Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Крутящий момент двигателя что


Крутящий момент и мощность двигателя особенности и нюансы

Рассуждая о главнейшем автомобильном узле — двигателе, стало принято превозносить мощность превыше других параметров. Между тем, вовсе не мощностные способности являются первостепенной характеристикой силовой установки, а явление, называемое крутящим моментом. Потенциал любого автомобильного двигателя напрямую определяется данной величиной.

 

 

Понятие крутящего момента ДВС. О сложном простыми словами

Крутящим моментом применительно к двигателям автомобилей называется произведение значения силы и плеча рычага, или, простыми словами, сила давления поршня на шатун. Исчисляется эта сила ньютон-метрами, и чем выше ее величина, тем резвее машина.

Более того, мощность двигателя, выражаемая в ваттах, — это не что иное, как умноженное на частоту вращения коленвала значение крутящего момента в ньютон-метрах.

Представим лошадь, которая тащит тяжелые сани и увязает в канаве. Вытянуть сани не получится, если лошадь будет пытаться выскочить из канавы с разбега. Здесь необходимо приложить определенную силу, которая и будет являться крутящим моментом (КМ).

Часто крутящий момент путают с частотой вращения коленвала. В реальности это два совершенно разных понятия. Если вернуться к примеру с лошадью, застрявшей в канаве, частота шага будет символизировать частоту оборотов двигателя, тогда как сила, прикладываемая животным при отталкивании во время шага, олицетворяет в данном случае крутящий момент.

Факторы, влияющие на величину крутящих моментов

Из примера с лошадью легко догадаться, что в данном случае значение КМ будет во многом определяться мышечной массой животного. Применительно к автомобильному двигателю внутреннего сгорания эта величина зависит от рабочего объема силовой установки, а также от:

  • уровня рабочего давления внутри цилиндров;
  • размера поршня;
  • диаметра кривошипа коленвала.

 

Наиболее сильно крутящий момент зависим от рабочего объема и давления внутри силовой установки, и эта зависимость прямо пропорциональна. Другими словами, двигатели с большим объемом и давлением, соответственно, отличаются и большим моментом.

Прямая зависимость наблюдается также между КМ и радиусом кривошипа коленвала. Однако конструкция современных автомобильных двигателей такова, что не позволяет варьировать значения момента в широких пределах, из-за чего возможности добиться повышенного крутящего момента за счет радиуса кривошипа коленчатого вала у конструкторов ДВС невелики. Вместо этого разработчики прибегают к таким способам увеличить момент, как использование технологий турбонаддува, увеличение степени сжатия, оптимизация процесса сгорания топлива, использование впускных коллекторов специальных конструкций, и т.д.

Важно, что КМ увеличивается с ростом оборотов двигателя, однако после достижения максимума на определенном диапазоне крутящий момент понижается несмотря на продолжающийся прирост частоты вращения коленвала.

 

 

Влияние крутящего момента ДВС на характеристики автомобиля

Величина крутящего момента выступает тем самым фактором, который непосредственным образом задает динамику разгона автомобиля. Если вы — заядлый автолюбитель, то могли заметить, что разные автомобили, но с одинаковым силовым агрегатом, по-разному ведут себя на дороге. Или на порядок менее мощный автомобиль на дороге превосходит того, у которого под капотом лошадиных сил больше, причем даже тогда, когда сравнимые авто имеют одинаковые размеры и вес. Причина заключается как раз в разнице в крутящих моментах.

Лошадиные силы можно представить как индикатор выносливости мотора. Именно этот показатель определяет скоростные возможности автомобиля. Но поскольку крутящий момент является разновидностью силы, то непосредственно от его величины, а не от количества «лошадей», зависит то, насколько быстро автомобиль сможет достичь максимального скоростного режима. По этой причине далеко не каждое мощное авто обладает хорошей динамикой разгона, а те, что способны разгоняться быстрее других, необязательно оснащены мощным двигателем.

Вместе с тем высокий крутящий момент еще не гарантирует сам по себе отличную динамичность машины. Ведь кроме прочего, динамика увеличения скорости, а также способность авто к резвому преодолению подъемов участков, зависит от диапазона работы силовой установки, передаточных чисел трансмиссии, отзывчивости педали газа. Наряду с этим нужно учитывать, что момент существенно понижается из-за различных противодействующих явлений — сил качения колес и трения в различных автомобильных узлах, из-за аэродинамических и прочих явлений.

Крутящий момент vs. мощность. Связь с динамикой автомобиля

Мощность — производное такого явления, как крутящий момент, ею выражается работа силовой установки, выполненная за определенное время. А поскольку КМ олицетворяет собой непосредственную работу мотора, то в виде мощности отражается величина момента в соответствующий период времени.

Наглядно увидеть связь между мощностью и КМ позволяет следующая формула:

P=М*N/9549

 

Где: P в формуле означает мощность, М — крутящий момент, N — обороты двигателя за минуту, а 9549 — коэффициент обращения N в радианы в секунды. Результатом вычислений по данной формуле будет являться число в киловаттах. Когда нужно перевести полученный результат в лошадиные силы, полученное число умножают на 1.36.

По сути, крутящим моментом является мощность при неполных оборотах, например, во время обгона. Мощность возрастает по мере роста момента, и чем выше этот параметр, тем больше запас кинетической энергии, тем легче автомобиль преодолевает противодействующие на него силы и тем лучше его динамические характеристики.

При этом важно помнить, что мощность достигает своих максимальных значений не сразу, а постепенно. Ведь с места автомобиль трогается на минимуме оборотов, и затем скорость наращивается. Именно здесь и подключается сила под названием крутящий момент, и именно она определяет тот самый временной отрезок, за который авто достигнет своей пиковой мощности, или, другими словами, скоростную динамику.

 

 

Из этого следует, что машина с силовым агрегатом мощнее, но обладающим недостаточно высоким крутящим моментом, уступит по скорости разгона модели с мотором, который, напротив, не способен похвастать хорошей мощностью, но превосходит конкурента в крутящем моменте. Чем большая тяга, сила передается ведущим колесам и чем богаче диапазон оборотов силовой установки, в котором достигается высокий КМ, тем быстрее происходит ускорение автомобиля.

В то же время существование крутящего момента возможно без мощности, но существование мощности без момента — нет. Представьте, что наша лошадь с санями увязла в грязи. Производимая лошадью мощность в этот момент будет равняться нулю, но крутящий момент (попытки выбраться, тяга), хотя его может быть недостаточно для движения, будет присутствовать.

 

Дизельный момент. Отличия между КМ бензинового и дизельного двигателей

Если сравнивать бензиновые силовые установки с дизельными, то отличительной особенностью последних (всех без исключения) является повышенный крутящий момент при меньшем количестве лошадиных сил.

Бензиновый ДВС достигает своих максимальных значений КМ при трех-четырех тысячах оборотов в минуту, но затем способен стремительно нарастить мощность, раскрутившись за минуту до семи-восьми тысяч раз. Диапазон оборотов же коленчатого вала дизельного двигателя обычно ограничен тремя-пятью тысячами. Однако в дизельных установках больше ход поршня, выше уровень сжатия и другая специфика сгорания топлива, что обеспечивает не только более высокий относительно бензиновых установок крутящий момент, но и доступность этой силы едва ли не с холостого хода.

По этой причине смысла добиваться повышенной мощности дизельных двигателей нет: уверенная, доступная «с низов» тяга, высокий коэффициент полезного действия и топливная эффективность полностью нивелируют отставание таких ДВС от бензиновых как по мощностным показателям, так и по скоростному потенциалу.

Особенности правильного разгона машины. Как выжать из авто максимум

Основа правильного разгона — умение работать с коробкой передач и следование принципу «от максимума момента до пика мощности». То есть, добиться наилучшей динамики разгона машины можно только поддерживая частоту вращения коленвала в том диапазоне значений, при которых КМ достигает своего максимума. Очень важно, чтобы обороты совпали с пиком крутящего момента, но при этом должен оставаться запас по их увеличению. Если разгоняться на оборотах выше пиковой мощности, динамика разгона будет меньше.

Диапазон оборотов, соответствующий максимуму крутящего момента, обусловлен характеристиками двигателя.

Выбор двигателя. Какой лучше — с высоким моментом или повышенной мощностью?

Если подвести итоговую черту под всем вышесказанным, то станет очевидно, что:

  • крутящий момент — ключевой фактор, характеризующий возможности силовой установки;
  • мощность — это производная КМ и, соответственно, вторичная характеристика двигателя;
  • прямую зависимость мощности от момента можно увидеть по выведенной физиками формуле Р (мощность) = М (момент) * n (частота вращения коленвала в минуту).

Таким образом, выбирая между двигателем с большим количеством лошадиных сил, но меньшим крутящим моментом, и двигателем с большим КМ, но меньшей мощностью, приоритетным будет второй вариант. Использовать весь заложенный в автомобиль потенциал позволит только такой мотор.

При этом не следует забывать о взаимосвязи динамических характеристик автомобиля с такими факторами, как отзывчивость педали газа и коробка переключения передач. Лучшим вариантом станет то авто, которое не только оснащено двигателем с высоким крутящим моментом, но и имеет наименьшую длину задержки между нажатием педали газа и реакцией двигателя, а также трансмиссию с короткими соотношениями передач. Наличие этих особенностей компенсирует маломощность силовой установки, заставляя автомобиль разгоняться быстрее, чем машина с двигателем похожей конструкции, но с меньшей силой тяги.

Видео: Мощность и крутящий момент двигателя

Видео: Крутящий момент, обороты и мощность двигателя. Простыми словами

Facebook

Twitter

Вконтакте

Google+

Что такое крутящий момент двигателя? Его характеристики и формула-CarBikeTech

Определение крутящего момента двигателя и формула:

Что такое крутящий момент двигателя?

Проще говоря, крутящий момент

равен « крутящего момента или силы поворота ». Это тенденция силы вращать объект вокруг оси. В автомобильном отношении это мера вращательного усилия, приложенного к коленчатому валу двигателя поршнем.

Крутящий момент = Сила х Расстояние. Система SI использует Ньютон-метр (Нм) для измерения крутящего момента.Другие единицы - килограмм-метр (кг-м) в метрической системе и фут-фунт-сила ’(фут-фунт) в имперских / британских единицах.

Диаграмма определения крутящего момента

Каждый двигатель спроектирован и изготовлен для определенной цели. Следовательно, его выход варьируется в зависимости от его применения. Выходной крутящий момент автомобильного двигателя в основном зависит от его отношения хода к отверстию, степени сжатия, давления сгорания и скорости в оборотах в минуту. Большинство двигателей «под квадратом», у которых длина хода на больше, чем у диаметра отверстия , имеют тенденцию развивать большое значение « крутящего момента на низких оборотах ».Величина крутящего момента, который может оказывать двигатель, зависит от оборотов двигателя.

Различные конструкции / конфигурации двигателей развивают различные характеристики крутящего момента, такие как пиковая кривая / плоская кривая . Большинство автомобильных двигателей вырабатывают полезный крутящий момент в узкой полосе всего диапазона скоростей двигателя. В бензиновых двигателях он обычно запускается при 1000-1200 об / мин и достигает пика в диапазоне 2500-4000 об / мин. В то время как в дизельном двигателе он запускается при 1500-1700 об / мин, и достигает максимума при 2000-3000 об / мин.Bugatti Veyron - один из автомобилей с самым высоким крутящим моментом.

График крутящего момента двигателя

Как рассчитать крутящий момент двигателя:

Если вы знаете мощность двигателя, то можете использовать следующую формулу -

Крутящий момент = 5252 х л.с. / об / мин

Почему важен крутящий момент двигателя?

Torque и Horse-Power являются двойными выходами двигателя. Они связаны и пропорциональны друг другу по скорости. «Диапазон крутящего момента » на кривой двигателя соответствует его тяговым усилиям , которые определяют « ходовой части автомобиля » и «ускорение ».Крутящий момент наиболее необходим при перемещении транспортного средства со стоянки и / или подъеме по склону. Аналогичным образом, более тяжелым является транспортное средство, или транспортное средство с полной номинальной нагрузкой требует более высокого крутящего момента, чтобы тянуть его и заставить его двигаться. В обычном двигателе мощность определяет максимальную скорость автомобиля (через передаточные числа), а крутящий момент управляет его ускорением / разгоном. Скорость ускорения также зависит от веса транспортного средства и «нагрузки», которую несет транспортное средство.

Flat-Curve против пиковой кривой крутящего момента двигателя:

Большинство бензиновых двигателей, как правило, вырабатывают довольно большое количество « с низким крутящим моментом ».Однако обычно они имеют крутящий момент с кривой пика в форме «пика» холма. В конструкции « с пиковой кривой » крутящий момент достигает пика в середине диапазона оборотов двигателя (около 2500–3000 об / мин). После этого он начинает быстро исчезать, в то время как мощность продолжает расти. HP достигает своего максимального значения позже при более высоких оборотах двигателя, а затем исчезает на красной линии.

Пик против крутящего момента с плоской кривой

Большинство современных дизельных двигателей обеспечивают крутящий момент с плоской кривой .В конструкции с «плоской кривой» двигатель выдает максимальный крутящий момент при « от нижнего до среднего конца » от частоты вращения двигателя, т.е. 1500 об / мин. Его значение остается практически неизменным или «плоским» в большей части диапазона оборотов двигателя (2500-4000 об / мин). Это способствует лучшему ускорению и уменьшает количество переключений передач во время движения.

Что такое низкий крутящий момент?

Часто производители используют этот термин для описания крутящего момента двигателя. ‘ Low-End-Torque ’ - это количество крутящего момента, которое двигатель создает при более низкой полосе оборотов двигателя i.е. между 1000-2000 об / мин . Этот диапазон оборотов очень важен при перемещении транспортного средства из неподвижного состояния или в движении в условиях низкой скорости, таких как в движении. Если двигатель генерирует больший крутящий момент на нижнем конце полосы оборотов, это означает, что двигатель обладает более высокой ‘ крутящим моментом на низких оборотах ’ или лучшей тянущей способностью на низких скоростях . Это также означает, что двигатель может быстро перемещать транспортное средство из неподвижного состояния, тянуть тяжелые грузы или относительно легко подниматься по склону, в зависимости от обстоятельств, без резких оборотов.

Крутящий момент и КПД двигателя:

Крутящий момент двигателя достигает своего пикового значения на скорости, где он наиболее эффективен. Другими словами, КПД двигателя максимален на скорости, на которой он вырабатывает максимальный крутящий момент. Если вы поднимаете двигатель выше этой скорости, его крутящий момент начинает уменьшаться из-за повышенного трения движущихся частей двигателя. Таким образом, даже если вы увеличиваете и превышаете максимальную частоту вращения двигателя, крутящий момент больше не увеличивается.

Крутящий момент двигателя умножается на шестерни.Понизьте выбранную передачу (т. Е. 1 - передача, которая имеет высокое передаточное число), тем выше тяговая способность двигателя. Таким образом, тяговое усилие транспортного средства является самым высоким на первой передаче. Однако, если вы включите двигатель дальше на 1 -й передаче , через некоторое время он достигнет своего предела; тем самым побуждая водителя переключиться на следующую передачу. Напротив, если вы переключаете передачи до того, как крутящий момент двигателя достигает своего «пикового» значения, транспортное средство может потерять свое ускорение. Это потому, что колеса не получат достаточно силы, чтобы вращаться.Таким образом, вынуждая водителя переключаться обратно на предыдущую / пониженную передачу.

Крутящий момент двигателя и вождение:

Наилучшая топливная эффективность может быть достигнута путем переключения передач в «Power-Band» автомобиля и переключения передач как можно ближе к максимальному значению крутящего момента . Кроме того, для повышения эффективности выберите правильную передачу (и), соответствующую скорости автомобиля / оборотам двигателя, в соответствии с рекомендациями производителя автомобиля.

1. Сценарий шоссе:

Самый верхний доступный механизм (т.е.е. 5-й или 6-й или около того) + самая низкая частота вращения двигателя = наилучшая экономия топлива

2. При подъеме по склону / уклону:

Низкая передача (т.е. 1-я) + Высокая скорость двигателя = Наименьшая топливная экономичность, но большая тяговая способность.

После того, как ваш автомобиль преодолеет 60 км / ч, например, на шоссе, вам не понадобятся высокие обороты двигателя, чтобы он продолжал двигаться. Это означает, что во время круиза по автомагистралям / автомагистралям используйте самую верхнюю передачу и держите обороты двигателя ниже 2500 для достижения максимальной эффективности.Точно так же, когда вы поднимаетесь по склону, вам нужно использовать более низкую передачу (т.е. 1-ю передачу) и более высокие обороты двигателя, чтобы тянуть автомобиль (и груз, если он есть) против силы тяжести. Однако это повлияет на эффективность использования топлива.

Мощность крутящего момента Расход топлива

Эти значения указаны в каждом руководстве пользователя. Сказав это, всегда запускать двигатель на «максимальной мощности / скорости» или вращать двигатель до зоны « Красная линия » не требуется, если вы не участвуете в гонке, поскольку это приведет только к сжиганию дополнительного топлива ,

Помните, что такое дополнительное топливо, сожженное или сэкономленное, будет иметь большое значение в конце пути - будь то короткий или длинный… !!!

Подробнее: Что такое лошадиная сила?

О CarBikeTech

CarBikeTech - технический блог. Его участники имеют опыт работы более 20 лет в автомобильной сфере. CarBikeTech регулярно публикует специальные технические статьи по автомобильной технике.

Посмотреть все сообщения CarBikeTech

,

Мощность против крутящего момента - x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое кривая крутящего момента и мощность . Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как усилие поворота , действующее на объект. Крутящий момент (вектор) является перекрестным произведением между силой (вектором) и расстоянием (скаляр). Расстояние, также называемое рычагом , измеряется между силой и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки колесного болта

Представьте, что вы хотите затянуть / ослабить болты колеса.Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (усилие поворота), который ослабляет или затягивает гайку или болт.

Крутящий момент T [Нм] является произведением силы F [N] и длины рычага a [м] .

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, длину рычага рычага, либо и то и другое.

Пример : Рассчитать крутящий момент, полученный на болте, если рычаг гаечного ключа имеет 0.25 м и приложенное усилие 100 Н (что приблизительно равно эквиваленту с силой толкания 10 кг )

\ [T = 100 \ cdot 0.25 = 25 \ text {Nm} \]

Тот же момент можно было получить, если рычаг рычага составлял 1 м , а сила только 25 Н .

Тот же принцип применим к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, приложенной к шатуну шатуна через шатун.

Изображение: крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом валу на каждом шатунном шатуне каждый раз, когда поршень находится в рабочем такте.Рычаг и в этом случае имеют радиус кривошипа (смещение) .

Величина силы F зависит от давления сгорания внутри цилиндра. Чем выше давление в цилиндре, тем выше усилие на коленвал, тем выше крутящий момент на выходе.

Изображение: функция расчета крутящего момента двигателя при давлении в цилиндре

Длина рычага рычага влияет на общий баланс двигателя . Слишком большое его увеличение может привести к дисбалансу двигателя, что приведет к увеличению сил в шейках коленчатого вала.

Пример : Рассчитать крутящий момент на коленчатом валу для двигателя со следующими параметрами:

Диаметр цилиндра, В [мм] 85
Давление в цилиндре, p [бар] 12
Смещение кривошипа, [мм] 62

Сначала рассчитаем площадь поршня (предполагая, что головка поршня плоская и ее диаметр равен диаметру отверстия цилиндра):

\ [A_p = \ frac {\ pi B ^ 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы рассчитаем силу, приложенную к поршню. Чтобы получить силу в N (Ньютон), мы будем использовать давление, преобразованное в Па, (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0.0056745 = 680.94021 \ text {N} \]

Предполагая, что вся сила в поршне входит в шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.94021 \ cdot 0.062 = 42.218293 \ text {Nm} \]

Стандартная единица измерения крутящего момента составляет Н · м (Ньютон-метр).Особенно в США единица измерения крутящего момента двигателя составляет фунт-сила-фут (фут-фунтов). Преобразование между Н · м и фунтов / фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0.7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

В нашем конкретном примере крутящий момент в имперских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция от среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

, где:
p me [Па] - среднее эффективное давление
V d 3 ] - объем двигателя (объем)
n r [-] - число оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике мощность - это работа, выполненная во времени, или, другими словами, , скорость выполнения работы .Во вращательных системах мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения для мощности - Вт, (Вт) и для скорости вращения - рад / с, (радиан в секунду). , Большинство производителей транспортных средств обеспечивают мощность двигателя в л.с. (мощность тормозной лошади) и скорость вращения в об / мин, (оборотов в минуту).Поэтому мы собираемся использовать формулы преобразования для скорости вращения и мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также можно измерить в кВт, вместо Вт, для более компактного значения.Чтобы преобразовать из кВт в л.с. и обратно, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[kW]} \\
P \ text {[kW]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти HP (лошадиная сила) вместо л.с. как единица измерения мощности.

Если скорость вращения измерена в об / мин , а крутящий момент - в Нм , формула для расчета мощности будет:

\ [\ begin {split}
P \ text {[kW]} & = \ frac {\ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя в кВт, и л.с. , если крутящий момент двигателя составляет 150 Нм , а частота вращения двигателя составляет 2800 об / мин, .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Частота вращения двигателя измеряется с помощью датчика на коленчатом валу (маховик).В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленвале с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий работы коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также стоимость датчика крутящего момента довольно высока. Поэтому крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с использованием динамометра (испытательный стенд) и отображается (сохраняется) в блок управления двигателем.

Изображение: схема динамометра двигателя

Динамометр - это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, создаваемую двигателем. Наиболее используемый и лучший тип динамометра - электрический динамометр . На самом деле это электрическая машина , которая может работать как генератор или двигатель . Изменяя момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, когда двигатель отключен (без впрыска топлива), генератор может работать как электродвигатель для вращения двигателя. Таким образом можно измерить потери на трение и крутящий момент двигателя.

Для электрического динамометра ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор крепится через рычаг к тензодатчику . Чтобы уравновесить ротор, статор будет давить на датчик нагрузки. Крутящий момент T рассчитывается путем умножения силы F , измеренной в тензодатчике, на длину рычага a .

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, мощность тормозной лошади (л.с.) или удельный расход топлива (BSFC) содержат ключевое слово «тормоз», поскольку для их измерения используется динамометр (тормоз) ,

Из теста двигателя динамометра вытекают карты крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенной частоте вращения двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

900 167 0
Двигатель
крутящего момента
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
двигатель
оборотов
45 90 107 109 110 111 114 116
1300 60 105 132 133 134 136 136 136 138 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 155
2800 3 55 133 153 159 161 163 165
3300 0 41 126 152 161 165 171
3800 0 33 116 150 160 167 170 175
4300 0 26 110 155 169 176 180 184
4800 9008 4 0 18 106 155 174 179 185 190
5300 0 12 96 147 167 175 9007 9007 181 187
5800 0 4 84 136 161 170 175 183

0

0

72 120 145 153 159 171

Пример схемы мощности для двигателя с бензиновым зажиганием (SI) :

3800 3800 9004
Двигатель
мощность
[ HP]
Положение педали акселератора [%]
5 10 20 9 0084 30 40 50 60 100
Двигатель
оборотов
[об / мин]
800 58483 108383 9833 12 13 13 13 13
1300 11 19 24 25 25 25 26 26
1800 9 23 34 36 36 37 37 38
2300 6 23 44 48 48 49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 78 80
3800 0 18 63 81 87 90 92 95
4300 0 16 67 95 103 108 110 113
4800 0 12 72 106 119 122 126 130
5300 0 9

72

111 126 132 137 141
5800 0 90 084 3 69 112 133 140 145 151
6300 0 0 65 108 130 137 143 153

Электронный модуль управления (ECM) ДВС имеет карту крутящего момента, хранящуюся в памяти.Он рассчитывает (интерполирует) функцию крутящего момента двигателя по текущей частоте вращения и нагрузке двигателя. В ECM нагрузка выражается в виде давления во впускном коллекторе для бензиновых двигателей (с искровым зажиганием, SI) и времени впрыска или массы топлива для дизельных двигателей (с воспламенением от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки на основе температуры и давления воздуха на впуске.

При построении графика данных о крутящем моменте и мощности, функции частоты вращения двигателя и нагрузки, получаются следующие поверхности:

Изображение: поверхность крутящего момента двигателя SI

Изображение: поверхность мощности двигателя SI

Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя

Изображение: кривые мощности двигателя

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность двигателя Двигатель внутреннего сгорания зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривой (кривые) при при полной нагрузке (положение педали акселератора 100%). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, цель которого - объяснить основные параметры. Тем не менее, формы схожи с реальными характеристиками зажигания искры (бензин), впрыска порта, атмосферного двигателя.

Частота вращения двигателя N и [об / мин] характеризуется четырьмя основными моментами:

N мин. - минимальная стабильная частота вращения двигателя при полной нагрузке
N Tmax - это частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax - частота вращения двигателя при максимальной мощности двигателя; также называется номинальной частотой вращения двигателя
N макс. - это максимальная стабильная частота вращения двигателя

. При минимальной скорости двигатель должен работать плавно, без колебаний или остановок.Двигатель также должен позволять работать на максимальной скорости без каких-либо структурных повреждений.

Полный крутящий момент двигателя кривая T e [Нм] характеризуется четырьмя точками:

T 0 - крутящий момент двигателя при минимальной частоте вращения двигателя
T макс. - максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P - крутящий момент двигателя при максимальной мощности двигателя
T M - крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точкой или линией.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя с полной нагрузкой кривая P e [HP] характеризуется четырьмя точками:

P 0 - мощность двигателя при минимальной частоте вращения двигателя
P макс. - максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T - мощность двигателя при максимальном крутящем моменте двигателя
P M - мощность двигателя при максимальной частоте вращения двигателя

Область между минимальной частотой вращения двигателя N мин и максимальная частота вращения двигателя N Tmax называется нижним пределом зоны крутящего момента.Чем выше крутящий момент в этой области, тем лучше возможности запуска / ускорения автомобиля. Когда двигатель работает в этой области, при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и крушению двигателя . По этой причине эта область также называется нестабильной областью крутящего момента .

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время ускорения автомобиля для достижения наилучших характеристик переключение передач (вверх) должно выполняться при максимальной мощности двигателя. В зависимости от передаточного числа редуктора после переключения на выбранной передаче будет снижаться частота вращения двигателя при максимальном крутящем моменте, что обеспечит оптимальное ускорение. Переключение передач на максимальной мощности двигателя будет поддерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной крутящего момента верхнего сегмента .Более высокий крутящий момент приводит к более высокой выходной мощности, что выражается в более высокой максимальной скорости транспортного средства и лучшем ускорении на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление дороги увеличивается, частота вращения двигателя снижается и выходной крутящий момент увеличивается, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется стабильной областью крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с воспламенением от сжатия) и от типа воздухозаборника (атмосферный или турбо (супер) заряженный).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

9008 7
Архитектура цилиндров 4 в ряд

Изображение: Двигатель Honda 2.0 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
впрыск топлива клапанный порт
Воздухозаборник атмосферный
Время газораспределения переменное
T макс. [Нм] 190
N Tmax [об / мин] 4500
9 9013 9013 9013 [HP] 155
N Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

Архитектура цилиндров 4 in-line

Изображение: Двигатель Saab 2.0T SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива клапанный порт
Воздухозаборник с турбонаддувом
ГРМ фиксированный
T макс. [Нм] 265
N Tmax [об / мин] 2500
P макс. 9013 P макс ] 175
N Pmax [об / мин] 5500
N макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

9 0082
Архитектура цилиндров 4 в ряд

Изображение: Двигатель Audi 2.0 TFSI SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
впрыск топлива прямой
воздухозаборник с турбонаддувом
ГРМ фиксированный
T макс. [Нм] 280
N Tmax [об / мин] 1800 - 5000
P макс. [HP] 200
N Pmax [об / мин] 5100 - 6000
N макс. [об / мин] 6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

Архитектура цилиндров 4 поточных

Изображение: Двигатель Toyota 2.0 CI - кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (ХИ)
Объем двигателя [см 3 ] 1998
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
ГРМ фиксированный
Т макс [Нм] 300
N Тмакс [об / мин] 2000 - 2800
[HP] 126
N Pmax [об / мин] 3600
N макс. [об / мин] 5200

Mercedes-Benz 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

9000 9000 Время газораспределения
Архитектура цилиндров 4 поточных

Изображение: двигатель Mercedes Benz 1.8 Kompressor SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
Впрыск топлива Клапанный порт
Воздухозаборник с наддувом
фиксированное
T макс. [Нм] 230
N Tmax [об / мин] 2800 - 4600
[ макс. HP] 156
N Pmax [об / мин] 5200 90 084
N макс. [об / мин] 6250

BMW 3.0 Крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

Архитектура цилиндров 6 поточных

Изображение: Двигатель BMW 3.0 TwinTurbo SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой
Воздухозаборник двухступенчатый
с турбонаддувом
ГРМ переменная
Т макс. [Нм] 400
N Тмакс [об / мин] 1300 - 5000
[HP] 306
N Pmax [об / мин] 580 0
N макс. [об / мин] 7000

Mazda 2.6 вращающий момент и мощность двигателя при полной нагрузке

Архитектура цилиндров 2 Wankel

Изображение: двигатель Mazda 2.6 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1308 (2616)
Впрыск топлива клапанный канал
Воздухозаборник атмосферный
клапан время фиксированное
T макс. [Нм] 211
N Tmax [об / мин] 5500
P макс. 9014 [HP] 231
N Pmax [об / мин] 8200
N макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

переменная
Архитектура цилиндров 6 flat

Изображение: двигатель Porsche 3.6 SI - кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 3600
Впрыск топлива клапанный канал
Воздухозаборник атмосферный
ГРМ
T макс. [Нм] 405
N Tmax [об / мин] 5500
P макс. [HP] 9833
N Pmax [об / мин] 7600
N 90 134 макс. [об / мин] 8400

Основные положения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

Крутящий момент

    Крутящий момент
  • является компонентом мощности
  • Крутящий момент
  • можно увеличить, увеличив среднее эффективное давление двигателя или путем снижения потерь крутящего момента (трение, накачка)
  • , имеющий более низкий максимальный крутящий момент, распределенный по диапазону оборотов двигателя, его лучше с точки зрения тяги, чем имеющий более высокий максимальный момент крутящего момента
  • на нижнем конце крутящий момент очень важен для возможностей запуска транспортных средств.
  • Высокий крутящий момент выгоден в условиях бездорожья, когда транспортное средство эксплуатируется при больших уклонах дороги, но на низкой скорости

Мощность

    Мощность двигателя
  • зависит от обоих крутящих моментов и скорость
  • мощности может быть увеличена путем увеличения крутящего момента или частоты вращения двигателя
  • большая мощность важна для высокой скорости Чем выше максимальная мощность, тем выше максимальная скорость автомобиля.
  • Распределение мощности двигателя при полной нагрузке через диапазон оборотов двигателя влияет на ускорение транспортного средства на высоких скоростях
  • для достижения наилучших характеристик ускорения транспортного средства. должен работать в диапазоне мощностей, между максимальным крутящим моментом двигателя и мощностью

Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментария ниже.

Не забудьте лайкать, делиться и подписываться!

.

Какая разница между крутящим моментом и мощностью?

Большинство рекламных роликов, которые вы видите для больших грузовиков, рекламируют внушительную мощность и крутящий момент, которые обеспечивает двигатель. Кажется, как обычно, чем больше цифр, тем лучше. Но что означают эти цифры, и как связаны эти два понятия?

Мощность, которую производит двигатель, называется лошадиными силами. С математической точки зрения, одна лошадиная сила - это мощность, необходимая для перемещения 550 фунтов на один фут в секунду, или мощность, необходимая для перемещения 33 000 фунтов на один фут в одну минуту.Сила в физике определяется просто как скорость выполнения работы.

Мощность двигателя измеряется с помощью динамометра. Динамометр создает нагрузку на двигатель и измеряет крутящее усилие, которое коленчатый вал двигателя прилагает к нагрузке. Нагрузка обычно представляет собой тормоз, препятствующий вращению колес.

Однако динамометр действительно измеряет крутящий момент двигателя. В автомобиле крутящий момент измеряется при различных оборотах двигателя или оборотах в минуту (об / мин).Эти два числа вводятся в формулу - число оборотов в минуту, деленное на 5 252 - для получения лошадиных сил. Общество инженеров автомобильной промышленности имеет два стандарта для определения лошадиных сил: нетто и брутто. Полная мощность снимает большинство нагрузок с двигателя, включая средства контроля выбросов, перед тестированием. Чистая мощность - это то, что можно найти, протестировав тот же самый типовой автомобиль, который вы найдете в демонстрационном зале, и этот показатель сейчас используется в рекламе и литературе производителей.

лошадиных сил определяется по крутящему моменту, потому что крутящий момент легче измерить.Крутящий момент определяется конкретно как вращающая сила, которая может или не может привести к движению. Он измеряется как сила, умноженная на длину рычага, через который он действует. Например, если вы используете гаечный ключ длиной в один фут, чтобы приложить 10 фунтов силы к головке болта, вы создаете крутящий момент в 10 фунтов.

Крутящий момент, как упомянуто выше, может быть создан без перемещения объекта. Однако, когда он действительно перемещает объект, он становится «работой», и это то, что большинство людей думают, когда думают о крутящем моменте (обычно с точки зрения буксировки).Чем больше крутящего момента, создаваемого двигателем, тем больше у него рабочего потенциала.

Читайте подробнее о соотношении лошадиных сил и крутящего момента.

,

Смотрите также


avtovalik.ru © 2013-2020