Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Шаговый двигатель что это такое


устройство, принцип работы, типы, схемы подключения

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие  с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется  из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора.  Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от  5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом
Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси.  Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

 

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть  деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему  легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта  можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс  или серию импульсов в определенной последовательности.  В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата.  При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый  — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль)  происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному  USB порту.

Полезное видео



Что такое шаговый двигатель и как он работает

От простого DVD-плеера или принтера в вашем доме до сложнейшего станка с ЧПУ или роботизированного манипулятора шаговые двигатели можно найти практически везде. Благодаря своей способности совершать точные движения с электронным управлением эти двигатели находят применение во многих сферах, таких как камеры наблюдения, жесткий диск, станки с ЧПУ, 3D-принтеры, робототехника, сборочные роботы, лазерные резаки и многое другое. В этой статье мы узнаем, что делает эти моторы особенными, и теорию, стоящую за ними.Мы узнаем, как использовать один для вашего приложения.

Введение в шаговые двигатели

Как и все двигатели, шаговые двигатели также имеют статор и ротор , но в отличие от обычного двигателя постоянного тока, статор состоит из отдельных наборов катушек. Количество катушек будет отличаться в зависимости от типа шагового двигателя , но пока просто поймите, что в шаговом двигателе ротор состоит из металлических полюсов, и каждый полюс будет притягиваться набором катушек в статоре.На приведенной ниже схеме показан шаговый двигатель с 8 полюсами статора и 6 полюсами ротора.

Если вы посмотрите на катушки на статоре, они расположены в виде пар катушек, как A и A 'образуют пару B, а B' образуют пару и так далее. Таким образом, каждая из этой пары катушек образует электромагнит, и они могут быть запитаны индивидуально с помощью схемы драйвера. Когда на катушку подается напряжение, она действует как магнит, и полюс ротора выравнивается по отношению к ней, а когда ротор вращается, чтобы приспособиться к статору, он называется одним шагом .Точно так же путем последовательного включения катушек мы можем вращать двигатель небольшими шагами, чтобы совершить полный оборот.

Типы шаговых двигателей

Существуют в основном три типа шаговых двигателей в зависимости от конструкции:

  • Шаговый двигатель с переменным сопротивлением: Они имеют ротор с железным сердечником, который притягивается к полюсам статора и обеспечивает движение при минимальном сопротивлении между статором и ротором.
  • Шаговый двигатель с постоянными магнитами: Они имеют ротор с постоянными магнитами и отталкиваются или притягиваются к статору в соответствии с приложенными импульсами.
  • Гибридный синхронный шаговый двигатель: Они представляют собой комбинацию переменного реактивного сопротивления и шагового двигателя с постоянными магнитами.

Помимо этого, мы также можем классифицировать шаговые двигатели как Униполярные и Биполярные в зависимости от типа обмотки статора.

  • Биполярный шаговый двигатель: Катушки статора на этом типе двигателя не имеют общего провода. Управление этим типом шагового двигателя отличается и является сложным, и также невозможно легко разработать схему управления без микроконтроллера.
  • Униполярный шаговый двигатель: В этом типе шагового двигателя мы можем взять центральное ответвление обеих фазных обмоток для общего заземления или для общей мощности, как показано ниже. Это облегчает управление двигателями, в униполярном шаговом двигателе также много типов

Режимы работы в шаговом двигателе

Поскольку статор ступенчатой ​​моды состоит из разных пар катушек, каждая пара катушек может возбуждаться разными способами, что позволяет модам работать во многих разных режимах.Ниже приведены широкие классификации

Full Step Mode

В режиме полного шага возбуждения мы можем добиться полного вращения на 360 ° с минимальным количеством оборотов (шагов). Но это приводит к меньшей инерции, а также вращение не будет плавным. Есть еще две классификации в режиме полного пошагового возбуждения: , однофазное пошаговое включение и два фазовых режима, .

1. Один пошаговый пошаговый или волновой пошаговый: В этом режиме только одна клемма (фаза) двигателя будет включена в любой момент времени.Это имеет меньшее количество шагов и, следовательно, может обеспечить полный поворот на 360 °. Поскольку число шагов меньше, ток, потребляемый этим методом, также очень низок. В следующей таблице приведена последовательность шаговых волн для 4-фазного шагового двигателя

Step Фаза 1 Фаза 2 Фаза 3 Фаза 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

2.Двухэтапное пошаговое включение: Как следует из названия в этом методе, две фазы будут одной. Он имеет то же количество шагов, что и волновой шаг, но поскольку две катушки находятся под напряжением одновременно, он может обеспечить лучший крутящий момент и скорость по сравнению с предыдущим методом. Хотя одним из недостатков является то, что этот метод также потребляет больше энергии.

Step Фаза 1 Фаза 2 Фаза 3 Фаза 4

1

1

1

0

0

2

0 1 1 0
3 0 0 1 1
4 1 0 0 1

полушаговый режим

Режим полушагового режима представляет собой комбинацию однофазного и двухфазного режимов.Эта комбинация поможет нам преодолеть вышеупомянутый недостаток обоих режимов.

Как вы уже догадались, так как мы объединяем оба метода, нам нужно выполнить 8-шаговых в этом методе, чтобы получить полный оборот. Последовательность переключения для 4-фазного шагового двигателя показана ниже

Шаг

Фаза 1

Фаза 2

Фаза 3

Фаза 4

1

1

0

0

0

2

1

1

0

0

3

0

1

0

0

4

0

1

1

0

5

0

0

1

1

6

0

0

0

1

7

1

0

0

1

8

1

0

0

0

Micro Step Mode

Микрошаговый режим является комплексным из всех, но он предлагает очень хорошую точность наряду с хорошим крутящим моментом и плавной работой.В этом методе катушка будет возбуждена двумя синусоидальными волнами, которые находятся на расстоянии 90 °. Таким образом, мы можем контролировать как направление, так и амплитуду тока, протекающего через катушку, что помогает нам увеличить количество шагов, которые двигатель должен сделать за один полный оборот. Микропереступление может занять до 256 шагов, чтобы сделать один полный оборот, что делает двигатель вращаться быстрее и плавнее.

Как использовать шаговый двигатель

Достаточно скучной теории, давайте предположим, что кто-то дает вам шаговый двигатель, например, знаменитый 28-BYJ48, и вам действительно интересно, как он работает.К этому времени вы бы поняли, что невозможно заставить эти двигатели вращаться, просто запитав их от источника питания, так как бы вы это сделали?

Давайте посмотрим на этот 28-BYJ48 шаговый двигатель .

Итак, в отличие от обычного двигателя постоянного тока, у него пять проводов всех причудливых цветов, и почему это так? Чтобы понять это, мы должны сначала узнать, как работает степпер, о котором мы уже говорили. Прежде всего, шаговые двигатели не вращают , они ступенчатые, поэтому их также называют шаговыми двигателями .Это означает, что они будут двигаться только один шаг за раз. Эти двигатели имеют последовательность катушек, присутствующих в них, и эти катушки должны быть включены определенным образом, чтобы двигатель вращался. Когда каждая катушка находится под напряжением, двигатель делает шаг, и последовательность активирования заставит двигатель делать непрерывные шаги, заставляя его вращаться. Давайте посмотрим на катушки внутри двигателя, чтобы точно знать, откуда эти провода.

Как вы можете видеть, двигатель имеет однополюсных 5-выводных катушек .Есть четыре катушки, которые должны быть включены в определенной последовательности. На красные провода подается напряжение +5 В, а остальные четыре провода будут заземлены для запуска соответствующей катушки. Мы используем любой микроконтроллер для подачи питания на эти катушки в определенной последовательности и заставить двигатель выполнять необходимое количество шагов. Опять же, есть много последовательностей, которые вы можете использовать, обычно используется , 4-ступенчатый , а для более точного управления также можно использовать 8-ступенчатый, , . Таблица последовательности для 4-ступенчатого управления показана ниже.

Шаг

Катушка под напряжением

Шаг 1

А и В

Шаг 2

B и C

Шаг 3

C и D

Шаг 4

D и A

Итак, почему этот двигатель называется 28-BYJ48 ? Шутки в сторону!!! Я не знаю.Для этого мотора нет никаких технических оснований называться так; может быть, мы не должны углубляться в это. Давайте посмотрим на некоторые важные технические данные, полученные из таблицы данных этого двигателя на рисунке ниже.

Это голова, полная информации, но нам нужно взглянуть на несколько важных, чтобы знать, какой тип степпера мы используем, чтобы мы могли эффективно его программировать. Сначала мы знаем, что это шаговый двигатель 5В, так как мы подаем на красный провод напряжение 5В.Кроме того, мы также знаем, что это четырехфазный шаговый двигатель, поскольку в нем было четыре катушки. Теперь передаточное число составляет 1:64. Это означает, что вал, который вы видите снаружи, совершит один полный оборот, только если двигатель внутри будет вращаться 64 раза. Это происходит из-за зубчатых колес, которые соединены между двигателем и выходным валом, эти зубчатые колеса помогают увеличить крутящий момент.

Другие важные данные, на которые следует обратить внимание, это угол шага : 5,625 ° / 64. Это означает, что двигатель при работе в 8-ступенчатой ​​последовательности будет двигаться 5.625 градусов для каждого шага, и для выполнения одного полного поворота потребуется 64 шага (5,625 * 64 = 360).

Расчет шагов за оборот для шагового двигателя

Важно знать, как рассчитать число шагов на оборот для вашего шагового двигателя, потому что только тогда вы сможете эффективно его программировать / управлять.

Предположим, что мы будем работать с двигателем в 4-х ступенчатой ​​последовательности, поэтому угол шага будет 11,25 °, так как он равен 5,625 ° (приведено в таблице) для 8-ступенчатой ​​последовательности, это будет 11.25 ° (5,625 * 2 = 11,25).

  шагов на оборот = 360 / угол шага   Здесь 360 / 11,25 = 32 шага за оборот.  

Зачем нам нужны модули драйверов для шаговых двигателей?

Большинство шаговых двигателей будут работать только с помощью модуля привода. Это связано с тем, что модуль контроллера (микроконтроллер / цифровая схема) не сможет обеспечить достаточный ток от своих выводов ввода / вывода для работы двигателя. Поэтому мы будем использовать внешний модуль, такой как ULN2003, модуль , в качестве драйвера шагового двигателя .Существует много типов модулей драйвера, и номинальная мощность одного из них будет изменяться в зависимости от типа используемого двигателя. Основным принципом для всех модулей привода будет источник / приемник достаточного тока для работы двигателя. Кроме того, существуют также модули драйверов, в которых заранее запрограммирована логика, но мы не будем обсуждать это здесь.

Если вам интересно узнать, как вращать шаговый двигатель с помощью микроконтроллера и ИС драйвера, то мы рассмотрели много статей о его работе с различными микроконтроллерами:

Теперь я считаю, что у вас достаточно информации для управления любым шаговым двигателем, который вам необходим для вашего проекта.Давайте посмотрим на преимущества и недостатки шаговых двигателей.

Преимущества шаговых двигателей

Одним из основных преимуществ шагового двигателя является то, что он имеет превосходный контроль положения и, следовательно, может использоваться для точного управления. Кроме того, он обладает очень хорошим удерживающим моментом, что делает его идеальным выбором для робототехники. Считается, что шаговые двигатели имеют более длительный срок службы, чем обычный двигатель постоянного тока или серводвигатель.

Недостатки шаговых двигателей

Как и все двигатели, шаговые двигатели также имеют свои недостатки, так как они вращаются, делая маленькие шаги, и не могут достичь высоких скоростей.Кроме того, он потребляет энергию для удержания крутящего момента, даже когда он идеален, что увеличивает потребление энергии.

,

Что такое шаговый двигатель? Типы, конструкция, эксплуатация и применение

Типы шаговых двигателей - их конструкция, эксплуатация и применение

Изобретение специальных карт привода шаговых двигателей и других технологий цифрового управления для сопряжения шагового двигателя с системами на базе ПК являются причиной широкого распространения шаговых двигателей в последнее время. Шаговые двигатели становятся идеальным выбором для систем автоматизации, которые требуют точного управления скоростью или точного позиционирования или того и другого.

Как мы знаем, многие промышленные электродвигатели используются с управлением с обратной связью для обеспечения точного позиционирования или точного управления скоростью, с другой стороны, шаговый двигатель может работать на контроллере с разомкнутым контуром. Это, в свою очередь, снижает общую стоимость системы и упрощает конструкцию станка по сравнению с сервосистемой. Остановимся кратко на шаговом двигателе и его типах .

Что такое шаговый двигатель?

Шаговый двигатель представляет собой бесщеточное электромеханическое устройство, которое преобразует последовательность электрических импульсов, приложенных к их обмоткам возбуждения, в точно определенное пошаговое механическое вращение вала.Вал двигателя вращается на фиксированный угол для каждого дискретного импульса. Это вращение может быть линейным или угловым. Оно получает одно шаговое движение для одного импульсного входа.

Когда применяется последовательность импульсов, она поворачивается на определенный угол. Угол, на который вал шагового двигателя поворачивается для каждого импульса, называется углом шага, который обычно выражается в градусах.

Количество входных импульсов, подаваемых на двигатель, определяет угол шага, и, следовательно, положение вала двигателя контролируется путем управления количеством импульсов.Эта уникальная особенность делает шаговый двигатель хорошо подходящим для системы управления с разомкнутым контуром, в которой точное положение вала поддерживается с точным количеством импульсов без использования датчика обратной связи.

Если угол шага меньше, чем больше будет количество шагов на оборот, и тем выше будет точность полученного положения. Углы шага могут составлять до 90 градусов и до 0,72 градуса, однако обычно используемые углы шага составляют 1,8 градуса 2.5 градусов, 7,5 градусов и 15 градусов.

Направление вращения вала зависит от последовательности импульсов, подаваемых на статор. Скорость вала или средняя скорость двигателя прямо пропорциональна частоте (частоте входных импульсов) входных импульсов, подаваемых на обмотки возбуждения. Следовательно, если частота низкая, шаговый двигатель вращается ступенчато, а для высокой частоты он непрерывно вращается как двигатель постоянного тока из-за инерции.

Как и все электродвигатели, он имеет статор и ротор.Ротор - это подвижная часть, которая не имеет обмоток, щеток и коммутатора. Обычно роторы имеют либо переменное сопротивление, либо постоянный магнит. Статор часто состоит из многополюсных и многофазных обмоток, обычно из трех или четырехфазных обмоток, намотанных на необходимое количество полюсов, определяемое желаемым угловым смещением на входной импульс.

В отличие от других двигателей он работает на запрограммированных дискретных управляющих импульсах, которые подаются на обмотки статора через электронный привод.Вращение происходит за счет магнитного взаимодействия между полюсами последовательно включенной обмотки статора и полюсами ротора.

Конструкция шагового двигателя

На современном рынке имеется несколько типов шаговых двигателей в широком диапазоне размеров, числа шагов, конструкций, проводки, зубчатой ​​передачи и других электрических характеристик. Поскольку эти двигатели способны работать в дискретном режиме, они хорошо подходят для взаимодействия с цифровыми устройствами управления, такими как компьютеры.

Благодаря точному контролю скорости, вращения, направления и углового положения они представляют особый интерес для систем управления производственными процессами, станков с ЧПУ, робототехники, систем автоматизации производства и контрольно-измерительных приборов.

Типы шаговых двигателей

Существуют три основные категории шаговых двигателей , а именно

  • Шаговый двигатель с постоянным магнитом
  • Шаговый двигатель с переменным сопротивлением
  • 9007 Гибридный шаговый двигатель

    0 Во всех этих двигателях обмотки возбуждения используются в статоре, где число обмоток относится к числу фаз.

    Напряжение постоянного тока подается в качестве возбуждения на катушки обмоток, и каждый вывод обмотки подключается к источнику через твердотельный переключатель. В зависимости от типа шагового двигателя его конструкция ротора состоит из ротора из мягкой стали с выступающими полюсами, цилиндрического ротора с постоянным магнитом и постоянного магнита с зубьями из мягкой стали. Давайте обсудим эти типы подробно.

    Шаговый двигатель с переменным сопротивлением

    Это шаговый двигатель базового типа, существующий в течение длительного времени и обеспечивающий самый простой способ понять принцип работы со структурной точки зрения.Как следует из названия, угловое положение ротора зависит от сопротивления магнитной цепи, образованной между полюсами статора (зубьями) и зубьями ротора.

    Шаговый двигатель с переменным сопротивлением
    Конструкция шагового двигателя с переменным сопротивлением

    Состоит из обмоточного статора и многозубого ротора из мягкого железа. Статор имеет пакет слоистых материалов из кремнистой стали, на которые намотаны обмотки статора. Обычно он наматывается на три фазы, которые распределены между парами полюсов.

    Количество полюсов на сформированном таким образом статоре равно четному кратному числу фаз, для которых обмотки на статоре намотаны. На рисунке ниже, статор имеет 12 одинаково расположенных выступающих полюсов, где каждый полюс намотан захватывающей катушкой. Эти три фазы питаются от источника постоянного тока с помощью твердотельных переключателей.

    Ротор не имеет обмоток и имеет выступающий тип полюса, изготовленный полностью из щелевых стальных пластин. Спроектированные зубцы полюса ротора имеют такую ​​же ширину, что и зубцы статора.Количество полюсов на статоре отличается от числа полюсов ротора, что обеспечивает возможность самостоятельного запуска и двунаправленного вращения двигателя.

    Соотношение полюсов ротора в терминах полюсов статора для трехфазного шагового двигателя определяется как Nr = Ns ± (Ns / q). Здесь Ns = 12 и q = 3, и, следовательно, Nr = 12 ± (12/3) = 16 или 8. 8-полюсный строительный ротор без какого-либо возбуждения показан ниже.

    Конструкция шагового двигателя с переменным сопротивлением
    Работа шагового двигателя с переменным сопротивлением

    Шаговый двигатель работает по принципу , согласно которому ротор выравнивается в определенной позиции с зубцами полюса возбуждения в магнитной цепи, где минимум Нежелание пути существует.Всякий раз, когда на двигатель подается мощность и, возбуждая определенную обмотку, он создает свое магнитное поле и развивает собственные магнитные полюса.

    Из-за остаточного магнетизма в полюсах магнита ротора он заставит ротор двигаться в таком положении, чтобы достигнуть минимальной позиции сопротивления, и, следовательно, один набор полюсов ротора совмещается с активным набором полюсов статора. В этом положении ось магнитного поля статора совпадает с осью, проходящей через любые два магнитных полюса ротора.

    Когда ротор совмещается с полюсами статора, он обладает достаточной магнитной силой, чтобы удержать вал от перемещения в следующую позицию, либо по часовой стрелке, либо против часовой стрелки.

    Рассмотрим принципиальную схему 3-фазного, 6 полюсов статора и 4 зубьев ротора, показанного на рисунке ниже. Когда фаза A-A ’снабжается источником постоянного тока путем замыкания переключателя -1, обмотка становится магнитом, в результате чего один зуб становится северным, а другой - южным. Таким образом, магнитная ось статора лежит вдоль этих полюсов.

    Благодаря силе притяжения катушка статора Северный полюс притягивает ближайший зубец ротора противоположной полярности, то есть Южный и Южный полюс притягивает ближайший зубец ротора противоположной полярности, то есть север. Затем ротор настраивается в положение минимального сопротивления, где магнитная ось ротора точно совпадает с магнитной осью статора.

    Работа шагового двигателя с переменным сопротивлением

    Когда на фазу B-B 'подается питание с помощью замыкающего переключателя -2, а фаза A-A' остается обесточенной при размыкании выключателя-1, обмотка B-B 'создает магнитный поток. и, следовательно, магнитная ось статора смещается вдоль образованных им полюсов.Следовательно, ротор с намагниченными зубьями статора перемещается с наименьшим нежеланием и вращается на 30 градусов в направлении по часовой стрелке.

    Когда на выключатель-3 подается напряжение после размыкания выключателя-2, на фазу C-C ’подается напряжение, зубья ротора совмещаются с новым положением, перемещаясь на дополнительный угол 30 градусов. Таким образом, ротор движется по часовой стрелке или против часовой стрелки, последовательно возбуждая обмотки статора в определенной последовательности. Угол шага этого 3-фазного 4-полюсного шагового двигателя с зубьями ротора выражается как 360 / (4 × 3) = 30 градусов (как угол шага = 360 / Nr × q).

    Угол шага может быть дополнительно уменьшен путем увеличения числа полюсов на статоре и роторе, в таких случаях двигатели часто наматываются с дополнительными фазовыми обмотками. Этого также можно достичь, приняв другую конструкцию шаговых двигателей , такую ​​как многоступенчатое устройство и механизм редуктора.

    Шаговый двигатель с постоянным магнитом

    Двигатель с постоянным магнитом является, пожалуй, наиболее распространенным среди нескольких типов шаговых двигателей.Как следует из названия, он добавляет постоянные магниты к конструкции двигателя. Этот тип шаговых двигателей также называется двигателем с накопителем или двигателем с жестяной банкой . Основным преимуществом этого мотора является его низкая себестоимость. Этот тип двигателя имеет 48-24 ступеней за оборот.

    Шаговый двигатель с постоянным магнитом
    Конструкция Шаговый двигатель с постоянным магнитом

    В этом двигателе статор является многополюсным, и его конструкция аналогична конструкции шагового двигателя с переменным сопротивлением, как описано выше.Он состоит из щелевой периферии, на которую намотаны катушки статора. Он имеет выступающие полюса на щелевой конструкции, где витые обмотки могут быть двух-, трех- или четырехфазными.

    Концевые клеммы всех этих обмоток выкуплены и подключены к возбуждению постоянного тока через полупроводниковые переключатели в цепи привода.

    Конструкция Шаговый двигатель с постоянными магнитами

    Ротор состоит из материала с постоянными магнитами, такого как феррит, который может иметь форму цилиндрического или выступающего полюса, но обычно это гладкий цилиндрический тип.Ротор спроектирован так, чтобы иметь четное количество постоянных магнитных полюсов с чередующимися северной и южной полярностями.

    Работа шагового двигателя с постоянным магнитом

    Работа этого двигателя работает по принципу, что в отличие от полюсов притягивают друг друга и как полюса отталкивают друг друга. Когда обмотки статора возбуждаются от источника постоянного тока, он создает магнитный поток и устанавливает северный и южный полюса. Из-за силы притяжения и отталкивания между полюсами ротора с постоянными магнитами и полюсами статора ротор начинает двигаться вверх в положение, для которого импульсы подаются на статор.

    Рассмотрим двухфазный шаговый двигатель с двумя полюсами постоянного магнитного ротора, как показано на рисунке ниже.

    Работа шагового двигателя с постоянным магнитом:

    Когда на фазу А подается положительное напряжение по отношению к А ', обмотки устанавливают северный и южный полюса. Благодаря силе притяжения полюса ротора совмещаются с полюсами статора, так что ось магнитного полюса ротора регулируется относительно оси статора, как показано на рисунке.

    Когда возбуждение переключается на фазу B и выключается фаза A, ротор дополнительно настраивается на магнитную ось фазы B и, таким образом, поворачивается на 90 градусов по часовой стрелке.

    Далее, если на фазу A подается отрицательный ток по отношению к A ′, образование полюсов статора заставляет ротор двигаться еще на 90 градусов по часовой стрелке.

    Таким же образом, если фаза B возбуждается отрицательным током при замыкании переключателя фазы A, ротор вращается еще на 90 градусов в том же направлении. Затем, если фаза A возбуждается положительным током, ротор возвращается в исходное положение, совершая полный оборот на 360 градусов.Это подразумевает, что всякий раз, когда статор возбуждается, ротор имеет тенденцию вращаться на 90 градусов по часовой стрелке.

    Угол шага этого 2-фазного 2-полюсного ротора с постоянным магнитом выражается как 360 / (2 × 2) = 90 градусов. Размер шага может быть уменьшен путем одновременного включения двух фаз или последовательности режимов однофазного включения и двухфазного включения с правильной полярностью.

    Гибридный шаговый двигатель

    Это наиболее популярный тип шагового двигателя , так как он обеспечивает лучшую производительность, чем ротор с постоянным магнитом, с точки зрения разрешения шага, удерживающего момента и скорости.Однако эти двигатели дороже, чем шаговые двигатели PM. Он сочетает в себе лучшие характеристики как шаговых двигателей с переменным сопротивлением, так и шаговых двигателей с постоянными магнитами. Эти двигатели используются в приложениях, где требуется очень маленький угол шага, такой как 1,5, 1,8 и 2,5 градуса.

    .

    Основы шагового двигателя

    Каждый двигатель преобразует мощность. Электродвигатели преобразуют электричество в движение. Шаговые двигатели преобразуют электричество во вращение. Мало того, что шаговый двигатель преобразует электроэнергию во вращение, он может очень точно контролировать, насколько он будет вращаться и как быстро.

    Шаговые двигатели названы так потому, что каждый импульс электричества вращает двигатель на один шаг. Шаговые двигатели управляются драйвером, который посылает импульсы в двигатель, заставляя его вращаться.Количество импульсов оборотов двигателя равно количеству импульсов, подаваемых в привод. Двигатель будет вращаться со скоростью, равной частоте тех же импульсов.

    Шаговые двигатели очень просты в управлении. Большинство драйверов ищут импульсы на 5 вольт, которые как раз и являются уровнем напряжения большинства интегральных схем. Вам просто нужно спроектировать схему для вывода импульсов или использовать один из генераторов импульсов ORIENTAL MOTOR.

    Одной из самых замечательных особенностей шаговых двигателей является их способность очень точно позиционировать.Это будет подробно рассмотрено позже. Шаговые двигатели не идеальны, всегда есть небольшие неточности. Стандартные шаговые двигатели ORIENTAL MOTOR имеют точность ± 3 минуты дуги (0,05 °). Замечательная особенность шаговых двигателей, однако, состоит в том, что эта ошибка не накапливается от шага к шагу. Когда стандартный шаговый двигатель перемещается на один шаг, он идет на 1,8 ° ± 0,05 °. Если один и тот же двигатель проходит миллион шагов, он будет перемещаться на 1 800 000 ° ± 0,05 °. Ошибка не накапливается.

    Шаговые двигатели могут быстро реагировать и ускоряться.Они имеют низкую инерцию ротора, которая может быстро набрать скорость. По этой причине шаговые двигатели идеально подходят для коротких и быстрых ходов.

    Система шагового двигателя

    На приведенной ниже схеме показана типичная система с шаговым двигателем. Все эти части должны присутствовать в той или иной форме. Производительность каждого компонента будет влиять на другие.

    Первый компонент - это компьютер или ПЛК. Это мозги за системой. Компьютер не только управляет системой шагового двигателя, но также контролирует и остальную часть машины.Это может поднять лифт или продвинуть конвейер. Он может быть сложным, как ПК или ПЛК, или простым, как кнопка оператора.

    Вторая часть - это индексатор или карта ПЛК. Это говорит шаговый двигатель, что делать. Он выдаст правильное количество импульсов, которые будет двигать двигатель, и изменит частоту, чтобы двигатель ускорялся, работал на скорости и затем замедлялся.

    Это может быть отдельный компонент, такой как индексатор ORIENTAL MOTOR SG8030 или плата генератора импульсов, которая вставляется в ПЛК.Форма не имеет значения, но она должна присутствовать для движения двигателя.

    Следующие четыре ящика составляют водитель мотора. Логика управления фазой берет импульсы от индексатора и определяет, какая фаза двигателя должна быть под напряжением. Фазы должны быть под напряжением в определенной последовательности, и логика для управления фазой заботится об этом. Блок питания логики является источником низкого уровня, который питает микросхемы в драйвере. Это зависит от набора микросхем или конструкции приложения, но большинство логических источников находятся в диапазоне 5 Вольт.Источник питания двигателя - это напряжение питания для питания двигателя. Этот уровень напряжения обычно находится в диапазоне 24 В постоянного тока, но может быть намного выше. Наконец, усилитель мощности - это набор транзисторов, который позволяет току возбуждать фазы. Они постоянно включаются и выключаются, чтобы двигать двигатель в правильной последовательности.

    Все эти компоненты проинструктируют двигатель для перемещения нагрузки. Нагрузка может представлять собой ходовой винт, диск или конвейер.

    Типы Шаговых Двигателей

    В настоящее время существует три основных типа шаговых двигателей.

    • Переменное сопротивление (VR)
    • постоянный магнит (PM)
    • гибрид

    ORIENTAL MOTOR производит только гибридные шаговые двигатели.

    Шаговые двигатели с переменным сопротивлением имеют зубцы на роторе и статоре, но без магнита. Поэтому он не имеет стопорный момента. У постоянного магнита есть магнит для ротора, но нет зубьев. Обычно, магнит ПМ имеет грубые углы шага, но у него есть стопорный момент.

    Гибридные шаговые двигатели объединяют магнит от постоянного магнита и зубья от двигателей с переменным сопротивлением.Магнит аксиально намагничен, то есть на диаграмме справа верхняя половина - северный полюс, а нижняя - южный полюс. На магните находятся две зубчатые роторные чашки с 50 зубцами. Две чашки смещены на 3,6 °, поэтому, если мы посмотрим на ротор между двумя зубьями на чашке северного полюса, мы увидим один зуб на чашке южного полюса прямо посередине.

    Эти двигатели имеют двухфазную конструкцию с 4 полюсами на фазу. Полюса на 90 ° друг от друга составляют каждую фазу.Каждая фаза намотана так, что полюс 180 ° имеет одинаковую полярность, в то время как эти 90 ° друг от друга - противоположная полярность. Если бы ток в этой фазе был обратным, изменилась бы и полярность. Это означает, что мы можем сделать любой полюс статора северным или южным полюсом.

    Предположим, что на диаграмме полюсы в 12 и 6 часов являются северными полюсами, а полюсы в 3 и 9 часов - южными. Когда мы возбуждаем фазу А, 12 и 6 притягивают южный полюс магнитного ротора, а 3 и 9 притягивают северный полюс ротора.Если смотреть с одного конца, мы увидим, что зубья ротора выровнены с 12 и 6, в то время как зубцы с 3 и 9 будут посередине. Если бы мы смотрели с противоположного конца, зубья ротора северного полюса были бы точно выровнены с 3 и 9, тогда как зубья на 12 и 6 были бы посередине. В зависимости от того, в каком направлении мы хотим идти, мы будем заряжать либо полюса на 2 и 7 как северные полюсы, либо полюсы на 11 и 5 как северные полюса. Здесь драйвер необходим для определения чередования фаз.(Нажмите на изображение, чтобы начать анимацию).

    На роторе 50 зубьев. Шаг между зубцами составляет 7,2 °. Когда двигатель движется, некоторые зубья ротора не совпадают с зубцами статора на 3/4 шага зуба, 1/2 шага зубца и 1/4 шага зуба. Когда двигатель шагнет, он пойдет по самому простому маршруту, поскольку 1/4 из 7,2 ° составляет 1,8 °, двигатель перемещается на 1,8 ° каждый шаг.

    Наконец, крутящий момент и точность зависят от числа полюсов (зубьев). Чем больше полюсов, тем лучше крутящий момент и точность.ORIENTAL MOTOR предлагает шаговые двигатели высокого разрешения. Эти двигатели имеют половину шага зуба нашего стандартного двигателя. Ротор имеет 100 зубьев, поэтому угол между зубцами составляет 3,6 °. Когда двигатель перемещается на 1/4 шага зуба, он движется на 0,9 °. Разрешение наших моделей с высоким разрешением вдвое выше, чем у стандартных моделей: 400 шагов на оборот против 200 шагов на оборот.

    Меньшие углы шага означают более низкую вибрацию, поскольку мы не шагаем так далеко с каждым шагом.

    Структура

    На рисунке ниже показано поперечное сечение 5-фазного шагового двигателя.Шаговый двигатель состоит в основном из двух частей: статора и ротора. Ротор, в свою очередь, состоит из трех компонентов: чашки ротора 1, чашки ротора 2 и постоянного магнита. Ротор намагничен в осевом направлении, так что, например, если чашка 1 ротора поляризована на север, чашка 2 ротора будет поляризована на юг.

    Статор имеет 10 магнитных полюсов с маленькими зубцами, каждый из которых имеет обмотку.

    Каждая обмотка соединена с обмоткой противоположного полюса, так что оба полюса намагничиваются с одинаковой полярностью, когда ток подается через пару обмоток.(Пропускание тока через данную обмотку намагничивает противоположную пару полюсов с одинаковой полярностью, то есть с севера или юга.)

    Пара противоположных полюсов составляет одну фазу. Поскольку имеется 10 магнитных полюсов или пять фаз, в этом конкретном двигателе называется 5-фазный шаговый двигатель.

    На внешнем периметре каждого ротора имеется 50 зубьев, причем зубья чашки ротора 1 и чашки ротора 2 механически смещены относительно друг друга на половину шага зуба.

    Speed-Torque

    Очень важно, чтобы вы знали, как читать кривую скорость-крутящий момент, поскольку она расскажет нам, что двигатель может и не может делать.Кривые скорость-крутящий момент представляют данный двигатель и данный привод. Когда двигатель работает, его крутящий момент зависит от типа привода и напряжения. Один и тот же двигатель может иметь совершенно другую кривую скорость-крутящий момент при использовании с другим приводом.

    ORIENTAL MOTOR дает кривые скорость-крутящий момент для справки. Если двигатель используется с аналогичным приводом, с аналогичным напряжением и аналогичным током, вы должны получить аналогичную производительность. Обратитесь к интерактивной кривой скорость-крутящий момент ниже:

    Чтение кривой скоростного момента

    • Момент удержания
      Величина крутящего момента, который двигатель создает в состоянии покоя, когда его номинальный ток протекает через его обмотки.
    • Область пуска / останова
      Значения, при которых двигатель может мгновенно запускаться, останавливаться или вращаться.
    • Момент затяжки
      Значения крутящего момента и скорости, при которых двигатель может запускаться, останавливаться или вращаться синхронно с входными импульсами.
    • Момент затяжки
      Значения крутящего момента и скорости, при которых двигатель может работать синхронно с фазами входа. Максимальные значения, которые двигатель может обеспечить без остановки.
    • Максимальная пусковая скорость
      Максимальная скорость, при которой двигатель может запускаться при измерении без нагрузки.
    • Максимальная скорость движения
      Самая высокая скорость, на которой будет работать двигатель, измеренная без нагрузки.

    Для работы в зоне между выдвижением и выдвижением двигатель должен сначала запуститься в области пуска / останова.Затем частота пульса увеличивается до достижения желаемой скорости. Для остановки скорость двигателя затем снижается до тех пор, пока она не окажется ниже кривой крутящего момента.

    Крутящий момент пропорционален току и числу витков провода. Если мы хотим увеличить крутящий момент на 20%, мы должны увеличить ток примерно на 20%. Точно так же, если мы хотим уменьшить крутящий момент на 50%, уменьшите ток на 50%.

    Из-за магнитного насыщения нет никакого преимущества увеличивать ток более чем в 2 раза от номинального тока.В этот момент увеличение тока не увеличит крутящий момент. Примерно в 10 раз больше номинального тока вы рискуете размагничить ротор.

    Все наши двигатели имеют изоляцию класса B и могут выдержать 130 ° C до того, как изоляция ухудшится. Если мы допустим перепад температур 30 ° изнутри наружу, корпус не должен превышать 100 ° C.

    Индуктивность влияет на крутящий момент на высокой скорости. Индуктивность является причиной, по которой двигатели не имеют высокой степени крутящего момента до бесконечности.Каждая обмотка двигателя имеет определенные значения индуктивности и сопротивления. Индуктивность в Генри, деленная на сопротивление в Омах, дает нам значение секунд. Это количество секунд (постоянная времени) - это время, за которое катушка заряжается до 63% от ее номинального значения. Если двигатель рассчитан на 1 ампер, после 1 постоянной времени катушка будет на 0,63 ампер. Примерно через 4 или 5 постоянных времени катушка будет до 1 ампер. Поскольку крутящий момент пропорционален току, если ток заряжается только до 63%, двигатель будет иметь только около 63% своего крутящего момента после 1 постоянной времени.

    На низких скоростях это не проблема. Ток может входить и выходить из катушек достаточно быстро, поэтому двигатель имеет номинальный крутящий момент. На высоких скоростях, однако, ток не может войти достаточно быстро, прежде чем переключится следующая фаза. Крутящий момент уменьшается.

    Напряжение драйвера играет большую роль в быстродействии. Чем выше отношение напряжения привода к напряжению двигателя, тем лучше характеристики на высокой скорости. Высокое напряжение заставляет ток в обмотках с большей скоростью, чем указанные выше 63%.

    Вибрация

    Когда шаговый двигатель совершает переход от одного шага к следующему, ротор не останавливается немедленно. ротор фактически проходит конечную позицию, вытягивается назад, проходит конечную в противоположном направлении и продолжает двигаться вперед и назад, пока, наконец, не остановится (см. интерактивную диаграмму ниже). Мы называем это «звон», и это происходит каждый шаг двигателя. Подобно банджо-шнуру, импульс переносит ротор за точку останова, затем он «подпрыгивает» взад-вперед, пока, наконец, не остановится.В большинстве случаев, однако, двигатель получает команду перейти к следующему шагу, прежде чем он остановится.

    Графики ниже показывают звон при различных условиях нагрузки. Разгруженный, мотор показывает много звонков. Много звонков означает много вибрации. Двигатель часто глохнет, если он не загружен или слегка нагружен, потому что вибрация настолько высока, что он потеряет синхронность. При тестировании шагового двигателя всегда обязательно добавляйте нагрузку.

    Два других графика показывают двигатель с нагрузкой.Правильная загрузка двигателя сгладит его производительность. Нагрузка должна составлять от 30% до 70% крутящего момента, который может создавать двигатель, а отношение инерции нагрузки к инерции ротора должно составлять от 1: 1 до 10: 1. Для более коротких и быстрых ходов соотношение должно быть ближе от 1: 1 до 3: 1.

    ORIENTAL MOTOR специалист по применению и инженеры могут помочь в подборе правильного размера.

    Двигатель будет демонстрировать сильные вибрации, когда частота входного импульса соответствует собственной частоте двигателя.Это называется резонансом и обычно происходит около 200 Гц. В резонансе перерегулирование и понижение становятся намного больше, и вероятность пропустить шаги намного выше. Резонанс изменяется в зависимости от инерции нагрузки, но обычно он составляет около 200 Гц.

    2-фазные шаговые двигатели могут пропускать шаги только в группах по четыре. Если вы пропускаете шаги, кратные четырем, вибрация вызывает потерю синхронизма или слишком большая нагрузка. Если пропущенные шаги не кратны четырем, есть большая вероятность, что неправильное количество импульсов или электрических помех вызывает проблемы.

    Есть много способов обойти резонанс. Самый простой способ - вообще избежать этой скорости. 200 Гц не очень быстрая, для двухфазного двигателя с 60 об / мин. Большинство двигателей имеют максимальную стартовую скорость около 1000 pps или около того. Таким образом, в большинстве случаев вы можете запустить двигатель на более высокой скорости, чем резонансная скорость.

    Если вам нужно начать со скорости ниже резонансной, быстро ускоряйтесь через резонансный диапазон.

    Другое решение - уменьшить угол шага.Двигатель всегда будет превышать и снижать скорость при больших углах поворота. Если двигателю не нужно ехать далеко, он не будет накапливать достаточное усилие (крутящий момент) для превышения допустимого значения. Каждый раз, когда угол шага уменьшается, двигатель не будет вибрировать так сильно. Вот почему полушаговые и микрошаговые системы настолько эффективны для снижения вибрации.

    Убедитесь, что двигатель рассчитан в соответствии с нагрузкой. Выбирая подходящий мотор, вы можете улучшить производительность.

    заслонки также доступны.Демпферы устанавливаются на заднем валу двигателя и поглощают часть вибрационной энергии. Они часто сглаживают вибрирующий мотор недорого.

    5-фазный шаговый двигатель

    Относительно новая технология в шаговых двигателях 5-фазная. Наиболее очевидным различием между 2-фазным и 5-фазным (см. Интерактивную диаграмму ниже) является количество полюсов статора. В то время как 2-фазные двигатели имеют 8 полюсов, 4 на фазу, 5-фазный двигатель имеет 10 полюсов, 2 на фазу. Ротор такой же, как у 2-фазного двигателя.

    В то время как 2-фазный двигатель перемещается с шагом 1/4 зуба в каждой фазе. 5-фазный из-за своей конструкции перемещается на 1/10 шага зуба. Поскольку шаг по-прежнему составляет 7,2 °, угол шага составляет 0,72 °. Просто основанная на конструкции, разрешение 5-фазы имеет 500 шагов на оборот против 2-фазы с 200 шагами на оборот. 5-фазное разрешение в 2,5 раза лучше, чем у 2-фазного.

    При более высоком разрешении вы получаете меньший угол шага, что, в свою очередь, снижает вибрацию.Поскольку угол шага 5-фазы в 2,5 раза меньше, чем у 2-фазного, вибрации намного ниже. Как в 2-фазном, так и в 5-фазном режиме ротор должен отклоняться или отклоняться более чем на 3,6 °, чтобы пропустить шаги. Поскольку угол шага 5-фазной фазы составляет всего 0,72 °, для двигателя практически невозможно отклониться от нормы или на 3,6 °. Вероятность потери синхронизации с 5-фазным шаговым двигателем очень мала.

    Методы езды

    Существует четыре различных способа привода шаговых двигателей:

      Волновой привод
    • (полный шаг)
    • 2 фазы (полный шаг)
    • 1-2 фазы вкл (полушаг)
    • Микрошаг

    Wave Drive

    На диаграмме ниже метод волнового привода был упрощен, чтобы лучше проиллюстрировать теорию.На иллюстрации каждый поворот на 90 ° соответствует вращению ротора на 1,8 ° в реальном двигателе.

    В методе волнового возбуждения (также называемом методом однофазного включения) только одна фаза включается за раз. Когда мы возбуждаем фазу А южным полюсом, он притягивает северный полюс ротора. Выключаем A и включаем B, ротор вращается на 90 ° (1,8 °) и так далее. Каждый раз только одна фаза находится под напряжением.

    Волновой привод имеет четырехступенчатую электрическую последовательность для вращения двигателя.

    2 фазы на

    В методе «2 фазы вкл.» Две фазы всегда находятся под напряжением.

    Еще раз на иллюстрации ниже, каждые 90 ° представляют собой поворот на 1,8 °. Если обе фазы A и B находятся под напряжением как южные полюса, северный полюс ротора будет одинаково притянут к обоим полюсам и выстроится в линию прямо посередине. В последовательности, когда фазы находятся под напряжением, ротор будет вращаться, чтобы выровняться между двумя полюсами под напряжением.

    Метод «2 фазы вкл.» Имеет четырехступенчатую электрическую последовательность для вращения двигателя.

    ORIENTAL MOTOR Стандартные 2-фазные и 2-фазные двигатели типа М используют метод «2 фазы включения».

    Какое преимущество имеет метод «2 фазы при включении» над методом «1 фазы при включении»? Ответ крутящий момент. В методе «1 фаза включения» одновременно включается только одна фаза, поэтому на ротор действует одна единица крутящего момента. В методе «2 фазы вкл.» На ротор воздействуют две единицы крутящего момента: 1 в положении 12 часов и 1 в положении 3 часа. Если сложить эти два вектора крутящего момента вместе, мы получим результирующее значение при 45 °, а величина будет на 41,4% больше.Используя метод «2 фазы при включении», мы можем получить тот же угол шага, что и при методе «1 фаза при включении», но с крутящим моментом на 41% больше.

    Пятифазные двигатели немного отличаются. Вместо того, чтобы использовать метод «двухфазного включения», мы используем метод «четырехфазного включения». Каждый раз, когда мы включаем 4 фазы, и двигатель делает шаг.

    Пятифазный двигатель проходит 10-ступенчатую электрическую последовательность.

    1-2 фазы вкл (полушаг)

    Метод «1-2 фазы вкл» или «полушаговый» объединяют два предыдущих метода.В этом случае мы возбуждаем А-фазу. Ротор выравнивается. На этом этапе мы держим фазу A включенной и активируем фазу B. Теперь ротор одинаково притягивается к обеим линиям посередине. Ротор повернулся на 45 ° (0,9 °). Теперь мы выключаем фазу A, но оставляем на фазе B. Двигатель делает еще один шаг. И так далее. Чередуя одну фазу и две фазы, мы сократили угол шага пополам. Помните, что с меньшим углом шага вибрация уменьшается.

    (Для 5-фазного двигателя мы чередуем 4 и 5 фаз.)

    Полупереходный режим имеет восьмиступенчатую электрическую последовательность. Для пятифазного двигателя в режиме «4-5 фаз вкл.» Двигатель проходит 20-шаговую электрическую последовательность.

    Microstep

    Microstepping - это способ сделать маленькие шаги еще меньше. Чем меньше шаг, тем выше разрешение и лучше характеристики вибрации. В микрошаге фаза не полностью включена или полностью выключена. Он частично включен. Синусоидальные волны применяются как к фазе А, так и к фазе В, разнесенной на 90 ° (0.9 ° в пятифазном шаговом двигателе).

    Когда максимальная мощность находится в фазе A, фаза B находится в нуле. Ротор выровняется с фазой А. По мере того, как ток к фазе А уменьшается, он увеличивается до фазы В. Ротор будет делать небольшие шаги в направлении фазы В, пока фаза В не достигнет своего максимума, а фаза А не будет равна нулю. Процесс продолжается вокруг других фаз, и у нас есть микрошаг.

    Есть несколько проблем, связанных с микрошагом, в основном это точность и крутящий момент. Поскольку фазы представляют собой только фазы, на которые подается только частично, крутящий момент двигателя уменьшается, как правило, примерно на 30%.Кроме того, поскольку разница крутящего момента между ступенями очень мала, двигатель иногда не может преодолеть нагрузку. В этих случаях двигателю может быть приказано двигаться на 10 шагов, прежде чем он действительно начнет двигаться. Во многих случаях необходимо закрыть цикл с помощью кодировщиков, которые увеличивают цену.

    Системы с шаговым двигателем

    • Системы с открытой петлей
    • Системы с замкнутым контуром
    • Сервосистемы

    с открытой петлей

    Шаговые двигатели

    спроектированы как система с разомкнутым контуром.Генератор импульсов посылает импульсы в схему чередования фаз. Секвенсор фаз определяет, какие фазы необходимо выключить или включить, как описано в полной информации о шагах и полу шагах. Секвенсор управляет мощными полевыми транзисторами, которые затем вращают двигатель.

    В системе с разомкнутым контуром, однако, нет проверки положения и нет возможности узнать, сделал ли двигатель свой заданный ход.

    Замкнутый цикл

    Самый популярный метод замыкания контура - это установка энкодера на заднем валу двигателя с двойным валом.Кодировщик состоит из тонкого диска с линиями на нем. Диск проходит между передатчиком и приемником. Каждый раз, когда между ними появляется линия, на сигнальные линии выводится импульс. Эти импульсы поступают обратно на контроллер, который ведет их учет. Обычно в конце хода контроллер сравнивает количество импульсов, отправленных драйверу, с количеством импульсов энкодера, отправленных обратно. Обычно пишется, что если два числа различны, то разница восполняется.Если числа совпадают, ошибка не возникает, и движение продолжается.

    Этот метод имеет два недостатка: стоимость (и сложность) и ответ. Дополнительные затраты на кодировщик, а также увеличение сложности контроллера увеличивают стоимость системы. Кроме того, поскольку коррекция (если таковая имеется) выполняется в конце хода, в систему можно добавить дополнительное время.

    Сервосистема

    Другой вариант - сервосистема.Сервосистема, как правило, представляет собой двигатель с низким числом полюсов, который дает высокую скорость, но не имеет встроенной способности позиционирования. Чтобы сделать это устройством позиционирования, требуется обратная связь, обычно и кодировщик или распознаватель, и контуры управления. Сервопривод по существу включается и выключается, пока счетчик резольвера не достигнет определенной точки. Поэтому сервопривод работает на основе ошибки. Например, сервопривод получает команду на 100 оборотов. Счетчик резольвера показывает ноль, и двигатель включается. Когда счетчик резольвера достигает 100 оборотов, двигатель выключается.Если положение отклоняется, двигатель снова включается, чтобы вернуть его в положение. То, как сервопривод реагирует на ошибку, зависит от настройки усиления. Если настройка усиления высокая, двигатель очень быстро отреагирует на любые изменения в ошибке. Если настройка усиления низкая, двигатель не будет так быстро реагировать на изменения ошибки. Однако при любой настройке усиления по времени временные задержки вводятся в систему управления движением.

    AlphaStep с замкнутым контуром и шаговым двигателем

    AlphaStep - революционный шаговый двигатель от Oriental Motor.AlphaStep имеет встроенный распознаватель, который обеспечивает обратную связь по положению. Во все моменты времени мы знаем, где находится ротор.

    В драйвере AlphaStep есть счетчик ввода. Все импульсы, поступающие на привод, считаются. Обратная связь резольвера поступает на счетчик положения ротора. Любое отклонение присутствует в счетчике отклонений. Обычно двигатель работает с разомкнутым контуром. Мы делаем векторы крутящего момента и мотор следует. Если счетчик отклонений показывает что-то больше ± 1,8 °, секвенсор фазы включает вектор крутящего момента в верхней части кривой смещения крутящего момента, генерируя максимальный крутящий момент, чтобы вернуть ротор в синхронизм.Если двигатель отключается на несколько шагов, секвенсор подает питание на несколько векторов крутящего момента в верхней части кривой смещения крутящего момента. Водитель может выдержать перегрузку до 5 секунд. Если в течение 5 секунд он не сможет привести двигатель в синхронное состояние, водитель выйдет из строя и отправит аварийный сигнал.

    Отличительной особенностью AlphaStep является то, что он исправляет пропущенные шаги на лету. Он не ждет до конца хода, чтобы внести исправления. Как только ротор вернулся в течение 1.8 °, драйвер возвращается в режим разомкнутого контура и посылает правильные фазы питания.

    На приведенном ниже графике показана кривая смещения крутящего момента и когда устройство находится в режиме разомкнутого или замкнутого контура. Кривая смещения крутящего момента представляет собой крутящий момент, создаваемый одной фазой. Он создает максимальный крутящий момент, когда зубья ротора смещены на 1,8 °. Двигатель может пропустить шаг только в случае превышения скорости более чем на 3,6 °. Поскольку водитель берет на себя управление вектором крутящего момента, когда он не достигает 1,8 °, двигатель не может пропустить шаги, кроме случаев, когда он перегружен в течение более 5 секунд.

    Многие считают, что точность шага AlphaStep составляет ± 1,8 °. Точность шага AlphaStep составляет 5 угловых минут (0,083 °). Водитель контролирует векторы крутящего момента за пределами 1,8 °. Находясь внутри 1,8 °, зубья ротора будут совпадать с генерируемым вектором крутящего момента. AlphaStep удостоверяется, что правильный зуб выровнен с вектором крутящего момента.

    AlphaStep доступен во многих версиях. ORIENTAL MOTOR предлагает версии с круглым валом и редукторами с несколькими передаточными числами для увеличения разрешения и крутящего момента или для уменьшения отраженной инерции.Почти все версии могут быть оснащены отказоустойчивым магнитным тормозом. ORIENTAL MOTOR также имеет версию на 24 В постоянного тока, называемую серией ASC.

    Заключение

    Итак, шаговые двигатели отлично подходят для позиционирования. Шаговые двигатели можно точно контролировать с точки зрения как расстояния, так и скорости, просто изменяя количество импульсов и их частоту. Их высокое число полюсов дает им точность, и в то же время они работают с разомкнутым контуром. При правильном размере для применения шаговый двигатель никогда не пропустит шаг.И поскольку они не нуждаются в позиционной обратной связи, они очень рентабельны.



    Смотрите также


avtovalik.ru © 2013-2020