических потерь в катушке ротора или отливки (например,Например, используя материалы с более высокой электропроводностью, такие как медь, 3) уменьшая магнитные потери, используя магнитную сталь более высокого качества, 4) улучшая аэродинамику двигателей, чтобы уменьшить механические потери в обмотке, 5) улучшая подшипники, чтобы уменьшить потери на трение, и 6) минимизация производственных допусков. Для дальнейшего обсуждения этой темы см. Премиум эффективность.)

По соглашению, электрический двигатель относится к железнодорожному электровозу, а не к электрическому двигателю.

Двигатель с физическим питанием [править]

Некоторые двигатели приводятся в действие потенциальной или кинетической энергией, например, некоторые фуникулеры, гравитационные плоскости и конвейеры канатных дорог использовали энергию от движущейся воды или камней, а некоторые часы имеют вес, который падает под действием силы тяжести. Другие формы потенциальной энергии включают сжатые газы (например, пневматические моторы), пружины (заводные моторы) и резинки.

Исторические военные осадные машины включали в себя большие катапульты, требучеты и (в некоторой степени) тараны с питанием от потенциальной энергии.

Пневматический двигатель [править]

Пневматический двигатель - это машина, которая преобразует потенциальную энергию в виде сжатого воздуха в механическую работу. Пневматические двигатели обычно преобразуют сжатый воздух в механическую работу с помощью линейного или вращательного движения. Линейное движение может исходить либо от диафрагмы, либо от поршневого привода, тогда как вращательное движение обеспечивается либо лопастным пневмодвигателем, либо поршневым пневмодвигателем. Пневматические двигатели нашли широкое распространение в индустрии ручных инструментов, и постоянно предпринимаются попытки расширить их использование в транспортной отрасли.Однако пневматические двигатели должны преодолевать недостатки эффективности, прежде чем их можно будет рассматривать в качестве жизнеспособного варианта в транспортной отрасли.

Гидравлический мотор [править]

Гидравлический двигатель получает мощность от жидкости под давлением. Этот тип двигателя используется для перемещения тяжелых грузов и привода машин. [25]

Производительность [править]

Следующие используются при оценке производительности двигателя.

Скорость [править]

Скорость относится к вращению коленчатого вала в поршневых двигателях и скорости вращения роторов компрессора / турбины и роторов электродвигателя.Измеряется в оборотах в минуту (об / мин).

Тяга [править]

Тяга - это сила, действующая на двигатель самолета или его пропеллер после того, как он ускорил проходящий через него воздух.

Крутящий момент [править]

Крутящий момент - это крутящий момент на валу, который рассчитывается путем умножения силы, вызвавшей момент, на расстояние от вала.

Мощность [править]

Мощность - это показатель того, как быстро выполняется работа.

Эффективность [править]

Эффективность - это показатель того, сколько топлива расходуется на производство электроэнергии.

Уровни звука [править]

Шум транспортного средства в основном из-за двигателя на низких скоростях, а также из-за шин и воздуха, проходящего мимо автомобиля на более высоких скоростях. [26] Электродвигатели тише, чем двигатели внутреннего сгорания. Тяговые двигатели, такие как турбовентиляторы, турбореактивные двигатели и ракеты, издают наибольшее количество шума благодаря тому, как их высокоскоростные выхлопные потоки, создающие тягу, взаимодействуют с окружающим неподвижным воздухом. Технология шумоподавления включает в себя глушители системы впуска и выпуска (глушители) на бензиновых и дизельных двигателях и вкладыши шумоподавления на входах в турбовентилятор. Hogan, C. Michael (сентябрь 1973). «Анализ дорожного шума». Журнал воды, воздуха и загрязнения почвы . 2 (3): 387–92. Bibcode: 1973WASP .... 2..387H. DOI: 10.1007 / BF00159677. ISSN 0049-6979.

Список литературы [править]

Внешние ссылки [редактировать]

Wikimedia Commons имеет СМИ, связанные с Двигатели .
Посмотрите двигатель в Викисловарь, бесплатный словарь.
Посмотрите motor в Викисловарь, бесплатный словарь.
,

Общий коллектор - Википедия

Рисунок 1: Базовая схема общего коллектора NPN (без учета смещения деталей).

В электронике усилитель с общим коллектором (также известный как повторитель эмиттера ) является одной из трех основных топологий усилителя с одноступенчатым биполярным переходом (BJT), обычно используемых в качестве буфера напряжения.

В этой схеме базовая клемма транзистора служит входом, эмиттер - выходом, а коллектор - , общий для обоих (например, он может быть привязан к заземлению или шине питания), следовательно, его имя.Аналогичная полевая транзисторная схема представляет собой общий усилитель стока, а аналогичная трубчатая схема - катодный повторитель.

Основная схема [править]

Схему можно объяснить, рассматривая транзистор как находящийся под контролем отрицательной обратной связи. С этой точки зрения общая ступень коллектора (рис. 1) представляет собой усилитель с полной последовательной отрицательной обратной связью. В этой конфигурации (рис. 2 с β = 1) все выходное напряжение V OUT размещено напротив и последовательно с входным напряжением V IN .Таким образом, два напряжения вычитаются в соответствии с законом напряжения Кирхгофа (KVL) (вычитатель из функциональной блок-схемы реализуется только входным контуром), и применяется их необычная разница V diff = V IN - V OUT к переходу база-эмиттер. Транзистор непрерывно контролирует V diff и регулирует его напряжение эмиттера почти равным (меньше V BEO ) входному напряжению, пропуская соответствующий ток коллектора через резистор эмиттера R E .В результате выходное напряжение следует за изменениями входного напряжения от V BEO до V + ; отсюда и название, , эмитент, последователь .

Интуитивно понятно, что это поведение можно понять, поняв, что напряжение базового эмиттера в биполярном транзисторе очень нечувствительно к изменениям смещения, поэтому любое изменение базового напряжения передается (в хорошем приближении) непосредственно на эмиттер. Это немного зависит от различных помех (допуски транзистора, изменения температуры, сопротивление нагрузки, резистор коллектора, если он добавлен, и т. Д.).), поскольку транзистор реагирует на эти возмущения и восстанавливает равновесие. Он никогда не насыщается, даже если входное напряжение достигает положительной шины.

Общая математическая схема коллектора может быть показана математически с коэффициентом усиления почти в единицах:

Av = voutvin≈1 {\ displaystyle {A _ {\ mathrm {v}}} = {v _ {\ mathrm {out}} \ over v _ {\ mathrm {in}}} \ приблизительно 1}
Рисунок 3: Версия PNP схемы повторителя эмиттера, все полярности поменялись местами.

Небольшое изменение напряжения на входной клемме будет воспроизведено на выходе (слегка зависит от коэффициента усиления транзистора и значения сопротивления нагрузки; см. Формулу усиления ниже).Эта схема полезна, потому что у нее большой входной импеданс, поэтому она не будет загружать предыдущую схему:

rin≈β0RE {\ displaystyle r _ {\ mathrm {in}} \ ок \ бета _ {0} R _ {\ mathrm {E}}}

и небольшой выходной импеданс, поэтому он может управлять нагрузками с низким сопротивлением :

rout≈RE‖Rsourceβ0 {\ displaystyle r _ {\ mathrm {out}} \ ок {R _ {\ mathrm {E}}} \ | {R _ {\ mathrm {источник}} \ over \ beta _ {0}} }

Как правило, сопротивление эмиттера значительно больше и его можно убрать из уравнения:

rout≈Rsourceβ0 {\ displaystyle r _ {\ mathrm {out}} \ ок {R _ {\ mathrm {source}} \ over \ beta _ {0}}}

Приложения [править]

Рисунок 4: NPN-повторитель напряжения со смещением источника тока, подходящий для интегральных схем

Низкий выходной импеданс позволяет источнику с большим выходным импедансом управлять малым импедансом нагрузки; он функционирует как буфер напряжения.Другими словами, схема имеет коэффициент усиления по току (который в значительной степени зависит от h FE транзистора) вместо коэффициента усиления по напряжению, поскольку из-за своих характеристик он предпочтителен во многих электронных устройствах. Небольшое изменение входного тока приводит к гораздо большему изменению выходного тока, подаваемого на выходную нагрузку.

Одним из аспектов действия буфера является преобразование импедансов. Например, сопротивление Тевенина комбинации повторителя напряжения, управляемого источником напряжения с высоким сопротивлением Тевенина, уменьшается только до выходного сопротивления повторителя напряжения (небольшое сопротивление).Это уменьшение сопротивления делает комбинацию более идеальным источником напряжения. И наоборот, повторитель напряжения, вставленный между малым сопротивлением нагрузки и ступенью возбуждения, представляет большую нагрузку для ступени возбуждения - преимущество в соединении сигнала напряжения с малой нагрузкой.

Эта конфигурация обычно используется в выходных каскадах усилителей класса B и класса AB. Базовая цепь модифицирована для работы транзистора в режиме класса B или AB. В режиме класса А иногда используется активный источник тока вместо R E (рис.4) улучшить линейность и / или эффективность. [1]

Характеристики [редактировать]

На низких частотах и ​​с использованием упрощенной модели гибридного пи можно получить следующие характеристики слабого сигнала. (Параметр β = gmrπ {\ displaystyle \ beta = g_ {m} r _ {\ pi}} и параллельные линии указывают компоненты параллельно.)

Где Rsource {\ displaystyle R _ {\ mathrm {source}} \} - эквивалентное сопротивление источника по Тевенину.

Производные [править]

Рисунок 5: Схема слабого сигнала, соответствующая рисунку 3, использующая модель гибридного пи для биполярного транзистора на частотах, достаточно низких, чтобы игнорировать емкости биполярного устройства Рисунок 6: Низкочастотная малосигнальная схема для биполярного повторителя напряжения с испытательным током на выходе для определения сопротивления на выходе.Резистор RE = RL∥rO {\ displaystyle R _ {\ mathrm {E}} = R _ {\ mathrm {L}} \ параллельный r _ {\ mathrm {O}}}.

На рисунке 5 показана низкочастотная модель гибридного пи для схемы на рисунке 3. Используя закон Ома, были определены различные токи, и эти результаты показаны на диаграмме. Применяя действующий закон Кирхгофа к эмитенту, можно найти:

(β + 1) vin-voutRS + rπ = vout (1RL + 1rO). {\ Displaystyle (\ beta +1) {\ frac {v _ {\ mathrm {in}} -v _ {\ mathrm {out}} } {R _ {\ mathrm {S}} + r _ {\ pi}}} = v _ {\ mathrm {out}} \ left ({\ frac {1} {R _ {\ mathrm {L}}}} + {\ frac {1} {r _ {\ mathrm {O}}}} \ right) \.}

Определите следующие значения сопротивления:

1RE = 1RL + 1rO {\ displaystyle {\ frac {1} {R _ {\ mathrm {E}}}} = {\ frac {1} {R _ {\ mathrm {L}}}} + {\ frac { 1} {r _ {\ mathrm {O}}}}}
R = RS + rπβ + 1. {\ Displaystyle R = {\ frac {R _ {\ mathrm {S}} + r _ {\ pi}} {\ beta +1}} \.}

Затем собираем слагаемые Усиление напряжения определяется как:

Av = voutvin = 11 + RRE. {\ Displaystyle A _ {\ mathrm {v}} = {\ frac {v _ {\ mathrm {out}}} {v _ {\ mathrm {in}}}} = {\ frac {1} {1 + {\ frac {R} {R _ {\ mathrm {E}}}}}}}.}

Из этого результата усиление приближается к единице (как ожидается для буферного усилителя), если отношение сопротивления в знаменателе мало. Это соотношение уменьшается при увеличении значений усиления по току β и при увеличении значений RE {\ displaystyle R _ {\ mathrm {E}}}. Входное сопротивление находится как:

Rin = vinib = RS + rπ1-Av {\ displaystyle R _ {\ mathrm {in}} = {\ frac {v _ {\ mathrm {in}}} {i _ {\ mathrm {b}}}} = {\ frac {R _ {\ mathrm {S}} + r _ {\ pi}} {1-A _ {\ mathrm {v}}}} \}
= (RS + rπ) (1 + RER) {\ displaystyle = \ left (R _ {\ mathrm {S}} + r _ {\ pi} \ right) \ left (1 + {\ frac {R _ {\ mathrm {E}}} {R}} \ right) \}
= RS + rπ + (β + 1) RE.{\ displaystyle = R _ {\ mathrm {S}} + r _ {\ pi} + (\ beta +1) R _ {\ mathrm {E}} \.}

Выходное сопротивление транзистора rO {\ displaystyle r_ {\ mathrm {O}}} обычно больше по сравнению с нагрузкой RL {\ displaystyle R _ {\ mathrm {L}}} и поэтому RL {\ displaystyle R _ {\ mathrm {L}}} доминирует над RE {\ displaystyle R_ { \ mathrm {E}}}. Исходя из этого, входное сопротивление усилителя намного больше, чем сопротивление выходной нагрузки RL {\ displaystyle R _ {\ mathrm {L}}} для большого усиления по току β {\ displaystyle \ beta}.То есть размещение усилителя между нагрузкой и источником представляет большую (высокоомную) нагрузку для источника, чем прямое соединение с RL {\ displaystyle R _ {\ mathrm {L}}}, что приводит к меньшему затуханию сигнала в Импеданс источника RS {\ displaystyle R _ {\ mathrm {S}}} вследствие разделения напряжения.

На рисунке 6 показана схема слабого сигнала на рисунке 5 с короткозамкнутым входом и испытательным током, помещенным на его выходе. Выходное сопротивление определяется с помощью этой схемы как:

Rout = vxix.{\ displaystyle R _ {\ mathrm {out}} = {\ frac {v _ {\ mathrm {x}}} {i _ {\ mathrm {x}}}} \.}

Используя закон Ома, различные токи были найдено, как указано на схеме. Собирая термины для базового тока, базовый ток определяется как:

(β + 1) ib = ix − vxRE, {\ displaystyle (\ beta +1) i _ {\ mathrm {b}} = i _ {\ mathrm {x}} - {\ frac {v _ {\ mathrm {x }}} {R _ {\ mathrm {E}}}} \,}

, где RE {\ displaystyle R _ {\ mathrm {E}}} определен выше. Используя это значение для базового тока, закон Ома обеспечивает vx {\ displaystyle v _ {\ mathrm {x}}} как:

vx = ib (RS + rπ).{\ displaystyle v _ {\ mathrm {x}} = i _ {\ mathrm {b}} \ left (R _ {\ mathrm {S}} + r _ {\ pi} \ right) \.}

Подстановка для основания текущие и собирательные сроки,

Rout = vxix = R∥RE, {\ displaystyle R _ {\ mathrm {out}} = {\ frac {v _ {\ mathrm {x}}} {i _ {\ mathrm {x}}}} = R \ parallel R _ {\ mathrm {E}} \,}

, где || обозначает параллельное соединение, а R {\ displaystyle R} определен выше. Поскольку R {\ displaystyle R} обычно представляет собой небольшое сопротивление, когда коэффициент усиления по току β {\ displaystyle \ beta} велик, R {\ displaystyle R} преобладает на выходном импедансе, который поэтому также является небольшим.Маленький выходной импеданс означает, что последовательная комбинация исходного источника напряжения и повторителя напряжения представляет источник напряжения Тевенина с более низким сопротивлением Тевенина на его выходном узле; то есть комбинация источника напряжения с повторителем напряжения делает источник напряжения более идеальным, чем исходный.

См. Также [править]

Список литературы [править]

Внешние ссылки [редактировать]

,

Солнечный коллектор - Energy Education

Рисунок 1. Солнечный коллектор. [1]

Солнечный коллектор - это устройство, которое собирает и / или концентрирует солнечную радиацию от Солнца. Эти устройства в основном используются для активного солнечного отопления и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно устанавливаются на крыше и должны быть очень прочными, поскольку они подвержены воздействию различных погодных условий. [2]

Использование этих солнечных коллекторов обеспечивает альтернативу традиционному нагреву воды для бытового потребления с использованием водонагревателя, потенциально снижая затраты энергии с течением времени.Как и в домашних условиях, большое количество этих коллекторов может быть объединено в массив и использоваться для выработки электроэнергии на солнечных тепловых электростанциях.

Типы солнечных коллекторов

Существует много различных типов солнечных коллекторов, но все они построены с учетом одной и той же основной предпосылки. В общем, есть некоторый материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. Простейшее из этих устройств использует черный материал, окружающий трубы, по которым течет вода.Черный материал очень хорошо поглощает солнечную радиацию, и, как материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут быть очень сложными. Абсорбирующие пластины можно использовать, если не требуется повышенное повышение температуры, но обычно устройства, в которых для отражения солнечного света используются отражающие материалы, приводят к еще большему повышению температуры.

Плоские коллекторы

Рисунок 2. Схема плоского солнечного коллектора. [3]

Эти коллекторы представляют собой просто металлические коробки, которые имеют своего рода прозрачное остекление в виде крышки на темной поглощающей пластине.Стороны и дно коллектора обычно покрыты изоляцией, чтобы минимизировать потери тепла на другие части коллектора. Солнечное излучение проходит сквозь прозрачный материал остекления и попадает на пластину поглотителя. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который удерживается между остеклением и пластиной поглотителя. Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, предназначенными для поглощения и сохранения тепла лучше, чем традиционная черная краска. Эти пластины обычно сделаны из металла, который является хорошим проводником - обычно из меди или алюминия. [4]

эвакуированных коллекторов

Рисунок 3. Схема вакуумированной трубки солнечного коллектора. [5]

Солнечный коллектор этого типа использует серию откачанных труб для нагрева воды для использования. [2] В этих трубках используется вакуум или вакуумированное пространство для захвата солнечной энергии и минимизации потерь тепла в окружающую среду. У них есть внутренняя металлическая труба, которая действует как пластина поглотителя, которая соединена с тепловой трубой для переноса тепла, собранного от Солнца, к воде.Эта тепловая труба по существу представляет собой трубу, в которой содержимое жидкости находится под очень определенным давлением. [6] При этом давлении в «горячем» конце трубы находится кипящая жидкость, а в «холодном» - конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца перемещается от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия передается в воду, нагреваемую для использования. [2]

Линейный фокус Коллектор

Рисунок 4Схема линии фокусировки солнечного коллектора. [7]

Эти коллекторы, иногда называемые параболическими желобами, используют высокоотражающие материалы для сбора и концентрирования тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражательных секций параболической формы, соединенных в длинный желоб. [2] Труба, которая несет воду, расположена в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая содержимое.Это коллекторы очень высокой мощности, и, как правило, они используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти впадины могут быть чрезвычайно эффективными в генерировании тепла от Солнца, особенно те, которые могут вращаться, отслеживая Солнце в небе, чтобы обеспечить максимальный сбор солнечного света. [2]

Точечных Коллекторов

Рисунок 5. Точечный фокус солнечного коллектора. [9]

Эти коллекторы представляют собой большие параболические тарелки, состоящие из отражающего материала, который фокусирует энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны при сборе солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти блюда могут работать в одиночку или быть объединены в массив, чтобы собрать еще больше энергии от Солнца. [10]

Коллекторы с точечным фокусом и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированными фотоэлектрическими элементами. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально предназначенных для использования концентрированной солнечной энергии.

для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Рекомендации

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Г. Бойл. Возобновляемая энергия: сила для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: издательство Оксфордского университета, 2004.
  3. ↑ Wikimedia Commons. (10 августа 2015 г.) Застекленный плоский коллектор [Online]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
  4. 4,0 4,1 Flasolar. (10 августа 2015 г.) Плоские солнечные коллекторы [Online]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
  5. ↑ Wikimedia Commons. (10 августа 2015 г.) Вакуумный коллектор [Online]. Доступно: https: // загрузить.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
  6. ↑ RedSun. (10 августа 2015 г.) Вакуумный коллектор [Online]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
  7. ↑> Wikimedia Commons. (10 августа 2015 г.) Линейный фокус Коллектор [Online]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
  8. Department Министерство энергетики США.(10 августа 2015 г.) Линейный фокус Солнечный коллектор [Online]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
  9. ↑ Wikimedia Commons. (10 августа 2015 г.) Солнечный двигатель Стирлинга [Online]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
  10. ↑ JC Solar Homes. (10 августа 2015 г.) Концентраторы и плоские коллекторы [Online]. Доступно: http: //www.jc-solarhomes.ком / СБОРНИКИ / concentrators_vs_flat_plates.htm
,

Смотрите также


avtovalik.ru © 2013-2020